它表明,对于n个时期t =1,2,…,n,该模型成立。
6
更一般的形式为:
Yi xi ui
i 1,2,...,n
(2.4)
即模型对X和Y的n对观测值(i=1,2,…,n)成立。 (2.3)式一般用于观测值为时间序列的情形,在横 截面数据的情形,通常采用(2.4) 式。
7
例2.1 城镇居民家庭人均消费方程 根据凯恩斯的绝对收入消费理论,在其它 条件不变的情况下,消费与可支配收入同方向变 动,即消费曲线的斜率为正。根据中国2006年31 个省市的城镇居民家庭平均每人全年可支配收入 income(单位:元)和城镇居民家庭平均每人全年 消费性支出consume的数据(单位:元),画出散 点图如下:
(6)各解释变量之间不存在严格的线性关系。
上述假设条件可用矩阵表示为以下四个条件:
18
A1. E(u)=0 A2. E (uu) 2 I n
由于
u1 u2 uu u1 u2 ... u n
2
u12 u1u2 ...... u1un 2 u2u1 u2 ...... u2un ... un ................................. 2 unu1 unu2 ...... un
8
15,000 14,000 13,000 12,000
CONSUME
11,000 10,000 9,000 8,000 7,000 6,000 8,000
12,000
16,000 INCOME
20,000
24,000
从图中看出,两变量之间呈线性关系,可建立城镇居 民家庭人均消费方程如下:
C o n su m e * In c o m e u