【5套打包】南京市初三九年级数学上(人教版)第21章《一元二次方程》检测试卷(含答案解析)
- 格式:docx
- 大小:742.18 KB
- 文档页数:23
九年级上册第21章单元检测一.选择题1.下列方程中,属于一元二次方程的是()A.3x2﹣5x=6B.﹣2=0C.x2+y2=4D.6x+1=02.已知一元二次方程的两根分别是3和﹣2,则这个方程可以是()A.(x+3)(x﹣2)=0B.x2+x+6=0C.(x﹣3)(x+2)=0D.x2﹣3x+2=03.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8B.3,4C.4,3D.4,84.若关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是()A.m≥B.m≤C.m≥3D.m≤35.方程9x2=8x+2化为一般式后的二次项、一次项、常数项分别是()A.9x2,8x,2B.﹣9x2,﹣8x,﹣2C.9x2,﹣8x,﹣2D.9x2,﹣8x,26.已知等腰三角形的两边长分别是一元二次方程x2﹣6x+8=0的两根,则该等腰三角形的底边长为()A.2B.4C.8D.2或47.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x*k=x (k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根8.用配方法解方程2x2﹣4x+1=0,则方程可变形为()A.(x﹣2)2=B.2(x﹣2)2=C.(x﹣1)2=D.(2x﹣1)2=1 9.下列用配方法解方程x2﹣x﹣2=0的四个步骤中,出现错误的是()A.①B.②C.③D.④10.若整数a既使得关于x的分式方程﹣2=有非负数解,又使得关于x的方程x2﹣x+a+6=0无解,则符合条件的所有a的个数为()A.1B.2C.3D.4二.填空题11.一元二次方程4x(x﹣2)=x﹣2的解为.12.用配方法解一元二次方程x2+6x+1=0时,配方后方程可化为:.13.某种服装原价为200元,现连续两次降价,每次降价的百分率相同.已知降价后的价格不能低于进价110元,且第一次降价后的价格比第二次降价后的价格高32元,则每次降价的百分率是.14.已知关于x的方程x2+kx﹣2=0的一个根是x=2,则另外一个根为.15.关于x的方程(m+1)x2+3x﹣1=0有两个实数根,则m的取值范围是.三.解答题16.解一元二次方程(1)(2x﹣3)2=4;(2)x2﹣6x﹣5=0.17.关于x的一元二次方程x2+(2k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使得x1+x2和x1x2互为相反数?若存在,请求出k的值;若不存在,请说明理由.18.张师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到7200元,且从今年二月到四月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计今年五月份的盈利能达到多少元?19.已知关于x的方程x2﹣(2k+1)x+5(k﹣)=0.求证:(1)无论k取何值,该方程总有实数根;(2)若等腰△ABC的一边长a=4,另两边b、c恰好是该方程的两个根,求△ABC的周长.20.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x2﹣x﹣6=0;②2x2﹣2x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,令t=12a﹣b2,试求t的最大值.参考答案一.选择题1.解:3x2﹣5x=6符合一元二次方程的定义,故选项A正确;﹣2=0不是整式方程,故选项B不是一元二次方程;x2+y2=4是二元二次方程,故选项C不是一元二次方程;6x+1=0是一元一次方程,故选项D不是一元二次方程.故选:A.2.解:∵3+(﹣2)=1,3×(﹣2)=﹣6,∴以3和﹣2为根的一元二次方程可为x2﹣x﹣6=0.故选:C.3.解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.4.解:∵关于x的一元二次方程x2﹣2x+m=0有两个实数根,∴△=12﹣4m≥0,∴m≤3.故选:D.5.解:方程整理得:9x2﹣8x﹣2=0,则二次项、一次项、常数项分别为9x2,﹣8x,﹣2.6.解:x2﹣6x+8=0(x﹣4)(x﹣2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,此时三角形的底边长为2,故选:A.7.解:∵x*k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵△=(﹣1)2﹣4(﹣k2﹣1)=4k2+5>0,∴方程有两个不相等的实数根.故选:C.8.解:∵2x2﹣4x+1=0,∴2x2﹣4x=﹣1,x2﹣2x=﹣,x2﹣2x+1=1﹣,∴(x﹣1)2=.9.解:解方程x2﹣x﹣2=0,去分母得:x2﹣2x﹣4=0,即x2﹣2x=4,配方得:x2﹣2x+1=5,即(x﹣1)2=5,开方得:x﹣1=±,解得:x=1±,则四个步骤中出现错误的是④.故选:D.10.解:解﹣2=得,x=﹣,∵分式方程﹣2=有非负数解,∴﹣≥0且x﹣1=﹣﹣1≠0∴a≤﹣1且a≠﹣4,∵关于x的方程x2﹣x+a+6=0无解,∴△=1﹣4(a+6)<0,解得,a>﹣5,综上,﹣5<x≤﹣1且a≠﹣4,∵a为整数,∴a=﹣5或﹣3或﹣2或﹣1,故选:D.11.解:4x(x﹣2)=x﹣24x(x﹣2)﹣(x﹣2)=0(x﹣2)(4x﹣1)=0x﹣2=0或4x﹣1=0解得x1=2,x2=.故答案为:x1=2,x2=.12.解:∵x2+6x+1=0,∴x2+6x=﹣1,∴x2+6x+9=﹣1+9,∴(x+3)2=8,故答案为:(x+3)2=8.13.解:设每次降价的百分率为x,依题意,得:200(1﹣x)﹣200(1﹣x)2=32,整理,得:25x2﹣25x+4=0,解得:x1=0.2=20%,x2=0.8=80%.当x=20%时,200(1﹣x)2=128>110,符合题意;当x=80%时,200(1﹣x)2=8<110,不符合题意,舍去.故答案为:20%.14.解:设方程的另一个根为t,根据题意得2t=﹣2,解得t=﹣1.即方程的另一个根为﹣1.故答案为﹣1.15.解:∵关于x的方程(m+1)x2+3x﹣1=0有两个实数根,∴△=9+4(m+1)≥0,且m+1≠0,解得:m≥﹣且m≠﹣1.故答案为:m≥﹣且m≠﹣1.三.解答题16.解:(1)开方得:2x﹣3=2或2x﹣3=﹣2,解得:x1=2.5,x2=0.5;(2)方程整理得:x2﹣6x=5,配方得:x2﹣6x+9=14,即(x﹣3)2=14,开方得:x﹣3=±,解得:x1=3+,x2=3﹣.17.解:(1)根据题意得△=(2k﹣1)2﹣4k2≥0,解得k≤;(2)不存在.∵x1+x2=﹣(2k﹣1),x1x2=k2,而x1+x2和x1x2互为相反数,∴﹣(2k﹣1)+k2=0,解得k1=k2=1,∵k≤,∴不存在实数k,使得x1+x2和x1x2互为相反数.18.解:(1)设每月盈利平均增长率为x,根据题意得:5000(1+x)2=7200.解得:x1=20%,x2=﹣220%(不符合题意,舍去),答:每月盈利的平均增长率为20%;(2)7200(1+20%)=8640(元),答:按照这个平均增长率,预计今年五月份这家商店的盈利将达到8640元.19.解:(1)证明:,∵4(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)∵△ABC是等腰三角形,∴b=c或b、c中有一个为4,①当b=c时,△=4(k﹣2)2=0,则k=2,方程化为,解得,而,∴、、4能够成三角形;△ABC的周长为;②当b=a=4或c=a=4时,把x=4代入方程,得,解得,方程化为,解得,x2=4,∵4、4、能够成三角形,∴△ABC的周长为.综上所述,△ABC的周长为9或.20.解:(1)①解方程得:(x﹣3)(x+2)=0,x=3或x=﹣2,∵2≠﹣3+1,∴x2﹣x﹣6=0不是“邻根方程”;②x==,∵=+1,∴2x2﹣2x+1=0是“邻根方程”;(2)解方程得:(x﹣m)(x+1)=0,∴x=m或x=﹣1,∵方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,∴m=﹣1+1或m=﹣1﹣1,∴m=0或﹣2;(3)解方程得x=,∵关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,∴﹣=1,∴b2=a2+4a,∵t=12a﹣b2,∴t=8a﹣a2=﹣(a﹣4)2+16,∵a>0,∴a=4时,t的最大值为16.。
第二十一章一元二次方程周周测6一、选择题(每题3分,共30分)1.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是() A.1 B.﹣1 C.0 D.无法确定2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0 3.一元二次方程(x﹣2)=x(x﹣2)的解是()A.x=1 B.x=0 C.x1=2,x2=0 D.x1=2,x2=14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠15.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=16.下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+l=07.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144C.144(1+x)2=100 D.100(1+x)2=1448.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣29.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0 10.若,a b是方程2220060x x+-=的两根,则23a a b++=()A.2006 B.2005 C.2004 D.2002第II卷(非选择题)二、填空题(每题3分,共18分)11.方程x2﹣2x=0的解为12.已知关于x的方程02=+-nmxx的两个根是0和3-,则m= ,n= .13.已知关于x的方程240x x a-+=有两个相同的实数根,则a的值是.14.已知一元二次方程22310x x--=的两根为12x x,,则=+2111xx___________.15.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_ .16.已知关于x的一元二次方程01)1(2=++-xxm有实数根,则m的取值范围是.三、解答题(共112分)17.(共24分,每小题6分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).(3) 022=+x x (4)02632=+-x x18.(12分)在实数范围内定义一种新运算“”,其规则为:a b =a 2-b 2,根据这个规则:(1)求43的值; (2)求(x +2)5=0中x 的值.19.(12分)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
第21章《一元二次方程》单元测试卷一、单选题(每小题只有一个正确答案)1.下列方程是一元二次方程的是()A.+x2=0B.3x2﹣2xy=0C.x2+x﹣1=0D.ax2﹣bx=02.如果﹣1是方程x2﹣3x+k=0的一个根,则常数k的值为()A.4B.2C.﹣4D.﹣23.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0B.k≠0C.k<1 D.k>14.方程的解是A.x1=2,x2= 3B.x1=2,x2=1C.x=2D.x=35.已知关于x的方程有一个根为,则另一个根为A.5B.C.2D.6.若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断7.已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为A.13B.11或13C.11D.128.用配方法解一元二次方程,方程可变形为()A.B.C.D.9.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是().A.B.-C.-D.10.如图所示,AC是一根垂直于地面的木杆,B是木杆上的一点,且AB=2米,D是地面上一点,AD=3米.在B处有甲、乙两只猴子,D处有一堆食物.甲猴由B往下爬到A处再从地面直奔D处,乙猴则向上爬到木杆顶C处腾空直扑到D处,如果两猴所经过的距离相等,则木杆的长为()A.m B.2m C.3m D.5 m11.某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次.设每月的平均增长率为x,则可列方程为()A.B.C.D.12.若实数范围内定义一种运算“﹡”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为()A.-2B.-2,3C.,D.,二、填空题13.写出一个一元二次方程,使其有一个根为1,并且二次项系数也为1,方程为________.14.已知关于的方程有两个相等的实根,则的值是__________.15.已知是关于方程的一个根,则的值为______.16.关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=_____(一个即可).17.某商品经过连续两次降价,销售单价由原来的125元降到80元,设平均每次降价的百分率为x,则可列方程为________________________________.三、解答题18.关于x的一元二次方程有实数根,求m的取值范围;若方程有一个根为,求m的值和另一根.19.解方程(1)x2﹣2x﹣2=0 (2)(x+1)2=4(x﹣1)2.20.解方程:(1)x2-6x-6=0; (2)2x2-7x+3=0.21.解方程:方程已知x:y::2:3,求的值.22.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具的销售单价为x元(x>40),请将销售利润w表示成销售单价x的函数;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.23.一块矩形场地,场地的长是宽的2倍.计划在矩形场地上修建宽都为2米的两条互相垂直的小路,如图,余下的四块小矩形场地建成草坪.四块小矩形草坪的面积之和为364平方米,求这个矩形场地的长和宽各是多少米?参考答案1.C【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选:C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.3.A分析:由方程有两个不相等的实数根,可知∆>0,且二次项系数不等于0,据此列式求解即可.详解:由题意得,,解之得,k<1且k≠0 .故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4.A【分析】利用因式分解法求解即可.【详解】,移项得:(x-2)²-(x-2)=0,提公因式得:(x-2)(x-2-1)=0,解得:.故选A.【点睛】本题考查了一元二次方程的解法,解题的关键是根据方程的特点选择合适的方法求解即可.根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值.∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得:m=﹣1.故选B.【点睛】本题考查了根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.6.A【分析】计算根的判别式,利用k的取值范围进行判断其符号即可求得答案.【详解】∵x2+4x+k=0,∴△=42-4k=4(4-k),∵k>4,∴4-k<0,∴△<0,∴该方程没有实数根,故选:A.【点睛】考查根的判别式,掌握方程根的情况与根的判别式的关系(①当>0时,方程有两个不相等的实数根;②当=0时,方程有两个相等的实数根;③当<0时,方程没有实数根)是解题的关键.7.B【分析】由一元二次方程的两个解恰好分别是等腰的底边长和腰长,利用因式分解法求解即可求得等腰的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.【详解】,,或,即,,一元二次方程的两个解恰好分别是等腰的底边长和腰长,当底边长和腰长分别为3和5时,,的周长为:;当底边长和腰长分别为5和3时,,的周长为:;的周长为:11或13.故选:B.【点睛】此题考查了因式分解法解一元二次方程、等腰三角形的性质以及三角形三边关系此题难度不大,注意分类讨论思想的应用.先把常数项7移到方程右边,然后把方程两边加上42即可.【详解】方程变形为:x2+8x=-7,方程两边加上42,得x2+8x+42=-7+42,∴(x+4)2=9.故选D.【点睛】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半,这样把方程变形为:(x-)2=.9.C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选:C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.10.B【分析】设BC=x,AC=(2+x),从题意可得到AB+AD=BC+CD可得CD=5-x,AB=2,AD=3,把数据代入DC2=AC2+AD2,可得到一元二次方程.【详解】设BC的长为x米,∵AB+AD=BC+CD,∴CD=5-x,∵AC2+AD2= DC2,∴(2+x)2+32=(5-x) 2,∴x= ,AC=2+ =2m.故选B.【点睛】本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后列方程求解.11.A【分析】设平均每月的增长率为,则由题意可得9月份的游客人数为:,10月份的游客人数为:,这样结合10月份共接收游客64万人即可列出方程了.【详解】设平均每月的增长率为,根据题意可得:.故选A.【点睛】读懂题意,设平均每月的增长率为,由此表达出10月的游客人数为是解答本题的关键.12.D【分析】根据运算“﹡”的规则,可将所求的方程化为:(x+2+1)2-5(x+2)=0,然后解这个一元二次方程即可.【详解】依题意,可将所求方程转化为:(x+3)2-5(x+2)=0,化简得:x2+x-1=0解得x1=,x2=,故选:D【点睛】本题考核知识点:本题是一个阅读型的问题,弄清新运算的规则是解答此类题的关键.13.答案不唯一,如x2=1【分析】本题根据一元二次方程的根的定义,确定一元二次方程.【详解】一元二次方程的一般形式为ax2+bx+c=0(k≠0),一个二次项系数为1,即a=1,并且一个根也为1,可令b=0,c=-1,这样的一元二次方程是x2=1.故答案为:答案不唯一,如x2=1.【点睛】根据一元二次方程的定义,利用待定系数法求出方程的解析式.14.【解析】分析: 根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.详解::∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴==,解得:k=.故答案为:.点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.16分析:先利用一元二次方程解的定义得到2-2=8,然后把变形为2(2-2),再利用整体代入的方法计算.详解:∵是关于方程的一个根,,∴2-2-8=0,∴2-2=8,∴=2(2-2)=2×8=16.故答案为:16.点睛:此题考查了一元二次方程的解,利用方程的解可以求方程中字母系数的值或与一元二次方程根有关的代数式的值,或将根代入方程,得到关于字母的代数式,充分利用含有这个字母的等量关系,将所求代数式变形或化简,求出其嗲数是的值,注意可利用整体代入思想. 16.﹣2【分析】先根据判别式的意义得到=42+8a≥0,解得a≥-2,然后在解集中找出负整数即可.【详解】∵关于x的方程ax2+4x-2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥-2,∴负整数a=-1或-2.故答案为-2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式=b2-4ac.当>0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当<0,方程没有实数根.17.125(1-x)2 =80.【解析】分析:等量关系为:原价×(1-下降率)2=80,把相关数值代入即可.详解:第一次降价后的价格为125×(1-x),第二次降价后的价格为125×(1-x)×(1-x)=55×(1-x)2,∴列的方程为125×(1-x)2=80,故答案为125×(1-x)2=80.点睛:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.;(2)m的值为,方程的另一根为1.【分析】若一元二次方程有实数根,则根的判别式,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0;将代入方程可求得m的值,解方程即可求得方程的另一根,即可解题.【详解】关于x的一元二次方程有实数根,,解之得;是这个方程的一个根,,,方程为:,整理得:,方程的根为1.故m的值为,方程的另一根为1.【点睛】本题考查了一元二次方程的求解,本题中代入求得m的值是解题的关键.19.(1)x1=1+,x2=1﹣;(2)x1=3,x2=.【分析】(1)配方法解;(2)因式分解法解.【详解】(1)x2﹣2x﹣2=0,x2﹣2x+1=2+1,(x﹣1)2=3,x﹣1=,x=1,x1=1,x2=1﹣,(2)(x+1)2=4(x﹣1)2.(x+1)2﹣4(x﹣1)2=0.(x+1)2﹣[2(x﹣1)]2=0.(x+1)2﹣(2x﹣2)2=0.(x+1﹣2x+2)(x+1+2x﹣2)=0.(﹣x+3)(3x﹣1)=0.x1=3,x2=.【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.20.(1)x1=3+,x2=3-(2)x1=,x2=3.【分析】【详解】解:(1)方程可化为x2-6x+9=6+9(x-3)2=15x-3=所以,x1=,x2=.(2)因为,a=2,b=-7,c=3>0所以,方程由两个不相等的实数根.所以, .所以,x1=,x2=3.【点睛】本题考核知识点:解一元二次方程. 解题关键点:熟练掌握一元二次方程的解法. 21.(1),;(2).【分析】(1)直接利用十字相乘法分解因式得出答案;(2)根据题意表示出x,y,z的值,进而代入求出答案.【详解】(1)x2+3x﹣4=0(x+4)(x﹣1)=0,则x1=﹣4,x2=1;(2)∵x:y:z=1:2:3,∴设x=a,则y=2a,z=3a,∴==﹣.【点睛】本题主要考查了比例的性质以及因式分解法解一元二次方程,正确分解因式是解题的关键.22.(1)w=﹣10x2+1300x﹣30000; (2)玩具销售单价为50元或80元时,可获得10000元销售利润,(3)销售价格定为65元时,可获得利润12250元.【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出w与x之间的关系式;(2)列出﹣10x2+1300x﹣30000=10000 的方程,求解即可;(3)把w=﹣10x2+1300x﹣30000化为顶点式,求出最大利润即可.【详解】(1)w=﹣10x2+1300x﹣30000;(2)依题意﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)∵w =﹣10x2+1300x﹣30000=﹣10(x﹣65) 2+12250,∴当x=65,w取得最大值,∴销售价格定为65元时,可获得利润12250元.【点睛】本题考查了二次函数的应用及一元二次方程的实际应用,解题的关键是理解题意正确列出二次函数的解析式.23.这个矩形场地的宽为15米,长为30米.【分析】将两条小路分别平移至矩形场地的边上,则四块小矩形场地的面积和变为一块大矩形的面积,根据矩形的面积公式列方程即可得出答案.【详解】解:设这个矩形场地的宽为x米,长为2x米,根据题意可得:(2x﹣2)(x﹣2)=364,则x2﹣3x﹣180=0,(x﹣15)(x+12)=0,解得:x1=15,x2=﹣12(舍去),2x=30(m),答:这个矩形场地的宽为15米,长为30米.【点睛】本题考查了一元二次方程的应用,将两条小路平移至矩形的边上,使四块小矩形拼成一个大的矩形,然后利用矩形的面积公式列出方程是解决此题的关键.。
3《一元二次方程》单元测试题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。
每题 3 分,共 24 分):1.下列方程中不一定是一元二次方程的是( )2 2 3x 2 +3 x - 2 = 0A.(a-3)x =8 (a≠3)B.ax +bx+c=0C.(x+3)(x-2)=x+5D. 572 下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12;C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+23. 一元二次方程 2x 2-3x+1=0 化为(x+a)2=b 的形式,正确的是()⎛ 3 ⎫2 ⎛ 3 ⎫2 1 ⎛ 3 ⎫2 1A. x - ⎪ = 16 ;B. 2 x - ⎪ = ;C. x - ⎪ = ;D.以上都不对⎝ 2 ⎭ ⎝ 4 ⎭ 16 ⎝ 4 ⎭ 164. 关于 x 的一元二次方程(a -1)x 2 + x + a 2 -1 = 0 的一个根是 0,则a 值为()A 1B -1C 1或-1D1/25. 已知三角形两边长分别为 2 和 9,第三边的长为二次方程 x 2-14x+48=0 的一根, 则这个三角形的周长为( ) A.11 B.17 C.17 或 19 D.196. 已知一个直角三角形的两条直角边的长恰好是方程2x 2 - 8x + 7 = 0 的两个根,则这个直角三角形的斜边长是( )A 、 B 、3 C 、6 D 、9 x 2 - 5x - 6 7. 使分式 的值等于零的 x 是() A.6 B.-1 或 6 C.-1 D.-6x +18. 若关于 y 的一元二次方程 ky 2-4y-3=3y+4 有实根,则 k 的取值范围是( ) A.k>-7/4 B.k≥-7/4 且 k≠0 C.k≥-7/4D.k>7/4 且 k≠09. 已知方程 x 2 + x = 2 ,则下列说中,正确的是()A 方程两根和是 1B 方程两根积是 2C 方程两根和是- 1D 方程两根积比两根和大 210. 某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题 4 分,共 20 分)211.用法解方程3(x-2)2=2x-4 比较简便. 12.如果2x2+1 与4x2-2x-5 互为相反数,则x 的值为. 13. x2 - 3x += (x -)214.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c 的关系是.15.已知方程3ax2-bx-1=0 和ax2+2bx-5=0,有共同的根-1, 则a= , b= .16.一元二次方程x2-3x-1=0 与x2-x+3=0 的所有实数根的和等于.17.已知3- 是方程x2+mx+7=0 的一个根,则m= ,另一根为.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是.1+119.已知x1 ,x2 是方程x 2- 2x - 1 = 0 的两个根,则x1 x2 等于.20.关于x 的二次方程x2 +mx +n = 0 有两个相等实根,则符合条件的一组m, n 的实数值可以是m =,n =.三、用适当方法解方程:(每小题 5 分,共 10 分)21. (3 -x)2 +x2 = 5 22. x2 + 2 3x + 3 = 0四、列方程解应用题:(每小题 7 分,共 21 分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为 20m,长为 32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为 570m2,道路应为多宽?2325. 某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢利 40 元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1 元,商场平均每天可多售出 2 件。
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0.A .2个B .3个C .4个D .5个 2.将一元二次方程x 2-4x +3=0配方可得( ) A .(x -2)2=7 B .(x -2)2=1 C .(x +2)2=1 D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .1 B .-3 C .3 D .4 4.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( ) A .k ≤1 B .k ≥-1 C .k ≤1且k ≠0 D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +ba的值是( )A .3B .-3C .5D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507 二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________. 11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________. 12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程: (1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1). (1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC +BC =20 m),与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q 从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3.4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.即x 2-20x +100=0,解得x 1=x 2=10. 当x =10时,80-x =80-10=70.答:第二个月的单价应为70元/件.[点评] 本题考查一元二次方程的应用.用列表格的方法得到第二个月的单价和销售量以及清仓时的销售量是解决本题的突破点,得到总利润的等量关系是解决本题的关键.19.[解析] (1)设点Q ,P 分别从点A ,B 同时出发,x s 后,AQ =x cm ,QB =(5-x )cm ,BP =2x cm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)根据勾股定理可求;(3)△PBQ 的面积能否等于7 cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的判别式与0的关系,若判别式大于或等于0,则能等于7 cm 2,否则不能等于7 cm 2.解:(1)设x s 后,△PBQ 的面积等于4 cm 2, 此时,AQ =x cm ,QB =(5-x )cm ,BP =2x cm.由12BP ·QB =4,得12×2x (5-x )=4, 即x 2-5x +4=0,解得x 1=1,x 2=4(不合题意,舍去). 所以1 s 后,△PBQ 的面积等于4 cm 2. (2)设y s 后,PQ 的长度等于210 cm. 此时QB =(5-y )cm ,BP =2y cm.在Rt △PBQ 中,因为PQ =210 cm ,根据勾股定理,得(5-y )2+(2y )2=(210)2, 解得y 1=3,y 2=-1(舍去).所以3 s 后,PQ 的长度等于210 cm. (3)由(1),得12×2x (5-x )=7.整理,得x 2-5x +7=0. 因为b 2-4ac =25-28<0, 所以此方程无实数解.所以△PBQ 的面积不可能等于7 cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(7)一、精心选一选,慧眼识金(每小题3分,共30分). 1.下列方程中,是一元二次方程的是( ).A .230x x y ++=B .2(2)x x x x -=+C .221132x x ++=D .2150x x++= 2.方程(3)x x x +=的根是( ).A .3x =-B .0x =C .3x =D .0x =或3x =-3.一元二次方程220x x -+=的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根 4.用配方法解方程2410x x ++=,经过配方可得到( ).A .()223x +=B .()225x += C .()223x -=D .()225x -=5判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)一个解x 的范围是( ). A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25 <x <3.266.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ).A .1B .5C .5-D .6 7.关于x 的一元二次方程230x ax a --=的一个根为6,另一个根为( ).A .2B .2-C .6-D .48.有一个面积为16 cm 2的梯形,它的一条底边长为3 cm ,另一条底边长比它的高长1c m ,若设这条底边长为x cm ,依据题意,列出方程整理后得( ). A .22350x x +-= B .22700x x +-= C .22350x x --= D .22700x x -+=9.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .15 C .12或15 D .不能确定10.某商场销售一批名牌衬衫,平均每天可出售20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,经调查发现:如果每件衬衫每降低1元,则商场平均每天多售出2件,若商场平均每天要盈利1200元,则每件衬衫应降价( ).A .10元B .20元C .25元D .10元或20元二、耐心填一填,一锤定音(每小题3分,共30分)11.把方程()()42213-+=-x x x 化成一元二次方程的一般形式为 ,它的二次项系数、一次项系数以及常数式的和为 . 12.方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为________.13.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的平均年增长率相同,则其增长率为_______. 14.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为:2()2m x +=__________. 15.若关于x 的方程()24110x k x -++=有两个实数根相等,则k =__________.16.小亮在写作业时,一不小心,把方程23x -80x -=的一次项x 前的数字被墨水玷污了,但从题的条件中,他知道方程的一个解是2x =,请问你能帮助小亮求出被玷污的数字是________.17.在实数内定义运算“⊕”,其法则为:22a b a b ⊕=-,方程(4⊕3)⊕24x =的解为 .18.若两个连续偶数的积是288,则这两个数的和等于 .19.已知实数x 满足2(1)4(1)120x x ----=,则代数式1x -的值为______.20.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意一个实数对 (a ,b )进入其中时,会得到一个新的实数:21a b +-,例如把(3,-2)放入其中,就会得到32+(-2)-1=6. 现将实数对(m ,2m -)放入其中,得到实数2,则m 的值为___________.三、细心做一做,马到成功(共60分) 21.(每小题4分,共12分)解下列方程: (1) 2235x x +-= (2)2(53)40x +-= (3) 2)2)(113(=--x x22.(6分)当x 为何值时,代数式562++x x 的值与代数式1-x 的值相等?23.(7分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 (1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?图224.(8分)已知关于x 的方程222(1)0x m x m -++=.(1)当m 取何值时,方程有两个实数根?(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.25.(8分)已知关于x 的方程2210x kx +-=.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求k 值及方程的另一个根.26.(9分)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. 27.(10分)如图2,A 、B 、C 、D 为矩形的四个顶点,已知AB=16 cm ,AD=6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 点为止,点Q 以2 cm/s 的速度向D 移动,到达D 点为止.(1)P 、Q 两点从出发点开始几秒后,四边形PBCQ 的面积为33 cm 2? (2)P 、Q 两点从出发点开始几秒后,点P 和点Q 间的距离是10 cm ?答案:一、精心选一选,慧眼识金1.C ; 2.D ; 3.D ; 4.A ; 5.C ; 6.B ; 7.B .点拨:可求得4a =,原方程为24120x x --=. 8.A .根据题意,得梯形的高为(1x -)㎝,故有1(3)(1)162x x +-=. 9.B .点拨:解方程得,13x =,26x =. 则等腰三角形的底为3,腰为6.10.B .设每件衬衫降价x 元,则()()120022040=+-x x .解得10,2021==x x (舍去) 二、耐心填一填,一锤定音11.2350x x -=,2-; 12.-2; 13.10%;14.244m n -; 15.3或—5;16.2.点拨:设被玷污的数字是a ,把2x =代入原方程,得2a =.17.5x =±. 点拨:根据题意,得4⊕3=7,所以7⊕x =22724x -=.18.34或-34. 点拨:这两个连续偶数为:16,18或-16,-18.19.6或-2.点拨:把1x -看作一个整体,解方程得,16x -=或12x -=-. 20.3或-1. 点拨:当把实数对(m ,-2m )放入其中,得2212m m --=. 三、细心做一做,马到成功21.(1)12x =,24x =-; (2)115x =-,21x =-; (3)153x =,24x =. 22.根据题意,得562++x x =1-x . 解得,3,221-=-=x x .所以当x 为-2或-3时,代数式562++x x 的值与代数式1-x 的值相等. 23.解:(1)设2016年到2018年该村人均收入的年平均增长率为x ,根据题意得:20000(1+x )2=24200,解得:x 1=0.1=10%,x 2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%. (2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元. 24.(1)当△=24b ac -≥0时,方程有两个实数根.∴[]222(1)4840m m m -+-=+≥,∴12m ≥-. 即当12m ≥-时,方程有两个实数根. (2)取0m =时,原方程可化为220x x -=,解得10x =,22x =. 25.(1)由方程2210x kx +-=,得△=222442(1)8b ac k k -=-⨯⨯-=+,无论k 取何值,均有2k ≥0,所以280k +>,即240b ac ->, 所以方程2210x kx +-=总有两个不相等的实数根.(2)把方程的根x =1-代入原方程,得22(1)10k ⨯---=,解得k =1. 当k =1时,原方程为2210x x +-=,解得1x =1-,212x =. 所以k 值为1,方程的另一个根为12. 26.(1)设剪成两段后其中一段为x cm ,则另一段为(20)x -cm.根据题意,得22201744x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得1216, 4.x x ==当16x =时,2020164x -=-=;当4x =时,2020416.x -=-= 答:这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能. 理由如下:设剪成两段后其中一段为x cm ,则另一段为(20)x -cm.根据题意,得22201244x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理得2201040x x -+=.∵24160b ac ∆=-=-<, ∴此方程无解.即不能剪成两段,使得两个正方形的面积和为212.cm27.(1)设P 、Q 两点从出发点开始x 秒后,四边形PBCQ 的面积为33 cm 2.则AP=3x ㎝,PB=(16-3x )㎝,CQ=2x ㎝.由梯形的面积公式得[]12(163)6332x x +-⨯=,解得x =5. 即P 、Q 两点从出发点开始5秒后,四边形PBCQ 的面积为33 cm 2. (2)设P 、Q 两点从出发点开始y 秒后,点P 和点Q 的距离是10 cm. 过点Q 作QH ⊥AB ,交AB 于点H.则AP=3y ㎝,CQ=2y ㎝,PH=(16-3y -2y )㎝.根据勾股定理得222(1632)610y y --+=,化简得2(165)64y -=,解得185y =,2245y =. 经检验,1y 、2y 均符合题意. 所以P 、Q 两点从出发点开始85秒或245秒后,点P 和点Q 的距离是10 cm.人教新版九年级数学上第21章一元二次方程单元练习试题(含答案)一.选择题(共14小题)1.下列方程中,是一元二次方程的是()A.x2﹣4=0 B.x=C.x2+3x﹣2y=0 D.x2+2=(x﹣1)(x+2)2.已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=()A.2019 B.4038 C.D.3.若2是关于x的方程x2﹣(m﹣1)x+m+2=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的长,则△ABC的周长为()A.7或10 B.9或12 C.12 D.94.若方程(x﹣4)2=a有实数解,则a的取值范围是()A.a≤0 B.a≥0 C.a>0 D.a<05.用配方法解方程x2﹣4x﹣9=0时,原方程应变形为()A.(x﹣2)2=13 B.(x﹣2)2=11 C.(x﹣4)2=11 D.(x﹣4)2=13 6.已知a,b,c满足4a2+2b﹣4=0,b2﹣4c+1=0,c2﹣12a+17=0,则a2+b2+c2等于()A.B.C.14 D.20167.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,08.点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,则经过点P的正比例函数图象一定过()象限.A.一、三B.二、四C.一D.四9.若x2﹣2px+3q=0的两根分别是﹣3与5,则多项式2x2﹣4px+6q可以分解为()A.(x+3)(x﹣5)B.(x﹣3)(x+5)C.2(x+3)(x﹣5)D.2(x﹣3)(x+5)10.关于x的方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.m>B.m<﹣C.m=D.m<11.已知m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,且满足+1=,则b 的值为()A.3 B.3或﹣1 C.2 D.0或212.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=90013.2018年一季度,华为某地销售公司营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30%B.(1+x)2=1+22%+30%C.1+2x=(1+22%)(1+30%)D.(1+x)2=(1+22%)(1+30%)14.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动.已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有()A.500(1﹣2x)=320 B.500(1﹣x)2=320C.500()2=320 D.500(1﹣)2=320二.填空题(共4小题)15.若关于x的一元二次方程ax2+2ax+c=0有一个根是0,此时方程的另一个根是16.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.17.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.18.对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.三.解答题(共5小题)19.选择合适的方法解一元二次方程(1)x2﹣x=1;(2)(2x﹣1)2=9;(3)3y(y﹣1)=2y﹣2;(4)(x﹣3)2+x2=9;(5)x2﹣6x﹣2=0;(6)x2+2x+10=0.(7)x2+10x+21=0 (8)7x2﹣x﹣5=0 (9)(2x﹣1)2=(3﹣x)2(10)x2+2x=0.20.关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.21.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m 的值.22.如图,将一幅宽20cm,长30cm的图案进行装裱,装裱后的整幅画长与宽的比与原画的长宽比相同,四周装裱的面积是原图案面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?23.如图,要设计一幅宽20cm、长30cm的图案,其中有两横三竖的彩条,横、竖彩条的宽度比为3:2.如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?参考答案一.选择题(共14小题)1.解:A、x2﹣4=0是一元二次方程,符合题意;B、x=不是整式方程,不符合题意;C、x2+3x﹣2y=0是二元二次方程,不符合题意;D、x2+2=(x﹣1)(x+2)整理得:x﹣4=0,是一元一次方程,不符合题意,故选:A.2.解:∵a是方程2x2﹣4x﹣2019=0的一个根,∴2a2﹣4a﹣2019=0,∴a2﹣2a=,故选:C.3.解:将x=2代入方程得:4﹣2(m﹣1)+m+2=0,解得:m=8,则方程为x2﹣7x+10=0,即(x﹣5)(x﹣2)=0,解得:x=5或x=2,当三角形的三边为2、2、5时,2+2<5,不能构成三角形;当三角形的三边为5、5、2时,三角形的周长为5+5+2=12,综上所述,三角形的周长,12.观察选项,选项C符合题意.故选:C.4.解:∵方程(x﹣4)2=a有实数解,∴x﹣4=±,∴a≥0;故选:B.5.解:∵x2﹣4x=9,∴x2﹣4x+4=9+4,即(x﹣2)2=13,故选:A.6.解:由题意,知4a2+2b﹣4+b2﹣4c+1+c2﹣12a+17=0,整理,得(b2+2b+1)+(4a2﹣12a+9)+(c2﹣4c+4)=0,所以(b+1)2+(2a﹣3)2+(c﹣2)2=0,所以b+1=0,2a﹣3=0,c﹣2=0,所以b=﹣1,a=,c=2.故a2+b2+c2=+1+4=.故选:B.7.解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.8.解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0,x+4=0,x1=6.x2=﹣4,∵点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,∴P(6,﹣4)或(﹣4,6),故经过点P的正比例函数图象一定过二、四象限.故选:B.9.解:∵x2﹣2px+3q=0的两根分别是﹣3与5,∴2x2﹣4px+6q=2(x2﹣2px+3p)=2(x+3)(x﹣5),故选:C.10.解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=m,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,解得m<.故选:D.11.解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,∴m+n=﹣(2b+3),mn=b2,∵+1=,∴+=﹣1,∴=﹣1,∴=﹣1,解得:b=3或﹣1,当b=3时,方程为x2+9x+9=0,此方程有解;当b=﹣1时,方程为x2+x+1=0,△=12﹣4×1×1=﹣3<0,此时方程无解,所以b=3,故选:A.12.解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.13.解:设2018年和2019年第一季度营收入的平均增长率为x,根据题意可得:(1+x)2=(1+22%)(1+30%).故选:D.14.解:设该店春装原本打x折,依题意,得:500•()2=320.故选:C.二.填空题(共4小题)15.解:把x=0代入原方程得出c=0,∴方程为ax2+2ax=0,∴ax(x+2)=0,∴该方程的另一个根为﹣2.故答案为:﹣2.16.解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.17.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,x1=3,x2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6,所以这个三角形的周长为3+6+6=15.故答案为:15.18.解:①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x=或x=,故答案为:x=或x=.三.解答题(共5小题)19.解:(1)x2﹣x=1,x2﹣x﹣1=0,a=1,b=﹣,c=﹣1,∴x=,,(2)(2x﹣1)2=9,2x﹣1=±3,2x=1±3,x=,x1=﹣1,x2=2,(3)3y(y﹣1)=2y﹣2,3y(y﹣1)﹣2(y﹣1)=0,(y﹣1)(3y﹣2)=0,,(4)(x﹣3)2+x2=9,x2﹣6x+9+x2﹣9=0,2x2﹣6x=0,x2﹣3x=0,x(x﹣3)=0,x1=3,x2=0,(5)x2﹣6x﹣2=0;x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,,(6)x2+2x+10=0,a=1,b=2,c=10,△=b2﹣4ac=﹣4×1×10=20﹣40<0,∴此方程无实数根,(7)x2+10x+21=0,(x+3)(x+7)=0,x1=﹣3,x2=﹣7,(8)7x2﹣x﹣5=0,a=7,b=﹣,c=﹣5,△=﹣4×7×(﹣5)=6+140=146,x=,,(9)(2x﹣1)2=(3﹣x)2,2x﹣1=±(3﹣x),2x﹣1=3﹣x,2x﹣1=﹣3+x,,(10)x2+2x=0,x(x+2)=0,x1=﹣2,x2=020.解:(1)∵关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△=(2k﹣3)2﹣4k2=﹣12k+9>0,解得:k<.(2)∵关于x的方程x2+(2k+3)x+k2=0有两个实数根α、β,∴α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k﹣3=6,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,则(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.21.解:(1)设方程的另一个根是x1,那么x1+1=﹣2,∴x1=﹣3;(2)∵x1、x2是方程的两个实数根,∴x1+x2=﹣2,x1x2=,又∵x12+x22+2x1x2﹣x12x22=0,∴(x1+x2)2﹣(x1x2)2=0,即4﹣=0,得m=±4,又∵△=42﹣8m>0,得m<2,∴取m=﹣4.22.解:由题意知长:宽=3:2,因装裱后的整幅画长与宽的比与原画的长宽比相同,故上下边衬和左右边衬的比例也为3:2,所以可设上下边衬的宽度为3xcm,左右边衬的宽度为2xcm,则装裱后的面积为:(20+4x)(30+6x),且原面积为:30×20,所以四周装裱的面积为:(20+4x)(30+6x)﹣30×20,根据题意列方程:(20+4x)(30+6x)﹣30×20=×30×20整理得:x2+10x﹣11=0,解得:x1=﹣11(舍去),x2=1,所以上下边衬为3cm,左右边衬为2cm,答:应按上下边衬为3cm,左右边衬为2cm来进行设计.23.解:设竖条的宽度是2xcm,横条的宽度是3xcm,则(20﹣6x)(30﹣6x)=(1﹣)×20×30解得x1=1,x2=(舍去).2×1=2(cm),3×1=3(cm).答:横条宽3cm,竖条宽2cm.。
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。
人教新版九年级数学上第21章一元二次方程单元练习试题(含答案)一.选择题(共14小题)1.下列方程中,是一元二次方程的是()A.x2﹣4=0 B.x=C.x2+3x﹣2y=0 D.x2+2=(x﹣1)(x+2)2.已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=()A.2019 B.4038 C.D.3.若2是关于x的方程x2﹣(m﹣1)x+m+2=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的长,则△ABC的周长为()A.7或10 B.9或12 C.12 D.94.若方程(x﹣4)2=a有实数解,则a的取值范围是()A.a≤0 B.a≥0 C.a>0 D.a<05.用配方法解方程x2﹣4x﹣9=0时,原方程应变形为()A.(x﹣2)2=13 B.(x﹣2)2=11 C.(x﹣4)2=11 D.(x﹣4)2=13 6.已知a,b,c满足4a2+2b﹣4=0,b2﹣4c+1=0,c2﹣12a+17=0,则a2+b2+c2等于()A.B.C.14 D.20167.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,08.点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,则经过点P的正比例函数图象一定过()象限.A.一、三B.二、四C.一D.四9.若x2﹣2px+3q=0的两根分别是﹣3与5,则多项式2x2﹣4px+6q可以分解为()A.(x+3)(x﹣5)B.(x﹣3)(x+5)C.2(x+3)(x﹣5)D.2(x﹣3)(x+5)10.关于x的方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.m>B.m<﹣C.m=D.m<11.已知m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,且满足+1=,则b 的值为()A.3 B.3或﹣1 C.2 D.0或212.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=90013.2018年一季度,华为某地销售公司营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30%B.(1+x)2=1+22%+30%C.1+2x=(1+22%)(1+30%)D.(1+x)2=(1+22%)(1+30%)14.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动.已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有()A.500(1﹣2x)=320 B.500(1﹣x)2=320C.500()2=320 D.500(1﹣)2=320二.填空题(共4小题)15.若关于x的一元二次方程ax2+2ax+c=0有一个根是0,此时方程的另一个根是16.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.17.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.18.对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.三.解答题(共5小题)19.选择合适的方法解一元二次方程(1)x2﹣x=1;(2)(2x﹣1)2=9;(3)3y(y﹣1)=2y﹣2;(4)(x﹣3)2+x2=9;(5)x2﹣6x﹣2=0;(6)x2+2x+10=0.(7)x2+10x+21=0 (8)7x2﹣x﹣5=0 (9)(2x﹣1)2=(3﹣x)2(10)x2+2x=0.20.关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.21.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m 的值.22.如图,将一幅宽20cm,长30cm的图案进行装裱,装裱后的整幅画长与宽的比与原画的长宽比相同,四周装裱的面积是原图案面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?23.如图,要设计一幅宽20cm、长30cm的图案,其中有两横三竖的彩条,横、竖彩条的宽度比为3:2.如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?参考答案一.选择题(共14小题)1.解:A、x2﹣4=0是一元二次方程,符合题意;B、x=不是整式方程,不符合题意;C、x2+3x﹣2y=0是二元二次方程,不符合题意;D、x2+2=(x﹣1)(x+2)整理得:x﹣4=0,是一元一次方程,不符合题意,故选:A.2.解:∵a是方程2x2﹣4x﹣2019=0的一个根,∴2a2﹣4a﹣2019=0,∴a2﹣2a=,故选:C.3.解:将x=2代入方程得:4﹣2(m﹣1)+m+2=0,解得:m=8,则方程为x2﹣7x+10=0,即(x﹣5)(x﹣2)=0,解得:x=5或x=2,当三角形的三边为2、2、5时,2+2<5,不能构成三角形;当三角形的三边为5、5、2时,三角形的周长为5+5+2=12,综上所述,三角形的周长,12.观察选项,选项C符合题意.故选:C.4.解:∵方程(x﹣4)2=a有实数解,∴x﹣4=±,∴a≥0;故选:B.5.解:∵x2﹣4x=9,∴x2﹣4x+4=9+4,即(x﹣2)2=13,故选:A.6.解:由题意,知4a2+2b﹣4+b2﹣4c+1+c2﹣12a+17=0,整理,得(b2+2b+1)+(4a2﹣12a+9)+(c2﹣4c+4)=0,所以(b+1)2+(2a﹣3)2+(c﹣2)2=0,所以b+1=0,2a﹣3=0,c﹣2=0,所以b=﹣1,a=,c=2.故a2+b2+c2=+1+4=.故选:B.7.解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.8.解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0,x+4=0,x1=6.x2=﹣4,∵点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,∴P(6,﹣4)或(﹣4,6),故经过点P的正比例函数图象一定过二、四象限.故选:B.9.解:∵x2﹣2px+3q=0的两根分别是﹣3与5,∴2x2﹣4px+6q=2(x2﹣2px+3p)=2(x+3)(x﹣5),故选:C.10.解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=m,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,解得m<.故选:D.11.解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,∴m+n=﹣(2b+3),mn=b2,∵+1=,∴+=﹣1,∴=﹣1,∴=﹣1,解得:b=3或﹣1,当b=3时,方程为x2+9x+9=0,此方程有解;当b=﹣1时,方程为x2+x+1=0,△=12﹣4×1×1=﹣3<0,此时方程无解,所以b=3,故选:A.12.解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.13.解:设2018年和2019年第一季度营收入的平均增长率为x,根据题意可得:(1+x)2=(1+22%)(1+30%).故选:D.14.解:设该店春装原本打x折,依题意,得:500•()2=320.故选:C.二.填空题(共4小题)15.解:把x=0代入原方程得出c=0,∴方程为ax2+2ax=0,∴ax(x+2)=0,∴该方程的另一个根为﹣2.故答案为:﹣2.16.解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.17.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,x1=3,x2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6,所以这个三角形的周长为3+6+6=15.故答案为:15.18.解:①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x=或x=,故答案为:x=或x=.三.解答题(共5小题)19.解:(1)x2﹣x=1,x2﹣x﹣1=0,a=1,b=﹣,c=﹣1,∴x=,,(2)(2x﹣1)2=9,2x﹣1=±3,2x=1±3,x=,x1=﹣1,x2=2,(3)3y(y﹣1)=2y﹣2,3y(y﹣1)﹣2(y﹣1)=0,(y﹣1)(3y﹣2)=0,,(4)(x﹣3)2+x2=9,x2﹣6x+9+x2﹣9=0,2x2﹣6x=0,x2﹣3x=0,x(x﹣3)=0,x1=3,x2=0,(5)x2﹣6x﹣2=0;x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,,(6)x2+2x+10=0,a=1,b=2,c=10,△=b2﹣4ac=﹣4×1×10=20﹣40<0,∴此方程无实数根,(7)x2+10x+21=0,(x+3)(x+7)=0,x1=﹣3,x2=﹣7,(8)7x2﹣x﹣5=0,a=7,b=﹣,c=﹣5,△=﹣4×7×(﹣5)=6+140=146,x=,,(9)(2x﹣1)2=(3﹣x)2,2x﹣1=±(3﹣x),2x﹣1=3﹣x,2x﹣1=﹣3+x,,(10)x2+2x=0,x(x+2)=0,x1=﹣2,x2=020.解:(1)∵关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△=(2k﹣3)2﹣4k2=﹣12k+9>0,解得:k<.(2)∵关于x的方程x2+(2k+3)x+k2=0有两个实数根α、β,∴α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k﹣3=6,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,则(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.21.解:(1)设方程的另一个根是x1,那么x1+1=﹣2,∴x1=﹣3;(2)∵x1、x2是方程的两个实数根,∴x1+x2=﹣2,x1x2=,又∵x12+x22+2x1x2﹣x12x22=0,∴(x1+x2)2﹣(x1x2)2=0,即4﹣=0,得m=±4,又∵△=42﹣8m>0,得m<2,∴取m=﹣4.22.解:由题意知长:宽=3:2,因装裱后的整幅画长与宽的比与原画的长宽比相同,故上下边衬和左右边衬的比例也为3:2,所以可设上下边衬的宽度为3xcm,左右边衬的宽度为2xcm,则装裱后的面积为:(20+4x)(30+6x),且原面积为:30×20,所以四周装裱的面积为:(20+4x)(30+6x)﹣30×20,根据题意列方程:(20+4x)(30+6x)﹣30×20=×30×20整理得:x2+10x﹣11=0,解得:x1=﹣11(舍去),x2=1,所以上下边衬为3cm,左右边衬为2cm,答:应按上下边衬为3cm,左右边衬为2cm来进行设计.23.解:设竖条的宽度是2xcm,横条的宽度是3xcm,则(20﹣6x)(30﹣6x)=(1﹣)×20×30解得x1=1,x2=(舍去).2×1=2(cm),3×1=3(cm).答:横条宽3cm,竖条宽2cm.人教版九年级上册数学单元知识检测题:第二十一章一元二次方程(含答案)一、选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是( )A. 0B. 1C. ﹣1D. ±12.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠03.如果2是方程x2﹣c=0的一个根,那么c的值是()A. 4B. ﹣4C. 2D. -24.一元二次方程x2+6x-7=0的解为( )A. x1=1,x2=7B. x1=-1,x2=7C. x1=-1,x2=-7D. x1=1,x2=-75.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.用配方法解一元二次方程时,下列变形正确的是().A. B. C.D.7.一元二次方程的两根分别为和,则为()A. B. C. 2 D.8.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.9.已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C.D.10.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3011.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=210二、填空题12.方程转化为一元二次方程的一般形式是________.13.若关于x的一元二次方程(m+2)x2+3x+m2-4=0的一个根为0,则m的值为=________.14.方程x2+2x=0的解为________.15.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________16.如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.17.都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。