理论力学 多自由度体系的微振动共47页文档
- 格式:ppt
- 大小:4.11 MB
- 文档页数:47
第三章 多自由度系统的振动§3-1 运动微分方程的建立图3-1所示的具有n 个质体的无重简支梁,它就是一n 个自由度系统。
设系统在质体m 1,m 2,m 3,…,m n 的静力作用下维持平衡状态,若受到某种外来因素F i (t)(i=1,2,3,…n)的干扰,破坏了原来的静力平衡状态,各质体在其静力平衡位置附近振动。
假定这个结构的振动由梁上一系列离散点的位移y 1(t),y 2(t),y 3(t),…,y n (t)所确定,它们以图中所示的方向为正。
这n 个位移即系统的n 个几何坐标。
图3-1 有n 个质体的无重简支梁用刚度法(stiffness method)建立运动方程。
根据达朗贝尔原理,考虑质体所产生的惯性力,就将原来的动力问题在形式上转化为静力问题。
这样,就可对图示系统的每个自由度列出平衡方程,即系统的运动方程。
分别考虑各个质点的位移、速度和加速度引起的约束反力,叠加后的总反力为零,得以下n 个平衡方程:111112112221222212n n n n n n n n m y c c c ym y c c c y m y c c m y⎡⎤⎧⎫⎡⎤⎧⎫⎢⎥⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪⎢⎥⎢⎥++⎨⎬⎨⎬⎢⎥⎢⎥⎪⎪⎪⎪⎢⎥⎢⎥⎪⎪⎪⎪⎣⎦⎩⎭⎣⎦⎩⎭1112111212222212n n n n nn n n k kk y F k k k y F k k k y F ⎡⎤⎧⎫⎧⎫⎢⎥⎪⎪⎪⎪⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎣⎦⎩⎭⎩⎭(3-1)式中,m i 为第i 个质体的集中质量;c ij 为j 坐标的单位速度所引起的i 坐标的阻尼力;k ij 为j 坐标的单位位移所引起的i 个坐标的弹性力;y i ,i y和i y 分别为i坐标的位移、速度和加速度。
式(3-1)可简写为MyCy Ky F ++= (3-2)式中,K ,M 和C 分别为系统的刚度矩阵、质量矩阵和阻尼矩阵,它们通称为系统的特性矩阵;y ,y 和y为位移、速度和加速度向量;F 为荷载向量。