形状相同的图形
- 格式:doc
- 大小:183.50 KB
- 文档页数:4
形状相同的概念形状相同是指两个物体或者两个图形在外形上完全一致,没有任何差异或变化。
在数学和几何中,形状相同通常指的是两个物体的大小、角度和比例都完全相同。
在这里,我们将从不同的角度来探讨形状相同的概念。
首先,形状相同可以用于描述物体的外观。
例如,两个完全一样的苹果,它们的大小、形状、颜色和纹理都完全相同,我们可以说它们的形状是相同的。
其次,形状相同也可以用于描述几何图形。
在几何学中,我们学习了许多不同的图形,如圆、矩形、三角形等。
当两个图形的边和角度完全相等时,我们称它们为形状相同的图形。
例如,两个边长相等、角度相等的矩形,它们的形状就是相同的。
形状相同的概念在数学和科学领域中具有重要的意义。
在数学中,我们常常需要比较两个物体或图形是否具有相同的形状。
仅通过目测是很难确定的,因为我们的眼睛可能会受到误导。
因此,我们需要使用几何推理和测量来证明两个物体或图形的形状是否相同。
例如,当我们需要证明两个三角形的形状相同时,可以使用边长和角度的测量结果来判断。
在科学领域中,形状相同的概念也被广泛应用。
例如,当我们研究细胞的结构和形态时,需要观察和比较不同细胞的形状。
形状相同的细胞通常具有相似的功能和结构,这有助于我们理解细胞的特性和功能。
形状相同的概念还可以应用于工程和设计领域。
在产品设计中,形状相同的概念可以帮助我们制造出更加精确和一致的产品。
例如,当我们制造车辆的零件时,必须保证每个零件的形状都完全相同,这样才能确保零件可以互换使用。
此外,形状相同还可以用于描述不同领域的事物。
例如,当我们观察一幅画作或一首音乐时,我们通常会注意到其中的“形状相同”,即重复出现的元素。
形状相同的元素可以给人以视觉上的平衡和和谐感,提高作品的整体美学价值。
在总结中,形状相同是指两个物体或图形在外形上完全一致的概念。
这个概念在数学、科学、工程和设计等领域都有广泛的应用。
通过比较和测量,我们可以确定两个物体或图形的形状是否相同,从而帮助我们进行准确的推理、研究和设计。
篇一:9下27.1《图形的相似》教学反思27.1 图形的相似(教学反思)“相似”这一章所研究的问题是在前面研究图形的全等和一些全等变换基础上的拓广和发展.本节从生活中形状相同的图形出发,引出相似图形的概念,在此基础上,进一步研究相似多边形的特征.其中相似多边形对应角相等,对应边的比相等的性质是本章的重点内容,也是后面继续学习相似三角形的基础.本课设计从兴趣入手,抓住学生注意力,为学生提供充足的自足学习的时间和空间,创造了一个有利于学生生动活泼、主动发展的教育环境.围绕问题引导学生进行探索性的研究活动.过程中出现的差错或疑惑,教师不包办,让学生自己发现、纠正和解释清楚.在这个过程中,学生不仅仅学会了判断两图形是否相似,更重要的是经历了探索相似图形的性质特征,与人合作,与人交流的过程,在思维能力,兴趣与动机,态度与习惯方面获得充分发展.学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验.本课教学中充分尊重学生已有的知识与经验,让学生感受知识产生,发展的过程,学会观察、发现、归纳等学习方法.在教学中让学生利用三角板和量角器去度量探究相似多边形的对应角相等,对应边的比相等.通过动手操作提高学生参与数学活动的积极性,让学生深入探讨,认真挖掘,并让学生尝到学习成功的喜悦.相似图形”大量存在于我们的生活中,教学过程中以数学知识发生为依托,设计数学情境.从欣赏三幅相似图片入手创设问题情境,直观形象,且贴近学生的生活,从而引起学生对“相似图形”的有意注意.以题型变换为手段,设计数学情境.围绕知识点,在本课学生训练的题型中,有填空、选择、开放题,形式有别,知识相通,避免了训练的单调.借助多媒体.根据本课内容特点,运用色彩斑斓的图片展示及形象生动的小动画,引起学生对所学内容的学习兴趣和改善学习的乏味心理,促进学生的心理由潜伏状态转变为活跃状态.本节课采用的评价方法主要有:观察、抽问和练习抽查等.教学中随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极;课堂练习、回答问题的正确程度;练习的正确率等等.为了使评价更有效,不能只按少数学生的反应作出判断,应注意收集不同信息.通过收集的信息,对学生的问题作出及时的矫正和评说,并对教学内容和教学过程作适当的调控,最终达到教学目标.篇二:八年级数学下册《4.3 形状相同的图形》教学设计北师大版辽宁省辽阳九中八年级数学下册《4.3 形状相同的图形》教学设计北师大版一、学生知识状况分析学生的知识技能基础:学生在七年级已经学了全等图形,对全等图形的特征已经掌握;在八年级学习了平面直角坐标系,通过“变化的鱼”感受了图形坐标的变化与图形形状的变化之间的关系。
图形的相似知识点相似图形是几何学中的重要概念,它指的是在形状和比例上相似的图形。
本文将介绍图形的相似性,并讨论相似图形的性质和应用。
一、相似图形的定义和判断方法相似图形定义:如果两个图形的形状相同,并且对应边的长度比相等,那么这两个图形就是相似图形。
判断相似图形的方法:1.对应角相等法则:如果两个图形的对应角相等,则这两个图形相似。
2.对应边成比例法则:如果两个图形的对应边成比例,则这两个图形相似。
3.综合判断法则:根据对应角和对应边成比例的性质,综合判断两个图形是否相似。
二、相似图形的性质1.对应边成比例:相似图形的对应边的长度比相等。
2.对应角相等:相似图形的对应角相等。
3.面积成比例:相似图形的面积比等于对应边长度比的平方。
三、相似三角形相似三角形是相似图形中最常见的一种情况。
相似三角形有以下性质:1.对应角相等:如果两个三角形的对应角相等,则这两个三角形相似。
2.对应边成比例:如果两个三角形的对应边成比例,则这两个三角形相似。
3.高线成比例:如果两个三角形的高线成比例,则这两个三角形相似。
4.中线成比例:如果两个三角形的中线成比例,则这两个三角形相似。
四、相似图形的应用相似图形的概念在实际生活中有着广泛的应用,例如:1.地图比例尺:地图上的比例尺就是通过相似图形的概念来确定的。
2.影像放大:在影像处理中,可以通过相似图形的概念对影像进行放大或缩小。
3.三角测量:在测量中,可以利用相似三角形的性质来进行间接测量。
4.建筑设计:建筑设计中,相似图形的概念可以帮助设计师确定建筑物的比例和尺寸。
总结:相似图形是几何学中一个重要的概念,它指的是在形状和比例上相似的图形。
我们可以通过对应角相等和对应边成比例等方法来判断图形是否相似。
相似图形的性质包括对应边成比例、对应角相等和面积成比例等。
相似图形在地图制作、影像处理、测量和建筑设计等领域有着广泛的应用。
通过了解相似图形的知识,我们可以更好地理解和应用几何学的基本原理。
数学中的相似形状与三角形一、相似形状1.定义:在平面几何中,如果两个图形的形状相同,但大小不一定相同,那么这两个图形称为相似图形。
2.相似图形的性质:(1)对应边成比例:相似图形的对应边长之比相等。
(2)对应角相等:相似图形的对应角度相等。
(3)面积比等于边长比的平方:相似图形的面积之比等于它们对应边长比的平方。
1.定义:三角形是由三条线段首尾顺次连接所组成的封闭平面图形。
2.三角形的分类:(1)按边长分类:等边三角形:三条边都相等的三角形。
等腰三角形:有两条边相等的三角形。
不等边三角形:三条边都不相等的三角形。
(2)按角度分类:锐角三角形:三个角都小于90°的三角形。
直角三角形:有一个角等于90°的三角形。
钝角三角形:有一个角大于90°的三角形。
3.三角形的性质:(1)内角和定理:三角形的内角和等于180°。
(2)外角定理:三角形的一个外角等于它不相邻的两个内角的和。
(3)三角形的中线、高线、角平分线:中线:连接三角形一个顶点与对边中点的线段。
高线:从三角形一个顶点垂直于对边的线段。
角平分线:从三角形一个顶点将对应角平分的线段。
4.三角形的判定:(1)SSS判定:如果两个三角形的三条边分别相等,那么这两个三角形相似。
(2)SAS判定:如果两个三角形有两对对应边成比例且夹角相等,那么这两个三角形相似。
(3)ASA判定:如果两个三角形有两对对应角相等且夹边成比例,那么这两个三角形相似。
(4)AAS判定:如果两个三角形有两对对应角相等,那么这两个三角形相似。
三、相似三角形1.定义:如果两个三角形的形状完全相同,但大小不一定相同,那么这两个三角形称为相似三角形。
2.相似三角形的性质:(1)对应边成比例:相似三角形的对应边长之比相等。
(2)对应角相等:相似三角形的对应角度相等。
(3)面积比等于边长比的平方:相似三角形的面积之比等于它们对应边长比的平方。
3.相似三角形的应用:(1)求解三角形:利用相似三角形的性质,可以求解未知边长或角度。
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比). 相似三角形的性质及判定A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B C 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AH S BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
课题:29.1形状相同的图形
作者:程庄中学王静静
一、教学目的:
知识目标:1、通过对丰富实例的观察、思考,经历认识形状相同图形的过程。
2、经历对形状相同图形从感性认识上升到理性认识的过程,进
一步发展生的空间观念。
能力目标:引导学生主动观察、操作、比较、归纳以及相互交流,进一步增强学生的探索精神和与他人合作的意识,发展学生的数学思维能力。
情感目标:从现实生活丰富多彩的实例中学习形状相同的图形,体会到生活中处处有数学;通过分组讨论学习,培养学生的探索精神和与他人合作的
意识。
二、教学重点:认识形状相同的几何图形。
三、教学难点:通过丰富的实例探索出形状相同的图形的对应角、对应边之间的关系。
四、节前预习:根据课本P54的四幅图,回答下列问题:
(1):如图(1),两个正方体物体的形状相同吗?
(2):如图(2),火箭模型和火箭的形状相同吗?大小呢?
(3):如图(3),同一张底片洗出的不同尺寸的照片中,人物的形状改
变了吗?
(4):如图(4),五星红旗上的大小五角星形状怎样?大小呢?四颗小
五角星呢?
(5):日常生活中有哪些形状相同、大小不同的物体及相关的几何图形。