形状相同的图形
- 格式:ppt
- 大小:3.35 MB
- 文档页数:26
6.3相似图形学习目标1.了解形状相同的图形是相似的图形,能在诸多图形中找出相似图形;2.理解相似三角形、相似多边形、相似比的概念;3.能根据相似多边形的定义,判断两个多边形是否相似教学流程提纲1.复习全等图形、全等三角形性质与判定2.通过“观察与思考”活动,引入相似性的概念注意:对应顶点的字母写在对应的位置上3.通过“思考与探索”活动,探索形状相同的多边形的特征,引入相似多边形的概念4.通过“尝试与交流”活动,引导学生运用相似多边形的定义判断书50页的两组四边形是否相似5.课本例题教学6.课堂练习7.拓展例题小明说,若已有△ABC,分别取AB、AC的中点D、E,连接DE,所形成的△ADE必与△ABC相似.(1)你认同他的说法吗?为什么?(2)取BC的中点F,连接DF、EF,△DEF与△ABC相似吗?为什么?F如图,在四边形ABCD 中,AD=2,AC= 4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC. (1)求AB,CD的长;(2)求∠BAD的度数.8.本节课3个目标你达成个?分别是:E D C B A 6.3相似图形过关检测 1.若△ABC ∽△ A ′B ′C ′ ,且 ,则△ABC 与△ A ′B ′C ′相似比是 ,△ A ′B ′C ′与△ABC 的相似比是 。
2.下列图形中不一定是相似图形的是 ( )A.两个等边三角形B.两个等腰直角三角形C.两个长方形D.两个正方形3.已知△ABC ∽△A 1B 1C 1,且∠A=50°,∠B=95°,则∠C 1等于( )A.50°B.95°C.35°D.25°4.下面每组都有两个三角形相似,请把它们表示出来,并说出它们的相似比.(1) (2)△ ∽△ ,相似比为 △ ∽△ ,相似比为5.如图,已知△ABC ∽△ADE,AB=30cm,BD=18cm,BC=20cm,∠BAC=75°,∠ABC=•40°.求:(1)∠ADE 和∠AED 的度数;(2)DE 的长.6.如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD .(1)求证:EB =GD ;(2)若∠DAB =60°,AB =2,AG =3,求GD 的长2'' B A AB。
图形的相似知识点相似图形是几何学中的重要概念,它指的是在形状和比例上相似的图形。
本文将介绍图形的相似性,并讨论相似图形的性质和应用。
一、相似图形的定义和判断方法相似图形定义:如果两个图形的形状相同,并且对应边的长度比相等,那么这两个图形就是相似图形。
判断相似图形的方法:1.对应角相等法则:如果两个图形的对应角相等,则这两个图形相似。
2.对应边成比例法则:如果两个图形的对应边成比例,则这两个图形相似。
3.综合判断法则:根据对应角和对应边成比例的性质,综合判断两个图形是否相似。
二、相似图形的性质1.对应边成比例:相似图形的对应边的长度比相等。
2.对应角相等:相似图形的对应角相等。
3.面积成比例:相似图形的面积比等于对应边长度比的平方。
三、相似三角形相似三角形是相似图形中最常见的一种情况。
相似三角形有以下性质:1.对应角相等:如果两个三角形的对应角相等,则这两个三角形相似。
2.对应边成比例:如果两个三角形的对应边成比例,则这两个三角形相似。
3.高线成比例:如果两个三角形的高线成比例,则这两个三角形相似。
4.中线成比例:如果两个三角形的中线成比例,则这两个三角形相似。
四、相似图形的应用相似图形的概念在实际生活中有着广泛的应用,例如:1.地图比例尺:地图上的比例尺就是通过相似图形的概念来确定的。
2.影像放大:在影像处理中,可以通过相似图形的概念对影像进行放大或缩小。
3.三角测量:在测量中,可以利用相似三角形的性质来进行间接测量。
4.建筑设计:建筑设计中,相似图形的概念可以帮助设计师确定建筑物的比例和尺寸。
总结:相似图形是几何学中一个重要的概念,它指的是在形状和比例上相似的图形。
我们可以通过对应角相等和对应边成比例等方法来判断图形是否相似。
相似图形的性质包括对应边成比例、对应角相等和面积成比例等。
相似图形在地图制作、影像处理、测量和建筑设计等领域有着广泛的应用。
通过了解相似图形的知识,我们可以更好地理解和应用几何学的基本原理。
数学中的相似形状与三角形一、相似形状1.定义:在平面几何中,如果两个图形的形状相同,但大小不一定相同,那么这两个图形称为相似图形。
2.相似图形的性质:(1)对应边成比例:相似图形的对应边长之比相等。
(2)对应角相等:相似图形的对应角度相等。
(3)面积比等于边长比的平方:相似图形的面积之比等于它们对应边长比的平方。
1.定义:三角形是由三条线段首尾顺次连接所组成的封闭平面图形。
2.三角形的分类:(1)按边长分类:等边三角形:三条边都相等的三角形。
等腰三角形:有两条边相等的三角形。
不等边三角形:三条边都不相等的三角形。
(2)按角度分类:锐角三角形:三个角都小于90°的三角形。
直角三角形:有一个角等于90°的三角形。
钝角三角形:有一个角大于90°的三角形。
3.三角形的性质:(1)内角和定理:三角形的内角和等于180°。
(2)外角定理:三角形的一个外角等于它不相邻的两个内角的和。
(3)三角形的中线、高线、角平分线:中线:连接三角形一个顶点与对边中点的线段。
高线:从三角形一个顶点垂直于对边的线段。
角平分线:从三角形一个顶点将对应角平分的线段。
4.三角形的判定:(1)SSS判定:如果两个三角形的三条边分别相等,那么这两个三角形相似。
(2)SAS判定:如果两个三角形有两对对应边成比例且夹角相等,那么这两个三角形相似。
(3)ASA判定:如果两个三角形有两对对应角相等且夹边成比例,那么这两个三角形相似。
(4)AAS判定:如果两个三角形有两对对应角相等,那么这两个三角形相似。
三、相似三角形1.定义:如果两个三角形的形状完全相同,但大小不一定相同,那么这两个三角形称为相似三角形。
2.相似三角形的性质:(1)对应边成比例:相似三角形的对应边长之比相等。
(2)对应角相等:相似三角形的对应角度相等。
(3)面积比等于边长比的平方:相似三角形的面积之比等于它们对应边长比的平方。
3.相似三角形的应用:(1)求解三角形:利用相似三角形的性质,可以求解未知边长或角度。
图形相似与相似三角形知识点相似是指形状相同但大小不同的两个图形,类似于放大或缩小后的图像。
相似的两个图形具有以下特点:•对应顶点角度相等•对应边比例相等•对应边平行因此,我们可以根据这些共同点判断两个图形是否相似。
相似三角形相似三角形是指具有相似形状的三角形,但是它们的边长不一定相等。
相似三角形的判断条件为:•AAA准则:两个三角形的三个内角相等,则它们相似。
•AA准则:两个三角形的两个内角相等,则它们相似。
•SAS准则:两个三角形的一对边和它们夹角相等,则它们相似。
其中,SAS准则是使用最广泛的判断方式,因为它是判断两个三角形是否相似的最有效方法。
相似三角形的性质相似三角形有许多重要的性质,以下是其中一些:•对应边比例相等。
对于相似三角形ABC和DEF,有AB/DE = AC/DF = BC/EF,其中AB和DE、AC和DF、BC和EF分别是对应边。
•相似三角形的高线、中线、角平分线和垂直平分线也是相似的。
例如,如果三角形ABC和DEF相似,则它们的高线、中线、角平分线和垂直平分线也相似。
•相似三角形的面积比等于对应边比的平方。
例如,如果三角形ABC 和DEF相似,则它们的面积比为S(ABC)/S(DEF) = (AB/DE)^2 = (AC/DF)^2 = (BC/EF)^2。
解决实际问题相似三角形的知识可以有效地应用于实际问题中。
以下是一些示例:•使用相似三角形来计算高度:当需要计算无法直接获得高度的对象高度时,可以利用相似三角形的原理来计算。
例如,一位工程师需要计算一栋建筑物的高度,但是他无法直接获得建筑物的高度。
在这种情况下,他可以站在一个已知的位置并利用三角函数(正切)计算出地平线上某个点的角度。
然后,他可以测量人的高度并利用相似三角形来计算出建筑物的高度。
•使用相似三角形来计算距离:当需要计算无法直接获得距离的对象距离时,可以利用相似三角形的原理来计算。
例如,一位地质学家需要计算一个峭壁的高度和距离,但他无法测量峭壁高度和距离。
苏科版九下《图形的相似》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:512长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:a c a b c db d b d±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(上图)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.4、判定定理3:简述为:三边对应成比例,两三角形相似.5、判定定理4:直角三角形中,“斜边和一直角边对应成比例” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“斜边和一直角边对应成比例”(3如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)FE D CB A E BD E D(3)B C AE DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
相似三角形知识点与经典题型知识点 1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比 (相似系数 ).知识点 2比例线段的相关概念〔1 〕如果选用同一单位量得两条线段a, b的长度分别为m,n ,那么就说这两条线段的比是am,bn或写成 a : b m : n .注:在求线段比时,线段单位要统一。
〔2 〕在四条线段 a,b,c, d 中,如果 a 和b 的比等于 c 和d 的比,那么这四条线段 a, b, c, d 叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是 b, c, d 的第四比例项,那么应得比例式为: bd .② 在比例式ac(a : bc ac :d )中,a 、d 叫比例外项, b 、c 叫比例内项 , a 、c 叫比例前项, b 、b dd 叫比例后项, d 叫第四比例项,如果 b=c ,即 a :b b :d 那么 b 叫做 a 、d 的比例中项, 此时有 b 2ad 。
〔3 〕黄金分割:把线段 AB 分成两条线段 AC, BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比例中项,即 AC 2AB BC ,叫做把线段 AB 黄金分割,点 C 叫做线段 AB 的黄金分割点,其中 AC5 1AB2≈AB .即ACBC 5 1 简记为: 长=短= 5 1ABAC 2全 长 2注:黄金三角形:顶角是 36 0的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点 3比例的性质〔注意性质立的条件:分母不能为0 〕〔 1 〕 根本性质:① a : bc : dadbc;②a : bb : cb 2a c .注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如 了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c b : a , d : b c : a .ad bc ,除d : c , c : a d : b ,a b,交换内项)cd〔2 〕 更比性质 (交换比例的内项或外项 ):ac d c,交换外项)bdbad b.同时交换内外项)ca〔3 〕反比性质 (把比的前项、后项交换 ):ac bd .bdac〔4 〕合、分比性质:ac a b cd .bdbd注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比例仍成立.如:a cac 等等.bda b cda bc d〔 5 〕等比性质:如果ac e m(b d fn 0) ,那么ac e m a . bd fnbd fn b注:①此性质的证明运用了“设 k 法〞〔即引入新的参数 k 〕这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ac e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0 .b df b 2d 3 f b 2d 3 fb知识点 4比例线段的有关定理1. 三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线 )所A得的对应线段成比例 .由 DE ∥BC 可得:ADAE 或 BD EC 或 AD AE DBEC ADEA AB ACD EBC注:①重要结论:平行于三角形的一边 ,并且和其它两边相交的直线 ,所截的三角形的三边 与原三角形三边 对...... ......应成比例 .②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线 )所得的对应线段成比例 .那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原那么是不要破坏条件中的两条线段的比及所求的两条线段的比.A D2. 平行线分线段成比例定理 :三条平行线截两条直线 ,所截得的对应线段成比例 . B EAD ∥BE ∥CF,C F可得ABDE或 AB DE或BC EF或 BC EF或AB BC 等. BC EF AC DF AB DE AC DF DE EF注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
相似三角形性质(总19页) -本页仅作为预览文档封面,使用时请删除本页-相似三角形知识点知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.知识点3三角形相似的等价关系与三角形相似的判定定理的预备定理(1)相似三角形的等价关系:①反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.②对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.③传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆(2) 三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // , ∴ ADE ∆∽ABC ∆.B (3)DB (2)知识点4 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。