加氢、催化裂化反应器
- 格式:ppt
- 大小:14.15 MB
- 文档页数:72
加氢催化剂、加氢反应器基础知识概述加氢精制催化剂是由活性组分、助剂和载体组成的。
其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。
该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。
加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。
工作原理催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。
(1)双键碳原子上烷基越多,氢化热越低,烯烃越稳定:R2C=CR2 > R2C=CHR > R2C=CH2 > RCH=CH2 > CH2=CH2(2)反式异构体比顺式稳定(3)乙炔氢化热为-313.8kJ·mol-1,比乙烯的两倍(-274.4kJ·mol-1)大,故乙炔稳定性小于乙烯。
应用在Pt、Pd、Ni等催化剂存在下,烯烃和炔烃与氢进行加成反应,生成相应的烷烃,并放出热量,称为氢化热(heat of hydrogenation,1mol不饱和烃氢化时放出热量)。
催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。
分类1、加氢裂化催化剂加氢裂化催化剂(hydrocracking catalyst)是石油炼制过程中,重油在360~450℃高温,15~18MPa高压下进行加氢裂化反应,转化成气体、汽油、喷气燃料、柴油等产品的加氢裂化过程使用的催化剂。
加氢裂化过程在石油炼制过程属于二次加工过程,加工原料为重质馏分油,也可以是常压渣油和减压渣油,加氢裂化过程的主要特点是生产灵活性大,产品的分布可由操作条件来控制,可以生产汽油、低凝固点的喷气燃料和柴油,也可以大量生产尾油用作裂解原料或生产润滑油。
所得的产品稳定性好,但汽油的辛烷值不高,。
由于操作条件苛刻,设备投资和操作费用高,应用不如催化裂化广泛。
加氢裂化工艺流程介绍加氢裂化工艺是炼油(石油加工)领域中的一种常用工艺,主要用于将重质石油馏分转化为较轻质的高附加值产品,如汽油和润滑油等。
以下是对加氢裂化工艺流程的介绍。
加氢裂化工艺是一种在高温高压下进行催化裂化反应的技术。
该工艺可以将重质石油馏分分解成轻质零部件,其中包括液化气、汽油、柴油和润滑油等。
在加氢裂化过程中,石油馏分首先经过预热,使其达到反应温度(通常为500-550摄氏度)。
然后,经过高压氢气的加氢作用,将石油分子中的一些碳链断裂成更短的碳链,从而产生较轻质的产品。
加氢裂化的反应器通常采用催化剂床,催化剂床中放置着由金属氧化物和酸性氧化物组成的催化剂。
加氢裂化反应器中的催化剂具有催化裂化反应的活性,能够促进碳链断裂和氢气的加氢反应。
催化剂床中的催化剂能够在高温高压下,将石油分子中的碳链断裂成较轻质的碳链,并捕获并催化裂化反应中产生的不稳定的分子中间体。
在加氢裂化过程中,石油馏分经过反应器后,会进入分离器进行分离。
分离器用于将产物中的不同组分进行分离和纯化。
在分离器中,液相产物被分离出来,并通过蒸汽冷凝器进行冷却,得到液体产品。
而气相产物则通过气体分离装置进行分离,得到液化气等产品。
加氢裂化工艺的设备通常还包括氢气压缩装置、再生装置和废气处理装置等。
氢气压缩装置用于将氢气压缩到加氢裂化过程所需的高压,并输送至反应器中。
再生装置用于再生催化剂,以维持催化剂的活性。
废气处理装置用于处理加氢裂化过程中产生的废气,以达到环保要求。
加氢裂化工艺是一种重要的炼油工艺,可将重质石油馏分转化为较轻质的高附加值产品。
这种工艺通过在高温高压下进行催化裂化反应,将石油分子的碳链断裂成较轻质的碳链。
这种工艺在提高石油利用率、改善燃料质量和减少环境污染方面具有重要意义。
催化裂化( LTAG+MIP)技术工业应用摘要:某炼化企业新建催化裂化装置,采用LTAG工艺技术,配置有催化柴油加氢改质装置,双反应器共用再生器,主反应器进料为加氢蜡油与低硫渣油混合进料,副反应器进料为加氢后催化柴油。
主反应器采用MIP技术,提升管分第一、第二反应区。
LTAG+MIP技术的应用,多生产高辛烷值汽油组分及化工原料,提高轻油收率,全厂柴汽比降至1以下。
关键词:催化裂化双器柴汽比轻油收率化工原料目前,汽油需求增长缓慢,柴油需求有下降趋势,航空煤油需求保持相对稳定增长,化工原料需求增长迅速,炼油产能过剩,为可持续发展,提高经济效益,需要炼化企业提高轻油收率,减少柴油生产,多生产化工原料。
向“油产化、油转化、油转特”方向发展。
根据公司自身状况,合理利用原有装置流程,选用(LTAG+MIP)技术催化裂化装置,灵活调整产品结构,以适应市场需求。
1装置概况及技术特点某炼化公司新建120×104t/a催化裂化装置,同时配置65×104t/a催化柴油加氢改质装置。
采用中国石化股份有限公司石油化工科学研究院的MIP技术和LTAG技术,以生产高辛烷值低烯烃的汽油、富含丙烯的液化气为主,催化剂为CGP专用催化剂。
再生部分采用单段逆流高效再生技术。
重油沉降器、柴油沉降器、再生器并列式三器布置。
重油提升管加工加氢蜡油与低硫渣油,加工规模80×104t/a。
柴油提升管加工加氢后催化柴油,加工规模40×104t/a。
主副反应器顶反应油气管线合并后进入分馏塔。
主要产出物料有干气、液化气、稳定汽油、柴油、油浆。
简要流程见图1。
图1 反应再生系统简图2原料性质装置3股原料,其中柴油及蜡油2股原料经过加氢处理,渣油原料采用低硫渣油,原料性质提高,大幅降低原料硫含量、多环芳烃、残碳、金属含量等指标,在催化剂及高温条件下尽量向预想方向进行反应,既可达到理想收率,又能提高产品性质。
低硫原料也降低催化装置烟气脱硫设施负担。
催化裂化工艺流程
催化裂化是一种重要的石化工艺,用于将重质石油馏分转化为高辛烷值的汽油和其他有用的化学品。
下面是催化裂化工艺流程的概述。
1. 预处理
在催化裂化反应之前,原油需要经过预处理,以去除其中的硫、氮和杂质等不利于反应的成分。
预处理过程包括脱盐、脱水、脱硫、脱氮和脱芳烃等步骤。
2. 反应器
催化裂化反应器是催化裂化工艺中的核心部件。
在反应器中,原油通过加热和压力增加的方式,经过催化剂床层进行裂化反应。
催化剂通常采用酸性固体催化剂,如硅铝酸盐、氧化铝等。
3. 分离器
反应器出口的混合物主要由裂化产物和未反应的原油组成。
分离器用于将这些组分分离出来。
分离器通常包括闪蒸器、冷凝器和分馏塔等。
其中,分馏塔用于将混合物分离成不同的馏分,如汽油、柴油、液化气等。
4. 产品处理
裂化产物需要进一步加工处理,以满足市场需求。
处理过程包括脱硫、脱氮、脱蜡、加氢、重整等步骤。
总的来说,催化裂化是一种复杂的工艺流程,需要各种设备和催化剂的协同作用,以实现高效、稳定和可控的反应。
加氢反应器及催化裂化反应器介绍一、加氢反应器:加氢反应器本体一般由高压容器制成,以承受高温、高压条件下的反应。
加氢催化剂则是加氢反应的关键组成部分,选择合适的加氢催化剂可以实现高效的加氢反应。
常用的加氢催化剂有铜、镍、钴等金属催化剂和硫化物催化剂。
反应物进料系统将待加氢的原料输送到反应器中,同时也要考虑控制反应温度和压力。
氢气供应系统负责提供所需的氢气,冷却系统则用于在反应过程中控制反应温度,避免过热。
二、催化裂化反应器:催化裂化反应器是一种用于催化裂化反应的设备,催化裂化是指通过在高温、低压下将高沸点的石油馏分裂解为低沸点产品的过程。
催化裂化反应器通常由反应器本体、催化剂、原料进料系统、反应产物分离系统和废气处理系统等组成。
反应器本体一般由高温、高压的容器制成,用于承受裂化反应的压力和温度。
催化剂是催化裂化反应的核心,选择合适的催化剂可以提高反应效率和产品质量。
常见的催化剂有二氧化硅、氯化氢处理的沸石等。
原料进料系统用于将待裂化的石油馏分输送到反应器中,并且控制进料的流量和温度。
反应产物分离系统常包括分离器、冷凝器和分馏塔等设备,用于将产物中的气体、液体和固体分离,提取纯净的产品。
废气处理系统则是用于处理反应过程中产生的废气,以减少对环境的影响。
催化裂化反应器在石油炼制工艺中起到重要作用。
它可以将重质石油馏分裂解为轻质馏分,如汽油、柴油和液化石油气等,提高石油产品的附加值和利用率。
总结:加氢反应器和催化裂化反应器是石油化工领域常见的反应设备。
加氢反应器主要用于将不饱和化合物加氢饱和,提高产品质量;催化裂化反应器主要用于将高沸点的石油馏分裂解为低沸点产品,提高产品附加值。
了解这两种反应器的结构和工作原理对于研究和优化石油化工过程具有重要意义。
多相反应器的分类及适用的单元操作过程多相反应器是一种用于进行非均相催化反应的设备,通过将气体或液体的反应物质与固体催化剂接触,实现催化反应的进行。
根据其结构和工作原理,多相反应器可以分为多种类型,并且适用于不同的单元操作过程。
本文将逐步介绍多相反应器的分类以及适用的单元操作过程。
一、多相反应器的分类根据反应器结构和形式的不同,可以将多相反应器分为以下几种类型:1. 固定床反应器:固定床反应器是一种最常见的多相反应器类型。
它由一个固定的催化剂床层组成,催化剂固定在反应器内部的填料、网格或支撑物上。
反应物流经固定床后,与催化剂发生反应。
固定床反应器具有体积大、操作方便等优点。
2. 流动床反应器:流动床反应器是一种将液体或气体的反应物以流动的形式通过催化剂床层的装置。
在流动床反应器中,反应物进入反应器床层后,与催化剂接触并发生反应,反应产物从反应器中流出。
流动床反应器具有处理大量物质、操作灵活等优点。
3. 移动床反应器:移动床反应器是一种将固体或液体的反应物经过固体催化剂床层的载体上方运动的装置。
在移动床反应器中,反应物在固体催化剂床层上发生反应,反应产物沿床层向下流动,催化剂从反应器底部取出并再次注入到床层顶部。
移动床反应器适用于处理粒状固体及高粘度液体。
4. 进料床反应器:进料床反应器是一种将气体或液体的反应物与固体催化剂通过进料装置分别输入反应器的装置。
在进料床反应器中,反应物通过进料装置进入反应器,与固体催化剂在反应器内部发生反应。
进料床反应器适用于处理粒状固体及高粘度液体。
5. 旋转床反应器:旋转床反应器是一种通过旋转反应器床层或反应器本身来实现反应物与固体催化剂接触的装置。
旋转床反应器具有较高的传质速率和传热速率,适用于气体-固体反应等。
二、适用的单元操作过程多相反应器适用于许多不同的单元操作过程,其中一些常见的单元操作过程包括:1. 吸附:吸附是指将气体或液体的分子吸附到固体表面上的过程,多相反应器中的固体催化剂常常具有很高的吸附能力。
加氢裂解反应器:加氢裂解反应器是一种重要的工业设备,主要用于在加氢条件下将重质油或煤等原料进行裂解,以生产轻质油品或燃料。
加氢裂解反应器有多种类型,包括一段法和两段法。
一段法是指只有一个加氢反应器,原料的加氢精制和加氢裂化在一个反应器内进行。
两段法则包括两个反应器,第一个反应器主要用于加氢精制,除去原料中的氮、硫化物等杂质,第二个反应器则进行加氢裂化,使重质油品转化为轻质油品。
加氢裂解反应器的操作条件通常包括高温、高压和氢气存在。
在反应过程中,原料与氢气混合后进入反应器,在催化剂的作用下进行裂解反应。
由于反应温度较高,通常需要使用耐高温的钢材制造反应器。
同时,由于反应压力较高,需要使用压力容器进行储存和操作。
在工业生产中,加氢裂解反应器的应用越来越广泛,尤其是在石油化工和煤化工领域。
通过加氢裂解反应器,可以生产出高品质的油品和燃料,满足市场需求,同时也可以降低污染物排放,促进环保。
化工装备行业四大类产品分析我国化工装备经过20多年的努力,取得重大技术研制成果。
但同国外相比,我国化工装备还有不少差距,主要是化工生产技术进步与设备技术开发脱节,重大设备的软件技术开发差距较大:设备技术开发跟不上工艺技术发展的速度,重工艺、轻设备的现象存在;基本上停留在模仿开发的阶段,开发具有自主知识产权的专有技术的能力弱;设备开发还不能做到专业化、系列化;设备设计和制造水平、设备质量和可靠性还有待进一步提高。
随着化工工艺的进步和发展,对化工装备提出了更高要求,必须加大装备的开发力度,掌握装备的核心技术,形成一批具有自主知识产权的装备,做到性能先进、质量可靠、高效节能、经济安全,才能满足化学工业的发展需求。
化工装备主要分为化工单元设备、化工非标专用设备、通用机械设备和仪器仪表四大类。
各类发展情况如下:1.化工单元设备化工单元设备主要包括分离过滤设备、干燥蒸发设备、混合设备、搅拌设备、换热设备和挤压造粒设备等。
1.1分离过滤设备过滤机:是利用多孔性过滤介质,截留液体与固体颗粒混合物中的固体颗粒,而实现固、液分离的设备。
主要用于炼油厂进行油蜡分离的酮苯脱蜡转鼓真空过滤机和PTA装置真空转鼓过滤机。
目前,转鼓真空过滤机国外正朝着大规格、高速率、高精度、全自动方向发展。
国内是从意大利EIMCO公司引进的设计、制造技术,经消化吸收和改进,形成了一整套加工、组对、焊接工艺。
相比之下,主要差距在于对市场发展、产品需求认识不够,创新能力低,对引进技术精髓消化较差。
离心机:离心分离机是利用离心力分离液体与固体颗粒或液体与液体的混合物中各组分的机械,又称离心机。
主要有立式和卧式螺旋卸料沉降式离心机。
国外离心机技术发展较快,而且实现了专业化和系列化;国内研制的El、式LWFl000一N型和LWFl050一N型离心机已分别用于7~10万吨/年高密度聚乙烯装置的悬浮液的分离,研制的LWl200x1980型离心机用于22.5万吨/年PTA浆液的脱水,离心机转鼓直径达到φ1200mm。
催化裂化流程
催化裂化是石油炼制过程中的重要环节,它通过将长链烃分子裂解成短链烃分子,以生产更多的汽油和石脑油。
催化裂化流程主要包括进料预处理、裂化反应和产品分离三个部分。
首先是进料预处理。
在催化裂化过程中,原油经过蒸馏后得到的馏份进入预处理装置,主要目的是去除其中的硫化物、氮化物和金属杂质,以减少对催化剂的毒性和腐蚀作用。
预处理过程包括脱硫、脱氮和脱金属等步骤,通常采用加氢、吸附和萃取等方法。
接下来是裂化反应。
预处理后的馏份进入催化裂化反应器,加热至裂化温度后与催化剂接触,发生裂化反应。
在裂化反应中,长链烃分子断裂成为短链烃分子,生成大量的汽油和石脑油。
裂化反应过程需要控制反应温度、压力和催化剂的活性,以提高汽油和石脑油的产率和质量。
最后是产品分离。
裂化反应产生的混合油经过冷凝、分馏和精制等多道工艺,分离得到不同碳数范围的汽油、石脑油和其他副产物。
分离过程中需要控制温度、压力和分馏塔的进料和回流比,以保证产品的纯度和收率。
催化裂化流程的优化对提高汽油和石脑油的产率和质量至关重要。
通过改进预处理工艺、优化裂化反应条件和提高产品分离效率,可以降低能耗、减少废物排放,提高产品质量和经济效益。
总的来说,催化裂化流程是炼油工艺中的重要环节,它通过预
处理、裂化反应和产品分离三个部分,将原油转化为更多的汽油和
石脑油。
优化催化裂化流程对提高产率和质量具有重要意义,需要
综合考虑预处理、反应和分离等环节,以实现经济、高效和环保的
生产目标。
反应器的原理及应用1. 引言反应器是化学工程中一种非常重要的设备,广泛应用于化工生产中。
本文将介绍反应器的原理及应用,通过对反应器的介绍,帮助读者理解反应器的基本工作原理和常见应用场景。
2. 反应器的工作原理反应器是一种用于进行化学反应的设备,其工作原理是利用加热、冷却、搅拌等方式控制反应物质在反应过程中的温度、压力和混合程度。
下面将介绍几种常见的反应器工作原理:2.1 批量反应器批量反应器是最简单的一种反应器,其工作原理是将待反应的物质一次性加入反应器中进行反应。
其优点是操作简单,适用于小规模生产和实验室研究。
然而,由于无法连续供给反应物质,生产效率较低。
2.2 连续流动反应器连续流动反应器是一种持续供给反应物质并连续收集产物的反应器,其工作原理是通过分别将反应物质和催化剂以一定流速供给反应器,使反应在反应器内进行。
连续流动反应器由于可以连续供给反应物质,生产效率较高,适用于大规模生产。
2.3 催化反应器催化反应器是通过添加催化剂来提高反应速率的反应器,其工作原理是将催化剂与反应物质一起放入反应器中进行反应。
催化反应器由于催化剂的作用,可以在较低的温度和压力下进行反应,节省能源和提高反应效率。
3. 反应器的应用反应器在化工生产中有着广泛的应用,下面将列举几个常见的应用场景。
3.1 石油炼制在石油炼制过程中,反应器用于各种催化反应、裂化反应、加氢反应等。
例如,催化裂化反应器用于将重质石油馏分转化为轻质石油产品,加氢反应器用于将硫化氢等有害物质转化为无害物质。
反应器在石油炼制中起到了非常重要的作用。
3.2 化学品生产在化学品生产中,反应器用于各种有机合成反应、聚合反应等。
例如,聚乙烯反应器用于合成聚乙烯,硝化反应器用于合成硝酸等。
反应器不仅可以提高产品的纯度和产量,还可以控制反应物质的选择性。
3.3 生物工程在生物工程领域,反应器用于培养微生物、细胞培养、酶反应等。
例如,发酵反应器用于培养微生物产生乙醇、酸等产物,细胞培养反应器用于培养动物细胞合成蛋白质。
加氢裂化工艺流程介绍加氢裂化是一种重要的炼油工艺,用于将较重的原油分解成较轻的石油产品。
这种工艺可以将高沸点的烃分子转化为低沸点的烃分子,其中利用高压下加氢作用可使原油中的不饱和烃分子饱和,防止其在裂化过程中极化而产生沉淀,保证反应的稳定性和可靠性。
以下是加氢裂化的工艺流程介绍。
原料进料和预热:经过原油预处理后,原油经过加热器加热至适合反应的温度,并在氢气流中预热,这个温度通常在350-425℃之间。
经过预热后的原料进入反应器。
反应器:反应器通常采用固定床反应器,是炼油厂中最重要的设备之一。
原油经过预热后,进入反应器与催化剂在高压下发生反应。
反应器通常包含多个反应床,每个床上设有反应器催化剂,催化剂用于催化裂化反应。
反应器床的数目和长度由加氢裂化过程所需的时间和裂化转化率所决定。
分离器:在反应器内的原油在被跟氢的同时产生大量的副产物,包括液体和气态。
这些产物需要经过分离器分离,分离出可用于萃取和转化的产品。
分离器通常采用分板式塔,用于分离气体和液体产物。
净化:在分离过程中,产生的气体含量很高,因此必须经过净化处理,将油气流中的硫化氢、二氧化碳、氮气和其他杂质分离出来。
净化系统通常包括净化塔、废气热交换器、蒸汽压力提升器和催化剂的再生炉。
输送和储存:产生的产品通过管道输送到储罐中进行储存。
这些产物包括轻质油、石脑油、液化气和其他轻质产品。
这些产品可以直接用于生产燃料油、柴油和其他化工产品。
总结:加氢裂化工艺流程涉及的关键步骤包括原料进料、预热、反应器、分离器、净化、输送和储存。
通过这个过程,原油中的高沸点烃类可以转化为低沸点产物,可用于生产各种化工产品。
催化裂化与加氢裂化的异同点
催化裂化和加氢裂化是石油化工领域中常见的两种裂化工艺,它们在
石油产品的生产过程中都发挥着重要的作用。
这两个过程的主要区别
在于催化剂种类、反应条件和反应产物等方面。
首先,催化裂化是使用催化剂作为反应媒介,在高温和高压的条件下
将甲烷分解成较短的烷烃链。
而加氢裂化则是将烷烃在氢气的存在下,经过加热作用,使化学键断裂,并生成较短的烷烃链。
因此,这两种
反应的反应机理不同,催化裂化是通过催化剂引发的化学反应,而加
氢裂化是通过加热和氢气的存在催化化学反应。
其次,催化裂化和加氢裂化的反应条件也存在一定的差异。
催化裂化
反应需要较高的温度和压力,通常在500-600℃、1-10 MPa的条件
下进行。
而加氢裂化反应则需要更高的压力和较低的温度,通常在50-200bar和300-450℃的条件下进行。
最后,催化裂化和加氢裂化的产物也有所不同。
催化裂化主要生成芳
烃和烯烃,而加氢裂化则生成饱和烃和烯烃,其中饱和烃的比例更高。
此外,催化裂化还能产生一些附加产品,如氢气和炭黑等,而加氢裂
化则较少产生附加产品。
综上所述,催化裂化和加氢裂化虽然都是裂化工艺,但它们在催化剂种类、反应条件和产物等方面有所不同。
在实际的生产过程中,需要根据不同的原料和生产要求选择适当的裂化工艺。
催化裂化装置阀门——单双动滑阀、塞阀、高温蝶阀、高温闸阀
单动滑阀用在催化裂化两器之间的催化剂循环管线上的一个滑动板的滑阀。
正常操作时用以调节催化剂的循环量。
开、停工或发生事故时,用于快速切断催化剂循环和两器间的连通。
双动滑阀催化剂裂化专用阀门。
有两个阀板,可以同时进行双向开启与关闭的滑阀。
安装在流化催化裂化再生器顶部烟气出口管线上,以控制再生器的压力,使之与反应器压力基本平衡。
操作温度700~780℃,控制灵敏度达1/400,准确度1/100。
塞阀是催化裂化装置的关键设备之一。
按照它在催化裂化(FCC)工艺过程中的作用可分为待生塞阀和再生塞阀,分别安装在再生器底部的待生和再生立管上,用来调节待生和再生催化剂的循环量,以控制气提段料位和提升管出口温度,且在装置开、停工时作为切断阀切断催化剂循环。
高温蝶阀安装在烟气轮机和高温闸阀之间的管道上,作为控制再生器压力和通入烟气轮机烟气流量的调节阀,介质为再生器所产生的含有催化剂的高温烟气。
高温闸阀垂直安装在高温蝶阀前的水平烟气管道上,当烟气轮机正常工作时,此阀全开,停工或事故状态时通过执行机构及时关闭此阀截断烟气,保证烟气轮机的安全和停工检修的需要。