位移法表——常用形常数、载常数
- 格式:pdf
- 大小:220.33 KB
- 文档页数:2
位移法是计算超静定结构的基本方法之一
图1
如图1所示结构,力法计算,9个基本未知量
位移法计算,1个基本未知量
单跨超静定梁的形常数与载常数
1. 杆端力的正、负号规定
杆端弯矩:对杆件而言,当杆端弯矩绕杆件顺时针方向旋转为正,反之为负。
对结点而言,当杆端弯矩绕结点(或支座)逆时针方向旋转为正,反之为负。
杆端剪力:使所研究的分离体有顺时针转动趋势为正,有逆时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之为负。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对线位移,正负号则以使整个杆件顺时针方向转动规定为正,反之为负。
3. 等截面梁的形常数
杆端单位位移引起的杆端内力称为形常数•
i=EI/l——线刚度
4. 等截面梁的载常数
荷载引起的杆端内力称为载常数.
下图是在不同支承条件下的载常数和形常数
一端固定一端定向滑动的单跨超静定梁的载常数和形常数。
位移法是计算超静定结构的基本方法之一.
图1
如图1所示结构,力法计算,9个基本未知量
位移法计算, 1个基本未知量
单跨超静定梁的形常数与载常数
1. 杆端力的正、负号规定
杆端弯矩:对杆件而言,当杆端弯矩绕杆件顺时针方向旋转为正,反之为负。
对结点而言,当杆端弯矩绕结点(或支座)逆时针方向旋转为正,反之为负。
杆端剪力:使所研究的分离体有顺时针转动趋势为正,有逆时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之为负。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对线位移,正负号则以使整个杆件顺时针方向转动规定为正,反之为负。
3. 等截面梁的形常数
杆端单位位移引起的杆端内力称为形常数.
i=EI/l----线刚度
4. 等截面梁的载常数
荷载引起的杆端内力称为载常数.
下图是在不同支承条件下的载常数和形常数。
位移法是计算超静定结构的基本方法之一
图1
如图1所示结构,力法计算,9个基本未知量
位移法计算,1个基本未知量
单跨超静定梁的形常数与载常数
1. 杆端力的正、负号规定
杆端弯矩:对杆件而言,当杆端弯矩绕杆件顺时针方向旋转为正,反之为负。
对结点而言,当杆端弯矩绕结点(或支座)逆时针方向旋转为正,反之为负。
杆端剪力:使所研究的分离体有顺时针转动趋势为正,有逆时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之为负。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对线位移,正负号则以使整个杆件顺时针方向转动规定为正,反之为负。
3. 等截面梁的形常数
杆端单位位移引起的杆端内力称为形常数•
i=EI/l——线刚度
4. 等截面梁的载常数
荷载引起的杆端内力称为载常数.
下图是在不同支承条件下的载常数和形常数
一端固定一端定向滑动的单跨超静定梁的载常数和形常数。
结构力学形常数和载常数表1. 形常数形常数是指描述材料在变形过程中的力学行为的常数。
在结构力学中,常见的形常数有弹性模量、剪切模量、泊松比等。
弹性模量是衡量材料抗弯曲和拉伸变形能力的常数。
它描述了材料在受力后产生的应力与应变之间的关系。
弹性模量越大,材料的刚度越高,抗弯曲和拉伸能力越强。
剪切模量是衡量材料抗剪切变形能力的常数。
它描述了材料在受到剪切力时产生的剪切应力与剪切应变之间的关系。
剪切模量越大,材料的刚度越高,抗剪切能力越强。
泊松比是衡量材料在受力时体积变化与横向应变之间的关系的常数。
它描述了材料在受到拉伸或压缩力时纵向应变与横向应变之间的比例关系。
泊松比的取值范围在0到0.5之间,常见材料的泊松比一般在0.25左右。
2. 载常数载常数是指结构在受到外部荷载时所产生的应力与应变之间的关系的常数。
在结构力学中,常见的载常数有抗弯强度、抗剪强度、抗压强度等。
抗弯强度是材料在受到弯曲力时能够抵抗变形和破坏的能力。
它描述了材料在弯曲过程中所能承受的最大应力。
抗弯强度越大,材料的抗弯能力越强。
抗剪强度是材料在受到剪切力时能够抵抗剪切变形和破坏的能力。
它描述了材料在剪切过程中所能承受的最大应力。
抗剪强度越大,材料的抗剪能力越强。
抗压强度是材料在受到压缩力时能够抵抗压缩变形和破坏的能力。
它描述了材料在压缩过程中所能承受的最大应力。
抗压强度越大,材料的抗压能力越强。
形常数和载常数是结构力学中非常重要的参数,它们直接影响着结构的性能和安全性。
在设计和分析结构时,我们需要准确地了解材料的形常数和载常数,以确保结构的稳定性和承载能力。
除了这些常见的形常数和载常数之外,还有许多其他的参数和常数在结构力学中起着重要的作用,如杨氏模量、体积模量、屈服强度等。
这些参数的取值与材料的性质和结构的要求有关,不同的材料和结构可能有不同的形常数和载常数。
形常数和载常数是结构力学中不可或缺的概念和参数。
它们描述了材料和结构在受力时的力学行为,对于结构的设计和分析起着重要的指导作用。