微分方程和差分方程方法
- 格式:ppt
- 大小:912.00 KB
- 文档页数:3
差分方程与微分方程的区别
差分方程和微分方程都是数学中的重要概念,但它们有一些明显的区别。
首先,微分方程是描述连续变化的方程,而差分方程是描述离散变化的方程。
微分方程通常是连续函数的导数,而差分方程则是离散函数的差分。
其次,微分方程通常需要求解解析解,即找到一个连续函数满足该方程。
而差分方程通常需要求解数值解,即找到一个离散函数满足该方程。
最后,微分方程通常涉及无限维的函数空间,需要使用函数分析中的工具来研究,而差分方程则通常只涉及有限维空间,可以使用线性代数中的工具来研究。
总之,差分方程和微分方程是有明显的区别的,它们分别描述着离散和连续的变化,需要使用不同的方法来研究。
- 1 -。
数的微分方程与差分方程微分方程和差分方程是数学中重要的研究对象,用于描述数学模型中的变化规律。
微分方程关注连续变化的问题,而差分方程则研究离散变化的情况。
本文将对数的微分方程和差分方程进行介绍,并比较它们之间的异同点。
一、数的微分方程微分方程是描述自变量与因变量之间的关系的方程,其基本形式为:dy/dx = f(x, y)其中dy/dx表示y对x的导数,f(x, y)是给定函数。
微分方程可分为常微分方程和偏微分方程。
常微分方程中只涉及一个自变量,而偏微分方程中涉及多个自变量。
解微分方程的方法有解析解和数值解两种。
解析解是指通过变量分离、恰当的变量换元等方法得到的精确解,而数值解则是利用数值方法进行近似计算得到的解。
二、数的差分方程差分方程是用差商表示的离散形式的方程,其基本形式为:Δy/Δx = f(x, y)其中Δy/Δx表示y对x的差商,f(x, y)是给定的函数。
差分方程可以用于描述离散的时间序列或空间序列中的变化规律。
与微分方程类似,差分方程也可分为常差分方程和偏差分方程。
解差分方程的方法主要有迭代法、插值法和递推法等。
通过这些方法,我们可以逐步逼近差分方程的解。
三、微分方程与差分方程的联系与区别微分方程和差分方程有很多共同之处,同时也存在一些区别。
首先,微分方程和差分方程都是用来描述变化规律的数学工具,它们都需要给定的函数和初始条件。
而微分方程描述的是连续变化,差分方程描述的是离散变化。
其次,微分方程和差分方程的解法也有相似之处。
两者都可以通过符号计算、数值方法等途径求解。
然而,由于微分方程是连续的,其解法更为灵活和复杂,常常需要应用高级的数学工具,而差分方程在求解过程中则更注重离散的计算方法。
最后,微分方程和差分方程在应用中具有不同的优势。
微分方程主要用于描述连续变化的物理、化学和工程等领域的问题,而差分方程则更适用于计算机科学、经济学和生物学等领域的离散模型。
总之,微分方程和差分方程是数学中研究变化规律的重要工具。
微分方程差分方程摘要:1.微分方程与差分方程的定义及区别2.微分方程的应用领域3.差分方程的应用领域4.求解微分方程和差分方程的方法5.两者在实际问题中的结合与转化正文:微分方程与差分方程是数学中的两种重要方程类型,它们在许多实际问题中有广泛的应用。
尽管它们具有一定的相似性,但它们之间仍然存在着明显的区别。
本文将对微分方程和差分方程进行简要介绍,并探讨它们在实际问题中的求解方法及应用领域。
一、微分方程与差分方程的定义及区别1.微分方程微分方程是一种描述变量随时间变化的数学方程。
它包含一个或多个未知函数及其导数,要求求解该未知函数在某一区间内的解。
微分方程可以分为线性和非线性两类。
2.差分方程差分方程是一种离散时间模型,它描述了变量在离散时间点上的关系。
差分方程包含一个或多个未知数,并要求求解这些未知数在离散时间点上的取值。
与微分方程类似,差分方程也可以分为线性和非线性两类。
二、微分方程的应用领域1.物理:微分方程在物理学中被广泛应用于描述力学、电磁学、热力学等领域中的现象。
2.生物学:微分方程在生物学中可以用于描述生物种群的数量变化、生长速率等。
3.经济学:微分方程在经济学中可以用于描述物价、产量等经济指标的变化。
4.工程:微分方程在工程领域中可以用于分析结构的动态特性、控制系统的稳定性等。
三、差分方程的应用领域1.计算机科学:差分方程在计算机科学中可以用于数值计算、图像处理等领域。
2.生物学:差分方程在生物学中可以用于模拟生物种群的动态行为。
3.社会科学:差分方程在社会科学中可以用于研究人口统计、经济学模型等。
4.工程:差分方程在工程领域中可以用于分析系统的稳定性、预测发展趋势等。
四、求解微分方程和差分方程的方法1.数值方法:对于微分方程和差分方程,可以采用数值方法求解,如欧拉法、龙格-库塔法等。
2.解析方法:对于一些简单的微分方程和差分方程,可以尝试通过解析方法求解,如分离变量法、常数变易法等。
差分方程与微分方程的区别
差分方程和微分方程是数学中两个重要的概念,它们在许多领域都具有广泛的应用。
差分方程是指一种用差分代替微分的方程,它描述的是离散的变化过程。
而微分方程则是指一种用微分来描述变化过程的方程,它描述的是连续的变化过程。
因此,差分方程和微分方程的区别在于它们所描述的变化过程的不同性质。
另一个差异是在解方面。
求解微分方程时,我们通常使用微积分的方法,如分离变量、齐次化、常数变易法等。
而求解差分方程时则需要用到数学递推的方法,如欧拉法、龙格-库塔法等。
这也是差分方程和微分方程之间的另一个区别。
此外,差分方程和微分方程也有不同的应用领域。
微分方程通常用于描述自然现象的变化过程,如物理学、化学等领域。
而差分方程则更适用于描述离散的过程,如计算机科学、金融学等领域。
综上所述,差分方程和微分方程虽然都是数学中的重要概念,但在描述的变化过程、解法和应用领域上都存在不同的特点。
了解它们之间的区别,有助于我们更好地应用它们来解决实际问题。
- 1 -。
差分方程和微分方程的区别与联系数学中,有很多让人感到有些神秘的概念,比如差分方程和微分方程。
这两个名字听上去似乎有些类似,但它们其实是解决不同问题的两个工具。
今天我们就来聊聊这两者的区别和联系,把它们说得简单明了些,让你一听就懂!1. 基本概念1.1 微分方程先从微分方程说起。
微分方程就是一个涉及到导数的方程。
导数,简单来说,就是一个函数变化的速率。
你可以把它理解为车速,比如说你要计算汽车的加速度,你就用到导数。
而微分方程就是描述一个系统如何随时间或空间的变化来建立方程。
例如,如果你有一个物体在下落,微分方程可以帮你找出它的速度和加速度,甚至是未来某一时刻的位置。
1.2 差分方程再来看看差分方程。
差分方程则处理的是离散时间点上的问题。
想象一下你在记录每天的股票价格,今天的价格和昨天的价格之间的差异,这种差异就是差分方程在做的事情。
它通过差异来描述和预测系统的行为,适用于那些不能用连续变化来描述的情况。
2. 区别与应用2.1 微分方程的应用微分方程主要用于处理连续变化的系统。
比如,物理学中的运动学,生物学中的种群增长,甚至金融中的投资模型,很多问题都可以用微分方程来解决。
你可以用它来模拟天体运行、气温变化,或者人口增长等现象。
就像我们在前面提到的汽车加速度,如果你想知道一个物体在空气阻力影响下的运动状态,你需要用到微分方程。
2.2 差分方程的应用而差分方程则更多地用于处理那些离散时间的数据。
比如在计算机科学中,你可能会用差分方程来设计算法,或者在经济学中预测季度销售额。
你还可以在游戏开发中使用差分方程来模拟角色的行为变化,或者在工程中分析离散信号的处理情况。
简单来说,差分方程适合用在那些时间步长是离散的场景里。
3. 联系与转换3.1 从差分方程到微分方程尽管差分方程和微分方程各有千秋,但它们之间也有联系。
实际上,你可以把差分方程看作是微分方程在离散情况下的“近亲”。
比如说,如果你把离散时间的步长缩得很小,差分方程和微分方程的行为就会变得越来越相似。
求解 1. 求差分方程满足初值问题之解:11232133123123(1)3()()()(1)2()()(1)()()2()(1)(1)1,(1)0x n x n x n x n x n x n x n x n x n x n x n x x x +=-+⎧⎪+=+⎪⎨+=-+⎪⎪===⎩ 解:原差分方程组可化为:112233(1)311()(1)201()(1)112()x n x n x n x n x n x n +-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪+= ⎪ ⎪⎪ ⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭则令311201112-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,求矩阵A 的特征值及特征向量 设特征值分别为123,,λλλ,对应的特征向量分别为123β,β,β.则231121(2)(1)0112λλλλλλ---=-=--=--A E可解得1232,2,1λλλ===设1λ对应的特征向量1111a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭β,则满足111111022101100a b c -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭可化简为11100a b c -=⎧⎨=⎩,令111a b ==可以得到特征向量1110⎛⎫⎪= ⎪ ⎪⎝⎭β同理可得到特征向量2110-⎛⎫ ⎪=- ⎪ ⎪⎝⎭β,3011⎛⎫ ⎪= ⎪ ⎪⎝⎭β设方程组的通解为:111222333()nnnx n c c c λλλ=++βββ代入特征值、特征向量,可得到方程组的通解为:123110()21211001n n x n c c c -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭代入初值条件:123(1)(1)1,(1)0x x x ===得到12123322122110n n n n n c c c c c c ⎛⎫-⎛⎫ ⎪ ⎪--= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可得123120c c c ⎧-=⎪⎨⎪=⎩,可以令11c =,所以212c =;综上所述,满足方程初值方程组的解为:11()210n x n -⎛⎫⎪= ⎪ ⎪⎝⎭2. 求差分方程之通解:2(4)2(2)()32nx n x n x n n n+-++=-+ 解:原方程的特征方程为:42210λλ-+= 即22(1)0λ-=从而求得特征根为11λ=-(二重),21λ=(二重) 因此原方程所对应的齐次方程的通解为:()(1)()1()n n xn A Bn C Dn =-+++ 即 ()(1)()nxn A Bn C Dn =-+++ 而原方程的特解为2(4)2(2)()3x n x n x n n +-++=-的特解1()x n与(4)2(2)()2n x n x n x n n +-++=的特解2()x n 之和.从而原方程具有如下的特解形式:221201201()()()()2()n x n x n x n n A n A n A B n B =+=++++将特解形式代入原方程,可得0010120014811922402244883914890A A A A A AB B B =⎧⎪+=⎪⎪++=-⎨⎪=⎪⎪+=⎩,从而0120114816124194881A A A B B ⎧=⎪⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪⎪=-⎪⎩综上,原方程的通解为22111148()()()(1)()()2()48624981n n x n xn x n A Bn C Dn n n n n =+=-++++-++- 3. 求微分方程满足初值问题之解:211212212121120d d d 320d d d d d 20d d d (0)1,-1,(0)0d t x x x x x tt t xx x x t t x x x t =⎧++++=⎪⎪⎪++-=⎨⎪⎪===⎪⎩解:方法一:降阶法令13d d x x t =,则原方程组可表示为:13323122312d d d d 320d d d 20d x x t xx x x x tt x x x x t ⎧=⎪⎪⎪++++=⎨⎪⎪++-=⎪⎩化简得:132123323d d d 2d d 22d x x t xx x x t x x x t ⎧=⎪⎪⎪=-+-⎨⎪⎪=--⎪⎩它的系数矩阵为001211022⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,特征方程是01211(2)(2)(1)0022λλλλλλλ--=---=+-++=---A E特征根为1232,2,1λλλ=-==-求得特征根所对应的特征向量分别为1102⎛⎫ ⎪= ⎪ ⎪-⎝⎭T ,21221⎛⎫⎪ ⎪=- ⎪ ⎪⎪⎝⎭T ,31121⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭T .故方程组的通解为1222123311()121()e 0e 2e 221()1t t t x t x t C C C x t --⎛⎫⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭- ⎪⎝⎭⎝⎭根据初值1120d (0)1,-1,(0)0d t x x x t====得12312323112211202C C C C C C C C ⎧++=⎪⎪-+-=-⎨⎪⎪-+=⎩解得123112,,463C C C === 则原方程组的解为:22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩方法二:消元法设dd t λ=,则原方程组可化为21212(32)(1)0(1)(2)(1)0(2)x x x x λλλλλ⎧++++=⎨++-=⎩(1)(2)λ-得21(2)(21)0(3)x λλλ++--= (2)(3)-得22(2)0x λλ--=解得两个特征根为122,1λλ==- 则2x 可表示为:2212e e ttx C C -=+ 根据初值2(0)0x =得22e e ttx C C -=- 将2x 代入(2)得212e 2e ttx C C λ-+=+ 即211d 2e 2e (4)d t t x x C C t-+=+ 下面用常数变易法求解(4) 先解对应齐次方程11d 20d x x t+=得齐次通解211e t x C -= 由常数变易法,令211(t)etx C -=为非齐次方程(4)的解,代入后得221()e e 2e t t t C t C C --'=+积分得41()e 2e 4tt C C t C =+ 则(4)的通解为2211e e 2e 4t tt C x C C --=++ 根据初值110d (0)0,-1d t x x t===得112142212C C C C C C ⎧++=⎪⎪⎨⎪-+-=-⎪⎩解得11314C C ⎧=⎪⎪⎨⎪=⎪⎩ 则221112()e e e 4123t t tx t --=++ 将13C =代入22e e t tx C C -=-得方程组的解为 22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩4. 利用待定系数法求解下列初值问题之解:Td (),(0)(0,1)d xA x f t x t=+= 其中TT 1235(,),,()(e ,0)53t x x x A f t -⎛⎫===⎪-⎝⎭解:方法一:待定系数法原方程组所对应的齐次方程组为112212d 35d d 53d x x x tx x xt⎧=+⎪⎪⎨⎪=-+⎪⎩特征方程235(3)25053λλλλ--==-+=--A E求得特征根为1,235i λ=±下求135i λ=+所对应的特征向量,设112αα⎛⎫=⎪⎝⎭ξ 则111225i 50()55i 0ααλαα-⎛⎫⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A E 从而可取11α=,则2i α= 于是由132()1e (cos5isin 5)()i t x t t t x t ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭得到齐次方程的通解为:11322()cos5sin 5e ()sin 5cos5t xt C t t x t C t t ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭下求非齐次方程的特解利用待定系数法,可设特解为12()e ()e t t x t A x t B --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭将其代入原方程组,可得e 3e 5e ee 5e 3et t t tt t tA AB B A B -------⎧-=++⎪⎨-=-+⎪⎩ 即451540A B A B +=-⎧⎨-=⎩,从而求得441541A B ⎧=-⎪⎪⎨⎪=-⎪⎩ 因此原方程的通解为113224()cos5sin 541e e ()sin 5cos5541t t x t C t t x t C t t -⎛⎫-⎪⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭- ⎪⎝⎭ 代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为:13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭方法二:常数变易法利用常数变易法,可设特解为11322()()cos5sin 5e ()()sin 5cos5t x t C t t t x t C t t t ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 带回到原方程,可得到132()cos5sin 5e e ()sin 5cos50t tC t t t C t t t -'⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭从而1132()cos5sin 5e e cos5e ()sin 5cos50e sin 5t t t t C t t t t C t t t t ----'⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭⎝⎭进而4142()e cos5()e sin 5t tC t t C t t --'⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭两边积分可得414254()e (sin 5cos5)414145()e (sin 5cos5)4141t t C t t t C t t t --⎧=-⎪⎪⎨⎪=--⎪⎩因此原方程组的通解为111222()()()()()()x t xt x t x t x t x t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13254sin 5cos5cos5sin 5cos5sin 54141e e sin 5cos5sin 5cos545sin 5cos54141t t t t C t t t t C t t t t t t -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎪⎝⎭-- ⎪⎝⎭344cos5sin 54141e e sin 5cos54654141t t t t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫=+ ⎪⎪ ⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭.。
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。