1微分方程及差分方程稳定性理论
- 格式:ppt
- 大小:211.00 KB
- 文档页数:2
差分方程理论:1.一阶差分方程k k k x x x -=∆+1….刻画该变量形如)(k k x f x =∆或)(1k k x F x =+称为一阶差分方程;2.二阶差分方程k k k k k k x x x x x x +-=∆-∆=∆+++12122形如),(12k k k x x f x +=∆称为二阶差分方程3.平衡点和稳定性如果*lim x x k k =+∞→即平衡点 渐近稳定:存在*x 的某个邻域U ,对任意的U x ∈0,虽然*0x x ≠,但*lim x x k k =+∞→ 4.应用及软件实现:一阶线性常系数差分方程,)1.1(,......2,1,0,)1(1=+=+k x r x k k 其中r 为常数,有3种方式计算k 时段的增长率前差公式:kkk x x x -+1 中点公式:kk k x x x 211-+- 后差公式:k k k x x x 1--其中中点公式的精度最高)1.1(的解为等比数列,......2,1,0,)1(0=+=k r x x k k若0≠r ,则仅有平衡点0=x 。
稳定当且仅当1|1|<+r下面选取参数r 和初始值0x ,按)1.1(迭代,绘图观察其解的长期行为 详见程序r=[0.09;0.09;-0.1;-0.1;-1.9;-1.9;-2.09;-2.09];x=[15;-15;85;-85;85;-85;15;-15];一阶线性常系数非齐次差分方程)2.1(,......2,1,0,)1(1=++=+k b x r x k k若0=r 则为等差数列0,0,1,2,......k x x kb k =+=;若0≠r ,则rb r r b x x k k -++=)1)((0 引入 rb x y k k +=则.0,1,2.....k )1()1(01=+=+=+k k k r y y r y 可得此时平衡点rb x -=稳定当且仅当02-<<r 实例:Florida 沙丘鹤属于濒危物种,生态学家估计它在较好的自然环境下,年平均增长率仅为 1.94%,而在中等及较差自然环境下年平均增长率仅为-3.24%和-3.82%,即它逐渐减少,假设在某自然保护区内开始时有100只沙丘鹤,请建立数学模型,描述其数量变化规律,并作数值计算。
微分方程差分方程(原创实用版)目录1.微分方程和差分方程的定义2.微分方程和差分方程的联系与区别3.微分方程和差分方程的应用领域正文微分方程和差分方程都是数学领域中重要的方程式,它们各自具有独特的性质和应用,但在某些方面也存在相似之处。
本文将从定义、联系与区别以及应用领域三个方面对微分方程和差分方程进行介绍。
一、微分方程和差分方程的定义微分方程是一种包含未知函数及其导数的方程,描述了物理量在时间、空间上的变化规律。
微分方程中的未知函数通常表示某一物理量的瞬时变化率,如速度、加速度等。
差分方程是一种离散形式的微分方程,它描述了离散系统中各变量之间的变化关系。
差分方程中的未知函数通常表示某一离散系统中各个时刻的变量值,如数列、矩阵等。
二、微分方程和差分方程的联系与区别1.联系微分方程和差分方程都是描述系统变化的数学模型,它们之间存在一定的联系。
微分方程是差分方程的连续形式,而差分方程是微分方程的离散形式。
这意味着,当微分方程中的自变量离散化时,可以得到相应的差分方程;反之,当差分方程中的自变量连续化时,可以得到相应的微分方程。
2.区别微分方程中的未知函数通常表示物理量的瞬时变化率,而差分方程中的未知函数表示离散系统中各个时刻的变量值。
这意味着,微分方程描述的是连续系统中的变化规律,而差分方程描述的是离散系统中的变化规律。
此外,微分方程和差分方程的求解方法也有所不同。
微分方程通常采用积分方法求解,而差分方程则采用代数方法求解。
三、微分方程和差分方程的应用领域微分方程广泛应用于物理、工程、生物学等领域,描述了各种连续现象的变化规律。
例如,牛顿运动定律、电磁场方程、生态系统模型等都包含微分方程。
差分方程在计算机科学、信息处理、控制论等领域具有重要应用。
例如,数值方法中的欧拉法、龙格 - 库塔法等用于求解常微分方程;离散系统中的状态转移方程、输入输出关系等都可以用差分方程来描述。
差分方程与微分方程的一致性研究差分方程和微分方程是数学中两个重要的概念,它们分别研究了离散和连续变量之间的关系。
尽管它们在形式上有所不同,但在某些情况下,差分方程和微分方程之间存在着一致性。
本文将探讨差分方程和微分方程的一致性研究,并介绍一些相关的理论和应用。
差分方程是研究离散变量的数学方程,它描述了变量之间的差异和变化规律。
差分方程的一般形式可以表示为:\[x_{n+1}=f(x_n)\]其中,\(x_n\)表示第n个离散变量的值,\(f(x_n)\)表示变量之间的关系函数。
差分方程可以用于模拟离散系统的行为,例如人口增长、物种演化等。
微分方程则是研究连续变量的数学方程,它描述了变量之间的变化率和变化规律。
微分方程的一般形式可以表示为:\[\frac{dx}{dt}=f(x,t)\]其中,\(x\)表示连续变量的值,\(t\)表示时间,\(\frac{dx}{dt}\)表示变量的变化率,\(f(x,t)\)表示变量之间的关系函数。
微分方程可以用于描述连续系统的行为,例如物理系统的运动、化学反应等。
差分方程和微分方程在形式上有所不同,但它们在某些情况下可以相互转化,这就是差分方程与微分方程的一致性。
具体而言,当离散变量的变化趋势与连续变量的变化趋势相似时,差分方程可以近似地转化为微分方程,反之亦然。
一种常见的差分方程与微分方程的一致性研究是欧拉方法。
欧拉方法是一种用差分方程近似解微分方程的方法,它基于泰勒级数展开,将微分方程中的变化率近似为差分方程中的差商。
通过逐步迭代,欧拉方法可以得到微分方程的近似解。
欧拉方法在数值计算和模拟中有广泛的应用,例如天体力学、流体力学等领域。
除了欧拉方法,还有其他一些方法可以用于差分方程与微分方程的一致性研究。
例如,拉普拉斯变换可以将微分方程转化为差分方程,而Z变换则可以将差分方程转化为微分方程。
这些变换方法在信号处理和控制系统中有重要的应用,例如滤波器设计、系统辨识等。
微分方程的数值解法与稳定性分析微分方程是研究自然现象和物理问题的重要数学工具。
在实际问题中,许多微分方程往往难以解析求解,因此需要借助计算机进行数值求解。
本文将介绍微分方程的数值解法以及稳定性分析。
一、欧拉法欧拉法是最简单、最基础的数值解法之一。
基本思想是将微分方程中的导数用差商逼近,得到差分方程,再求解差分方程以获得离散的数值解。
考虑一阶常微分方程 dy/dx = f(x, y),将自变量 x 分割为若干小区间,步长为 h。
欧拉法的迭代公式为 y_{i+1} = y_i + h * f(x_i, y_i),其中 y_i 和 x_i 是第 i 个点的数值解和自变量值。
欧拉法的简单易懂,但存在局限性。
当步长过大时,数值解的稳定性较差,可能出现数值误差增大、解发散等问题。
二、改进的欧拉法(改进欧拉法)为克服欧拉法的局限性,改进的欧拉法在迭代过程中增加了更高阶的差商项,提高了数值解的精度和稳定性。
举例说明,考虑一阶常微分方程 dy/dx = f(x, y),改进的欧拉法的迭代公式为 y_{i+1} = y_i + h * (f(x_i, y_i) + f(x_{i+1}, y_i + h * f(x_i, y_i))) / 2。
改进的欧拉法相比于欧拉法具有更好的数值稳定性和精度,但复杂度略高。
三、龙格-库塔法(RK方法)龙格-库塔法是一类常用的高精度数值解法,其思想是通过多个对函数 f(x, y) 的估计来提高数值解的准确性。
最常见的四阶龙格-库塔法(RK4)是利用四个不同的斜率估计来计算数值解。
其迭代公式为:k_1 = h * f(x_i, y_i)k_2 = h * f(x_i + h/2, y_i + k_1/2)k_3 = h * f(x_i + h/2, y_i + k_2/2)k_4 = h * f(x_i + h, y_i + k_3)y_{i+1} = y_i + (k_1 + 2k_2 + 2k_3 + k_4) / 6龙格-库塔法具有较高的精度和数值稳定性,适用于各种类型的微分方程。
微分方程中的数值解法稳定性分析微分方程作为一种描述自然界各种现象的重要数学工具,在实际应用中经常需要求解。
然而,有些微分方程很难通过解析方法求解,这时就需要利用数值方法进行求解。
而数值解法的稳定性对于解的准确性和可靠性至关重要。
在数值解微分方程时,我们常用的方法包括欧拉方法、改进欧拉方法、龙格-库塔方法等。
这些方法都是基于离散化的思想,通过将连续的微分方程转化为差分方程,然后逐步求解得到数值解。
其中,稳定性是一个关键的指标,用来评价数值方法在逼近真实解时是否会出现不稳定性,即解的误差是否会不断积累导致数值解失效。
一般来说,数值方法的稳定性可以通过稳定性分析进行评估。
稳定性分析主要包括绝对稳定性和相对稳定性两个方面。
绝对稳定性是指数值解法采用的离散格式是否能在给定步长下收敛到真实解,而相对稳定性则是指数值解法对输入参数的变化是否具有稳定性。
在实际应用中,我们常常需要对不同的数值解法进行稳定性分析,以选择最适合问题求解的方法。
例如,对于一阶常微分方程,欧拉方法是最简单的数值解法之一。
然而,欧拉方法的绝对稳定区域很小,只有在步长足够小的情况下才能保证数值解的稳定性,否则可能产生爆炸性增长的误差。
相比之下,改进欧拉方法和龙格-库塔方法具有更好的稳定性和收敛性。
改进欧拉方法通过考虑进一步的变量来提高计算准确性,而龙格-库塔方法则通过多步迭代来逼近真实解,从而提高了数值解的稳定性和准确性。
总之,稳定性分析在微分方程数值解法中具有重要意义,可以帮助我们选择合适的数值方法并保证数值解的准确性和可靠性。
通过理解和掌握各种数值方法的稳定性特点,我们可以更好地解决实际问题,并在科学计算领域取得更好的成果。
一类具有时滞的微分方程稳定性分析本文考虑了一个具有时滞的微分差分方程,利用线性化方法来研究了系统平衡点的局部渐近稳定性和Hopf分支的存在性.标签:时滞;线性化;Hopf分支1 引言人们最初利用常微分方程在各个学科研究领域中刻画实际生活的系统模型,但随着数学学术的深入研究,自从1771年Condorcet推导出了数学历史上的第一个时滞微分方程以来[1-3]. 例如带时滞的Logistic生物系统模型、种群动力学、传染病动力学. 时滞微分方程也叫泛函微分方程,Ruan和Wei在文献给出了超越方程根分布的特点.时滞微分方程的分支理论在动力系统研究中具有很重要的意义,分支现象不仅在理论中研究,它也广泛地存在于自然界和人类的生产生活中,并且已经被各个领域的学者们广泛的研究及应用. 本文研究如下形式的时滞微分方程初值问题本文将利用文献[4]中的方法研究具有初值条件的模型(1)的稳定性现象.2 平衡点的局部渐近稳定性和Hopf分岔将方程(1)在处线性化,系统(1)可以写成下面线性自治齐次的时滞微分方程的初值问题2.1 平衡点的绝对稳定这一节主要分析系统(2)平衡点的绝对稳定. 令时,则即是系统(2)的平衡点.将代入(2)得如果方程(3)的所有根都有负的实部,那么系统(2)的平衡点是渐近稳定的. 如果方程(3)有一个根具有正的实部,那么系统(2)的平衡点是不稳定的.如果,那么方程(3)简化为定理2.1 ,则系统(2)的平衡点是局部渐近稳定的.下面分析时滞,系统(2)平衡点稳定性的影响,假设特征方程(3)有一对纯虚根,将其代入特征方程(3)得方程(5)的实部和虚部分离,可得把方程(6)两边的平方和相加,可得下面的方程于是方程(7)有唯一的正根2.2 单次稳定性切换从方程(6)可得相应于的的值为设是当附近变化时特征方程(4)的共轭复根,满足下面的横截性条件成立引理2.2假设条件(H1)成立,由(8)定义且由(9)给出,则证明将特征方程(3)两边对微分,可以得到注意到当时,,则于是证明完毕.由引理2.2,可陈述下面的系统(3)平衡点的稳定性和Hopf分支的结论.定理2.3 方程(9)定义了且方程(10)定义了.(1)如果,则系统(3)的平衡点是局部渐近稳定的.(2)如果,则系统(3)的平衡点是不稳定的.(3)如果,则系统(3)在平衡点处出现Hopf分支.3 结论本文研究时滞微分方程,首先考虑系统ODE模型的稳定性,通过分析系统线性化方程中特征方程的根的分布;其次分析了一个时滞系统的线性稳定性和单次稳定性切换,最后得到了相关的一些具体结果. 结果表明当系统中的时滞在临界值时,系统在平衡点附近出现Hopf分支.参考文献[1]郑祖庥. 泛函微分理论[M]. 安徽教育出版社,1994.[2]魏俊杰,黄启昌. 泛函微分方程分支理论发展概况[J].科学通报,1997(24):2581-2586.[3] 魏俊杰,王洪滨,蒋卫华. 时滞微分方程的分支理论及应用[M].北京科学出版社,2012.[4]Yan X,Shi J. Stability Switches in a Logistic Population Model with Mixed Instantaneous and Delayed Density Dependence[J]. Journal of Dynamics and Differential Equations,2017,29(1):113-130.。
差分格式的稳定性与收敛性1 基本概念所谓稳定性问题是指在数值计算过程中产生的误差的积累和传播是否受到控制.在应用差分格式求近似解的过程中,由于我们是按节点逐次递推进行,所以误差的传播是不可避免的,如果差分格式能有效的控制误差的传播,使它对于计算结果不会产生严重的影响,或者说差分方程的解对于边值和右端具有某种连续相依的性质,就叫做差分格式的稳定性.差分格式的收敛性是指在步长h 足够小的情况下,由它所确定的差分解m u 能够以任意指定的精度逼近微分方程边值问题的精确解()m u x .下面给出收敛性的精确定义:设{}m u 是差分格式定义的差分解,如果当0h → 并且m u x →时,有()0m u u x -→,则称此格式是收敛的.2 差分方程的建立对于二阶边值问题'''()(),,(),(),Lu u q x u f x a x b u a u b αβ⎧≡-+=<<⎨==⎩ (1) 其中()q x 、[](),,()0.f x C a b q x ∈≥将区间[],a b 分成N 等份,记分点为,0,1,,,m x a mh m N =+=⋅⋅⋅ 这里步长b a h N-=.利用泰勒公式,得''1121[(()2()()]()m m m m m u x u x u x u x R h+--+=- (2) 其中 2(4)11(),(,)12m m m m m h R u x x ξξ-+=-∈(3) 把式(2)代入式(1)中的微分方程,有1121()[(()2()()]()()h m m m m m m L u x u x u x u x q x u x h+-≡--++ ()m m f x R =+ (4) 略去余项m R ,便得到(1)式中的微分方程在内部节点m x 的差分方程;再考虑到式(1)中的边界条件,就得到边值问题(1)的差分方程11201(2)()(),,,,h m m m m m m m N L u u u u q x u f x a x b h u u αβ+-⎧≡--++=<<⎪⎨⎪==⎩(5) 解线性代数方程组(5),得()m u x 的近似值m u .01,,,N u u u ⋅⋅⋅称为边值问题(1)的差分解.从上面的推导过程可以看出,在节点m x 建立差分方程的关键是在该点用函数()u x 的二阶中心差商代替二阶导数,最后用差分算子h L 代替微分算子L 就产生差分方程(5).记 ()()()m m h m R u Lu x L u x =-,称()m R u 是用差分算子h L 代替微分算子L 所产生的截断误差.由式(2),二阶中心差商代替二阶导数所产生的截断误差m R ,从式(4)和式(5)可以得出(())m h m m R L u x u =-,m R 称为差分方程(5)的截断误差.3 讨论差分方程组(5)的解的稳定性与收敛性引理3.1(极值原理) 设01,,,N u u u ⋅⋅⋅是一组不全相等的数,记01{,,,}N S u u u =⋅⋅⋅,11(),1,2,,1,h m m m m m m m L u a u b u c u m N -+=++=⋅⋅⋅- (6) 其中0,0,0,.m m m m m m b a c b a c ><<≥+(1) 若0(1,2,,1)h m L u m N ≤=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值;(2) 若0(1,2,,1)h m L u m N ≥=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中负的最小值.证 首先用反证法证明(1).假设在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值,记为M ,那么{}0max 0m m NM u ≤≤=>,由于S 中的数不全相等,一定存在某个(11)i i N ≤≤-,使得i u M =,并且1i u -与1i u +中至少有一个小于M .于是11()h i i i i i i i L u a u bu c u -+=++11i i i i i b M a u c u -+=++()0i i i b M a c M >++≥这与0h i L u ≤矛盾,从而(1)得证.同理可证明(2).现在运用极值原理论证差分方法的稳定性及收敛性.定理3.2 差分方程组(5)的解m u 满足{}111max ,()()max ,1,2,,1,2m m m m m N u x a b x f m N αβ≤≤-≤+--=⋅⋅⋅- (7) 证 把方程组 00,1,2,,1,,h m N L u m N u u αβ==⋅⋅⋅-⎧⎨==⎩和 0,1,2,,1,0h m m N L u f m N u u ==⋅⋅⋅-⎧⎨==⎩的解分别记为(1)m u 和(2)m u ,其中差分算子h L 由式(5)定义,则方程组(5)的解m u 为(1)(2)m m m u u u =+ (8)由极值原理可知 {}(1)max ,,1,2,,1m u m N αβ≤=⋅⋅⋅-. (9)接下来再估计(2)m u ,考虑差分方程11201(2),1,2,,1,0m m m N v v v M m N h u u +-⎧--+==⋅⋅⋅-⎪⎨⎪==⎩(10)其中 {}0max m m NM f ≤≤= 容易验证该微分方程是从边值问题'',()()0v M v a v b ⎧-=⎨==⎩ (11) 得到的,而在此边值问题的解是 ()()()2M v x x a b x =--. 因为()v x 是x 的二次函数,它的四阶导数为零,从式(2)、(3)看到()v x 在点m x 的二阶中心差商与''()m v x 相等,因此差分方程(10)的解等于边值问题(11)的解,即()()()02m m m m M v v x x a b x ==--≥. 另一方面,(2)(2)(2)(2)00()0,0,h m m h m h m m m m N N L v u L v L u q v M f v u v u ±=±=+±≥±=±=由极值原理可知 (2)0,m mv u ±≥ 即 (2)()(),1,2,, 1.2m m m m M u v x a b x m N ≤=--=⋅⋅⋅-(12) 综合式(8)、(9)、(12)就得到式(7).定理3.2表明差分方程(5)的解关于边值问题(1)的右端项和边值问题是稳定的,亦即当f 、α、β有一个小的改变时,所引起的差分解的改变也是小的.定理3.3 设()u x 是边值问题(1)的解,m u 是差分方程(5)的解,则22(4)()()max (),1,2,, 1.96m m a x b b a u x u h u x m N ≤≤--≤=⋅⋅⋅-(13) 证 记 ()m m m u x u ε=-,由式(3)、(4)、(5)可知0,1,2,,1,0,h m m N L R m N εεε==⋅⋅⋅-⎧⎨==⎩ 其中m R 由式(3)定义.从定理3.2得111()()max 2m m m m m N x a b x R ε≤≤-≤-- 22(4)()max ().96a xb b a h u x ≤≤-≤ 式(13)给出了差分方程(5)的解的误差估计,而且表明当0h →差分解收敛到原边值问题的解,收敛速度为2h .4 小结收敛性和稳定性是从不同角度讨论差分法的精确情况,稳定性主要是讨论初值的误差和计算中的舍入误差对计算结果的影响,收敛性则主要讨论推算公式引入的截断误差对计算结果的影响.使用既收敛有稳定的差分格式才有比较可靠的计算结果,这也是讨论收敛性和稳定性的重要意义.参考文献[1] 李瑞遐、何志东.微分方程数值方法,上海:华东理工大学出版社[2] 黄明游、冯果忱.数值分析(下册)北京:高等教育出版社,2008[3] 杨大地、王开荣.数值分析.北京:科学出版社,2006[4] 袁东锦.计算方法——数值分析.南京:南京师范大学出版社.2007[5] 李清扬等.数值分析(第4版).武汉:华中科技大学出版社.2006。