原子物理学第2章§8概要
- 格式:ppt
- 大小:3.89 MB
- 文档页数:4
原子物理学课件第一部分:原子结构原子是物质的基本组成单位,由原子核和电子组成。
原子核位于原子的中心,由质子和中子组成,质子带正电,中子不带电。
电子带负电,围绕原子核运动。
原子的结构可以用波尔模型来描述。
波尔模型认为,电子在原子核周围的运动是量子化的,即电子只能处于特定的能级上。
当电子从一个能级跃迁到另一个能级时,会吸收或发射特定频率的光子。
原子物理学的研究对象包括原子、分子和凝聚态物质等。
原子物理学的研究方法包括实验和理论计算。
实验方法包括光谱学、散射实验和原子碰撞实验等。
理论计算方法包括量子力学、量子场论和统计力学等。
原子物理学的研究对于理解物质的基本性质和结构具有重要意义。
原子物理学的研究成果在许多领域都有应用,如材料科学、化学、生物学和天文学等。
第二部分:量子力学与原子量子力学是描述原子和亚原子粒子的运动和相互作用的物理理论。
在量子力学中,粒子的位置和动量不能同时精确测量,这就是著名的海森堡不确定性原理。
在原子物理学中,量子力学被用来解释电子在原子中的运动。
根据量子力学,电子不是像波尔模型那样在固定的轨道上运动,而是在原子核周围形成概率云。
电子在原子中的能级是量子化的,这意味着电子只能处于特定的能级上。
量子力学在原子物理学中的应用还包括解释原子光谱和原子碰撞现象。
原子光谱是原子发射或吸收光子时产生的光谱线,这些光谱线可以用来确定原子的能级结构。
原子碰撞是指原子之间或原子与其他粒子之间的相互作用,这些相互作用可以导致原子能级的变化。
量子力学是原子物理学的基础,它为我们理解原子的性质和行为提供了重要的理论工具。
量子力学的研究成果不仅对原子物理学的发展具有重要意义,也对其他物理学领域的研究产生了深远的影响。
第三部分:原子物理学的发展与应用原子物理学的发展历程可以追溯到19世纪末20世纪初,当时科学家们开始研究原子的结构和性质。
随着量子力学的发展,原子物理学逐渐成为一门独立的学科。
原子物理学的研究成果在许多领域都有应用,如材料科学、化学、生物学和天文学等。
原子物理学理论课教学大纲《原子物理学》课程教学大纲新06年8月课程编号:02300009课程名称:原子物理学英文名称:Atomic Physics课程类型:专业基础课总学时:54学分:2.5适用对象:物理、电子信息科学专业本科生先修课程:高等数学、力学、电磁学、光学1.课程简介本课程着重从光谱学、电磁学、X射线等物理实验规律出发,以原子结构为中心,按照由现象到本质、由实验到理论的过程帮助学生建立起微观世界量子物理的基本概念,并利用这些基本概念说明原子、分子以及原子核和粒子的结构和运动规律,介绍在现代科学技术上的重大应用。
是近代物理的入门课程,是物理专业的一门重要基础课。
本课程需在高等数学、力学、电磁学、光学之后开设,是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
2.课程性质、目的和任务本课程是物理专业学生必修课。
是力学、电磁学和光学的后续课程、近代物理课的入门课程。
是量子力学、固体物理学、原子核物理学、激光、近代物理实验等课程的基础课。
目的是引导学生从实验入手,用量子化和微观思维方式,分析微观高速运动物体的规律。
主要任务是:通过本课程的教学,让学生对原子及原子核的结构、性质、相互作用及运动规律有概括而系统的认识。
通过对重要实验现象以及理论体系逐步完善过程的分析,使学生建立丰富的微观世界的物理图像和物理概念,培养学生用微观思维方式分析问题和解决问题的能力。
3.教学基本要求(1)了解原子物理学、原子核物理学发展的历程,培养科学研究的素质,加深对辩证唯物主义的理解。
(2)了解原子和原子核所研究的内容和前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。
(3)掌握原子、原子核物理学的基本原理、基本概念和基本规律;掌握处理原子、原子核物理学现象及问题的手段和途径。
培养学生掌握科学研究的基本方法。
(4)使学生了解无限分割的物质世界中的依次深入的不同结构层次,理解原子核的结构和基本性质、基本运动规律;(5)结合一些物理学史介绍,使学生了解物理学家对物理结构的实验一一理论一一再实验——再理论的认识过程,了解微观物理学对现代科学技术重大影响和各种应用,并为以后继续学习量子力学和有关课程打下基础。
原子物理第2章第三节:玻尔模型从理论上导出里德伯常数:结束目录nextback 氢光谱的解释玻尔假设电子的运动第二章:原子的能级与辐射:玻尔理论第三节:玻尔模型氢原子轨道半径与谱系结束目录nextback氢光谱的解释玻尔假设电子的运动赖曼系n=1n=2n=3n=4n=5r04r09r016r025r0布喇开系巴耳末系帕邢系第二章:原子的能级与辐射:玻尔理论第三节:玻尔模型结束目录nextback氢光谱的解释玻尔假设电子的运动第二章:原子的能级与辐射:玻尔理论第四节:类氢离子光谱结束目录nextback第二章:原子的能级与辐射:玻尔理论毕克林系起初以为是星体上的一种特殊氢,后在实验室中加氦后的氢光谱中观察到,得以确认是氦离子的光谱。
氢光谱类氢光谱第四节:类氢离子光谱结束目录nextba ck第二章:原子的能级与辐射:玻尔理论如果套用玻尔理论,只需要将氢原子理论中的Z改为2,就可得到氦离子的光谱理论公式上式中n1取4,n2取5、6、7、….就与毕克林系规律相同第四节:类氢离子光谱结束目录nextback第二章:原子的能级与辐射:玻尔理论尽管上述结果与观察结果非常一致,但还有一个明显的差别:类氢离子光谱与氢光谱并不完全重合。
这一差别后来被认为是里德伯常数的变化引起的。
考虑原子核的运动,推导出修正后的里德伯常数核的质量有关。
修正后的里德伯常数与观测结果非常一致第四节:类氢离子光谱结束目录nextback第二章:原子的能级与辐射:玻尔理论里德伯常数受核的质量影响的理论曾被用来证实氢的同位素-氘-的存在。
起初有人从原子质量测定估计有原子量为2的氢存在,但如存在,含量应很低,一时难以确认。
1932年尤雷(HCUre y),观察到类氢光谱,通过质量修正,能很好得到解释。
从而确认氘-的存在。
第四节:类氢离子光谱结束目录nextback第二章:原子的能级与辐射:玻尔理论玻尔理论非常成功地解释了氢、类氢离子光谱的规律,一度被人们广泛接受。