最新灰色预测模型
- 格式:pdf
- 大小:4.17 MB
- 文档页数:30
灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。
灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。
灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。
灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。
系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。
灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。
2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。
3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。
4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。
5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。
灰色预测模型在实际应用中具有广泛的应用价值。
它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。
同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。
灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。
小额贷款远程智能预警系统 人数预测算法的设计一、灰色系统的引入:灰色系统是指“部分信息已知,部分信息未知”的“小样本”,“贫信息”的不确定性系统,它通过对“部分”已知信息的生成、开发去了解、认识现实世界,实现对系统运行行为和演化规律的正确把握和描述. 灰色系统模型的特点:对试验观测数据及其分布没有特殊的要求和限制,是一种十分简便的新理论,具有十分宽广的应用领域。
目前,灰色系统已经成为社会、经济、科教、技术等很多领域进行预测、决策、评估、规划、控制、系统分析和建模的重要方法之一。
特别是它对时间序列短、统计数据少、信息不完全系统的建模与分析,具有独特的功效。
灰色模型的优点(一) 不需要大量的样本。
(二) 样本不需要有规律性分布。
(三) 计算工作量小。
(四) 定量分析结果与定性分析结果不会不一致。
(五) 可用于近期、短期,和中长期预测。
(六) 灰色预测精准度高。
二、GM (1,1)模型(grey model 一阶一个变量的灰微分方程模型)灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。
灰数的生成,就是从杂乱中寻找出规律。
同时,灰色理论建立的是生成数据模型,不是原始数据模型。
因此,灰色预测的数据是通过生成数据的GM(1,1)模型所得到的预测值的逆处理结果。
GM (1,1)的具体模型计算式设非负原始序列()()(){}n x x x X )0()0()0()0(,...,2,1=对)0(X作一次累加()()∑==ki i x k x1)0()1( ;k=1,2,…,n得到生成数列为()()(){}n x x x X )1()1()1()1(,...,2,1=于是()k x)0(的GM (1,1)白化微分方程为u ax dtdx =+)1()1( (1—1)其中a,u 为待定参数,将上式离散化,即得()()()()u k x az k x =+++∆11)1()1()1((1—2)其中()()1)1()1(+∆k x 为)1(x在(k+1)时刻的累减生成序列,()()()[]()[])1()()1(11)0()1()1()()0()1()0()1()1(+=-+=∆-+∆=+∆k x k x k x k x k x k x r(1—3)()()1)1(+k x z 为在(k+1)时刻的背景值(即该时刻对应的x 的取值)()()()()()k x k x k x z )1()1()1(1211++=+ (1—4)将(1—3)和(1—4)带入(1—2)得()()()()u k x k x a k x +++-=+]121[1)1()1()0( (1—5)将(1—5)式展开得()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡u a n x n x x x x x n x x x 1:11121:32212121:32)1()1()1()1()1()1()0()0()0( (1—6)令()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n x x x Y )0()0()0(:32,()()()()()()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=1:11121:32212121)1()1()1()1()1()1(n x n x x x x x B ,[]Tu a =Φ 为待辨识参数向量,则(1—6)可以写成Φ=B Y (1—7)参数向量Φ可用最小二乘法求取,即[]()Y B B B u a T T T 1ˆ,ˆˆ-==Φ(1—8)把求取的参数带入(2—16)式,并求出其离散解为()()a u e a u x k xk a ˆˆˆˆ11ˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- (1—9)还原到原始数据得()()()()()ka a e a u x e k x k x k x ˆ)1(ˆ)1()1()0(ˆˆ11ˆ1ˆ1ˆ-⎥⎦⎤⎢⎣⎡--=-+=+ (1—10)(1—9)、(1—10)式称为GM (1,1)模型的时间相应函数模型,它是GM (1,1)模型灰色预测的具体计算公式。
灰色预测模型建模流程灰色预测模型是一种基于灰色理论的预测方法,主要用于处理样本数据有限、信息不完整或不确定的情况下的预测问题。
灰色预测模型的建模流程包括以下几个步骤:问题描述、数据序列预处理、建立灰色预测模型、模型检验与优化、预测与评价。
在进行灰色预测之前,需要明确问题的描述和目标。
例如,我们要预测某个产品的销售量,目标是根据历史数据推测未来一段时间内的销售趋势。
明确问题描述和目标有助于确定预测模型的输入和输出。
第二步是数据序列的预处理。
预处理的目的是对原始数据进行平滑、去噪和规范化,以提高模型的精度和可靠性。
常用的预处理方法有累加生成序列、均值生成序列和一次累加生成序列等。
预处理后的数据更符合灰色预测模型的要求。
第三步是建立灰色预测模型。
灰色预测模型有多种,常用的有灰色关联度模型、灰色马尔可夫模型和灰色GM(1,1)模型等。
根据问题的特点和数据的特征选择适合的模型进行建模。
以灰色GM(1,1)模型为例,该模型假设数据序列满足一阶线性累加规律,通过建立累加生成序列和非累加生成序列的微分方程,利用最小二乘法进行参数估计,得到模型的参数。
第四步是模型检验与优化。
在建立模型之后,需要对模型进行检验和优化,以保证模型的准确性和可靠性。
常用的检验方法有残差检验、后验差检验和累计误差检验等。
如果模型检验结果不理想,则需要对模型进行调整和优化,提高模型的拟合度和预测精度。
最后一步是预测与评价。
在模型检验通过后,可以使用建立好的灰色预测模型对未来的数据进行预测。
预测结果可以通过计算相对误差、平均相对误差和均方根误差等指标进行评价,以评估模型的预测效果。
总结来说,灰色预测模型的建模流程包括问题描述、数据序列预处理、建立灰色预测模型、模型检验与优化、预测与评价等步骤。
通过合理选择模型、优化模型参数和评价预测结果,可以提高灰色预测模型的准确性和可靠性,为决策提供科学依据。
灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。
灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。
灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。
它适用于研究数据量小、信息不完备、非线性关系复杂的系统。
下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。
1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。
其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。
(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。
(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。
(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。
(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。
2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。
(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。
(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。
(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。
(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。
3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。
实验二十三灰色预测模型一、实验目的了解灰色系统基本理论,理解灰色预测模型的基本概念。
掌握灰色预测模型的步骤和方法。
学会用MATLAB编程解决灰色预测中的计算问题.二、实验的理论与内容客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。
按事物内涵的不同,人们已建立了工程技术系统、社会系统、经济系统等。
人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。
从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。
这类系统内部特性部分已知的系统称之为灰色系统。
一个系统的内部特性全部未知,则称之为黑色系统。
灰色系统理论首先基于对客观系统的新的认识。
尽管某些系统的信息不够充分,但作为系统必然是有特定功能和有序的,只是其内在规律并未充分外露。
有些随机量、无规则的干扰成分以及杂乱无章的数据列,从灰色系统的观点看,并不认为是不可捉摸的。
相反地,灰色系统理论将随机量看作是在一定范围内变化的灰色量,按适当的办法将原始数据进行处理,将灰色数变换为生成数,从生成数进而得到规律性较强的生成函数。
例如,某些系统的数据经处理后呈现出指数规律,这是由于大多数系统都是广义的能量系统,而指数规律是能量变化的一种规律。
灰色系统理论的量化基础是生成数,从而突破了概率统计的局限性,使其结果不再是过去依据大量数据得到的经验性的统计规律,而是现实性的生成律。
这种使灰色系统变得尽量清晰明了的过程被称为白化。
目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。
灰色预测模型GM (1,1)§1 预备知识平面上有数据序列 nn y x y x y x ,,,,,,2211 ,大致分布在一条直线上。
设回归直线为:b ax y ,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和ni iib ax y J 12最小。
J 是关于a, b 的二元函数。
由120211n i i i i n i i i i i b x a y b J x b x a y a J0112n i i i ni ii i i b a y bx ax y x 则得使J 取极小的必要条件为:ii ii ni i i y nb x a y x x b x a 12 (*)22222ii i i i i i ii i i i i x x n y x x x y b x x n y x y x n a (1)以上是我们熟悉的最小二乘计算过程。
下面提一种观点,上述算法,本质上是用实际观测数据ix 、iy 去表示a 与b,使得误差平方和J 取最小值,即从近似方程b b b x x x a y y y n n 2121 中形式上解出a 与b。
把上式写成矩阵方程。
令 n y y y Y21,b a x x x Y n11121 yix xiiy x , jjyx ,令11121nx x x B ,则b a B Y 左乘T B 得b a B B Y B T T 注意到B T B 是二阶方阵,且其行列式不为零,故其逆阵(B T B)-1存在,所以上式左乘1BB T得 Y BB B b a TT 1(2)可以具体验算按最小二乘法求得的结果(1)与(2)式完全相同,下面把两种算法统一一下:由最小二乘得结果:方程(*) ii i i ni i i y nb x a y x x b x a 12 方程组改写为:n n iii y y y x xx b a nxxx21212111 令:11121nx x x B ,n y y y Y 21, b a a ˆ (*)化为 Y B aB B TTˆ所以Y BB B a TT1ˆ以后,只要数据列n j yx jj,,2,1, 大致成直线,既有近似表达式 n i bax y ii,,2,1当令: n y y y Y21,11121nx x x B ,b a a ˆ 则有 a B Y ˆy BBB a TT1ˆ(2)(2)式就是最小二乘结果,即按最小二乘法求出的回归直线b ax y 的回归系数a 与b。