长春市2016届高三质量监测(一)文科数学
- 格式:doc
- 大小:875.50 KB
- 文档页数:9
)()4+∞,三、解答题:(本大题共12n ⎛++ +⎝(Ⅱ在长方体中,112BO BC =1D 所成角的余弦值为)椭圆且向量12PF PF 的22212121||1()4x x kx x x x -=++-到直线l 的距离2|2|1k d k +=,4sin OM ON θ=263MON S ∴=△吉林省长春十一中2016届高三上学期12月月考数学(文科)试卷解析一、在每小题给出的四个选项中,只有一项是符合题目要求的。
(每题5分,共60分)1.【分析】由A与B,求出两集合的交集,确定出交集中的最小元素即可。
【解答】解:∵A={x|x=2n﹣1,n∈N*}={1,3,5,7,9,11,…},B={y|y=5m+1,m∈N*}={6,11,16,…},∴A∩B中最小元素为11,2.【分析】利用复数的运算法则、纯虚数的定义即可得出。
【解答】解:∵z==为纯虚数,∴=0,≠0,则m=﹣1.3.【分析】由程序框图知,最后输出的m 值是大于等于120分的人数,再根据表示的意义即可得出结论。
【解答】解:由程序框图可知,最后输出的m 值是大于等于120分的人数,即次考试数学分数不低于120分的同学的人数是m,因为表示这次考试数学分数不低于120分的“优分”率。
4.【分析】由等差数列的求和公式和性质可得=3•=2,解方程可得。
【解答】解:∵等差数列{a n}的前n项和为S n,且=,∴==2,由等差数列的求和公式和性质可得:===3•=2,∴=5.【分析】几何体为圆柱中挖去一个正四棱锥。
【解答】解:由三视图可知该几何体为圆柱挖去一个四棱锥得到的,圆柱的底面半径为1,高为2,棱锥的底面为正方形,边长为,棱锥的高为1,∴几何体的体积V=π×12×2﹣=2π﹣。
6.【分析】直线l1:2x﹣y+1=0的斜率为2,l2:x+2y=3的斜率为﹣,两条直线互相垂直,且α为锐角,β为钝角,即可得出结论。
【解答】解:直线l1:2x﹣y+1=0的斜率为2,l2:x+2y=3的斜率为﹣,两条直线互相垂直,且α为锐角,β为钝角,∴β=90°+α,7.【分析】利用同角三角函数的基本关系,以及三角函数在各个象限中的符号求cosθ﹣sinθ的值即可。
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
吉林省长春市2016年高考数学四模试卷(文科)(解析版)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知集合A={﹣4,2,﹣1,5},B={x|y=},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.已知复数z满足z=,则|z|=()A.2 B.C.3 D.53.设a,b∈R,则“log2a>log2b”是“2a﹣b>1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知直线m,n与平面α,β,下列命题中错误的是()A.若m⊥α,n⊥α,则m∥n B.若m⊥β,n∥β,则m⊥nC.若m⊥α,n⊥β,α⊥β,则m⊥n D.若m∥n,n⊂α,则m∥α5.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤B.s≤C.s≤D.s≤6.祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为()A.4﹣B.8﹣C.8﹣π D.8﹣2π7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f()=()A.B.1 C.D.28.已知等比数列{a n}单调递减,满足a1a5=9,a2+a4=10,则数列{a n}的公比q=()A.B.C.D.39.函数y=x+lnx2的大致图象为()A.B.C.D.10.如图,从高为h的气球(A)上测量铁桥(BC)的长,如果测得桥头B的俯角是α,桥头C的俯角是β,则该桥的长可表示为()A.h B.hC.h D.h11.棱长为1的正四面体ABCD中,E为棱AB上一点(不含A,B两点),点E到平面ACD和平面BCD的距离分别为a,b,则的最小值为()A.2 B. C.D.12.M为双曲线C:=1(a>0,b>0)右支上一点,A、F分别为双曲线的左顶点和右焦点,且△MAF为等边三角形,则双曲线C的离心率为()A.﹣1 B.2 C.4 D.6二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.已知||=||=2,(﹣)=﹣2,则与的夹角为.14.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则使S n取最小值的n等于.15.已知圆C的圆心在直线2x+y﹣1=0上,且经过原点和点(﹣1,﹣5),则圆C的方程为.16.下列说法中正确的有:.座位号为14的观众留下来座谈”是系统抽样;②推理过程“因为指数函数y=a x是增函数,而y=2x是指数函数,所以y=2x是增函数”中,小前提是错误的;③对命题“正三角形与其内切圆切于三边中点”可类比猜想:正四面体与其内切球切于各面中心;④在判断两个变量y与x是否相关时,选择了3个不同的模型,它们的相关指数R2分别为:模型1为0.98,模型2为0.80,模型3为0.50.其中拟合效果最好的是模型1.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=cos(x+)+sinx.(1)利用“五点法”列表,并画出f(x)在[﹣,]上的图象;(2)a,b,c分别是锐角△ABC中角A,B,C的对边.若a=,f(A)=,求△ABC 面积的取值范围.18.某便携式灯具厂的检验室,要检查该厂生产的某一批次产品在使用时的安全性.检查人员从中随机抽取5件,通过对其加以不同的电压(单位:伏特)测得相应电流(单位:安培),数据见如表(1)试估计如对该批次某件产品加以110伏电压,产生的电流是多少?(2)依据其行业标准,该类产品电阻在[18,22]内为合格品,电阻的计算方法是电压除以电流.现从上述5件产品中随机抽2件,求这两件产品中至少有一件是合格品的概率.(附:回归方程:,b=,a=,参考数据:=2250)19.在四棱锥P﹣ABCD中,AD∥BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2,∠DAC=30°,M为PB中点.(1)证明:AM∥平面PCD;(2)若三棱锥M﹣PCD的体积为,求M到平面PCD的距离.20.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线l交椭圆于A,B两点,|AB|的最小值为3,且△ABF2的周长为8.(1)求椭圆的方程;(2)当直线l不垂直于x轴时,点A关于x轴的对称点为A′,证明直线A′B恒过定点,并求此定点坐标.21.已知函数f(x)=x+alnx(a∈R).(1)若曲线y=f(x)在点(1,f(1))处与直线y=3x﹣2相切,求a的值;(2)若f(x)≥a恒成立,求a的取值范围.四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,弦BD、CA的延长线相交于点M,MN垂直BA的延长线于点N.(1)求证:DA是∠CDN的角平分线;(2)求证:BM2=AB2+AM2+2ABAN.[选修4-4:坐标系与参数方程]23.,曲线C的方程为ρ=2.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.[选修4-5:不等式选讲]24.=|x+1|+|x﹣2|,不等式f(x)≥t对∀x∈R恒成立.(1)求t的取值范围;(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:≤.2016年吉林省长春市高考数学四模试卷(文科)参考答案与试题解析一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知集合A={﹣4,2,﹣1,5},B={x|y=},则A∩B中元素的个数为()A.1 B.2 C.3 D.4【分析】求出B中x的范围,找出A与B的交集,即可作出判断.【解答】解:由题意可知B={x|x≥﹣2},因为集合A={﹣4,2,﹣1,5},所以A∩B={﹣1,2,5}.则集合A∩B中元素的个数为3个故选C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知复数z满足z=,则|z|=()A.2 B.C.3 D.5【分析】由已知的等式求出复数z,然后直接利用复数模的公式求模.【解答】解:复数z===2+i,则|z|==.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础的计算题.3.设a,b∈R,则“log2a>log2b”是“2a﹣b>1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】“log2a>log2b”等价于“a>b>0”,“2a﹣b>1”等价于“a>b”,即可判断出结论.【解答】解:“log2a>log2b”等价于“a>b>0”,“2a﹣b>1”等价于“a>b”,∴“log2a>log2b”是“2a﹣b>1”的充分不必要条件.故选:A.【点评】本题考查了函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.已知直线m,n与平面α,β,下列命题中错误的是()A.若m⊥α,n⊥α,则m∥n B.若m⊥β,n∥β,则m⊥nC.若m⊥α,n⊥β,α⊥β,则m⊥n D.若m∥n,n⊂α,则m∥α【分析】根据空间线面位置关系的性质和判定进行逐项分析或证明.【解答】解:对于A,由于垂直于同一个平面的两条直线平行,故A正确;对于B,∵n∥β,∴平面β内存在直线b∥n,∵m⊥β,b⊂β,∴m⊥b,又b∥n,∴m⊥n.故B正确.对于C,在直线m上取点P,过P作n的平行线n′,则n′⊥β.假设m∩α=A,n′∩β=B,α∩β=l,过A作AO⊥l于O,连结OB.∵α∩β=l,α⊥β,AO⊥l,AO⊂α,∴AO⊥β,又n′⊥β,∴AO∥n′,同理BO∥m,∴四边形AOBP是平行四边形,又m⊥α,AO⊂α,∴PA⊥AO,∴四边形AOBP是矩形,∴m⊥n′,又n∥n′,∴m⊥n.故C正确.对于D,当m⊂α时,显然结论不成立.故D错误.故选:D.【点评】本题考查了空间线面位置关系的判定与性质,属于中档题.5.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤B.s≤C.s≤D.s≤【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当S>时,退出循环,输出k的值为8,故判断框图可填入的条件是S≤.【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=++=(此时k=6),因此可填:S≤.故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键,属于基础题.6.祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为()A.4﹣B.8﹣C.8﹣π D.8﹣2π【分析】根据幂势同的定义,结合三视图的和直观图之间的关系进行求解即可.【解答】解:由祖暅原理可知,该不规则几何体的体积与已知三视图几何体体积相等,图示几何体是一个正方体去掉一个半圆柱,正方体的条件为2×2×2=8,半圆柱的体积为=π,从而其体积为8﹣π.故选C.【点评】本题主要考查利用三视图求出几何体的体积,根据三视图确定几何体的直观图是解决本题的关键.7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f()=()A.B.1 C.D.2【分析】由周期求出ω,由五点法作图求出φ的值,把点(0,1)代入求得A,可得f(x)的解析式,从而求得则f()的值.【解答】解:由函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象,可得=﹣,∴ω=3.再根据五点法作图可得3+φ=π,求得φ=.再把点(0,1)代入,可得Asin=1,∴A=2,∴f(x)=2sin(3x+).∴则f()=2sin(+)=1,故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,把点(0,1)代入求得A,求函数的值,属于基础题.8.已知等比数列{a n}单调递减,满足a1a5=9,a2+a4=10,则数列{a n}的公比q=()A.B.C.D.3【分析】由等比数列的性质可得:a1a5=a2a4=9,a2+a4=10,且{a n}单调递减,解出即可得出.【解答】解:由等比数列的性质可得:a1a5=a2a4=9,a2+a4=10,且{a n}单调递减,解得:a2=9,a4=1,可求得(舍掉).故选:B.【点评】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.9.函数y=x+lnx2的大致图象为()A.B.C.D.【分析】通过定义域和单调性来,利用排除法判断.【解答】解:由函数有意义可得x2>0,∴f(x)的定义域为{x|x≠0},排除A;y′=1+,∴当x>0或x<﹣2时,y′>0,当﹣2<x<0时,y′<0.∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,在(0,+∞)上单调递增,排除B,D.故选C.【点评】本题考查了函数图象的判断,主要从函数的定义域,单调性来判断,属于中档题.10.如图,从高为h的气球(A)上测量铁桥(BC)的长,如果测得桥头B的俯角是α,桥头C的俯角是β,则该桥的长可表示为()A . hB . hC .h D .h【分析】先求出AB ,再在△ABC 中,求出BC . 【解答】解:由∠EAB=α,得∠DBA=α, 在Rt △ADB 中,∵AD=h , ∴AB=.又∠EAC=β,∴∠BAC=α﹣β.在△ABC 中,BC==h .故选:A .【点评】本题考查了解三角形的实际应用,关键是把实际问题转化为数学问题,是中档题.11.棱长为1的正四面体ABCD 中,E 为棱AB 上一点(不含A ,B 两点),点E 到平面ACD 和平面BCD 的距离分别为a ,b ,则的最小值为( )A .2B .C .D .【分析】连结CE ,DE ,利用V A ﹣BCD =V E ﹣BCD +V E ﹣ACD 推出,利用基本不等式求解表达式的最值.【解答】解:连结CE ,DE ,由正四面体棱长为1,O 为底面三角形BCD 的中心,正四角椎的高为:,由于V A ﹣BCD =V E ﹣BCD +V E ﹣ACD ,有,由可得,所以.故选:D .【点评】本题考查空间几何体的体积的求法,考查转化思想以及计算能力.12.M 为双曲线C :=1(a >0,b >0)右支上一点,A 、F 分别为双曲线的左顶点和右焦点,且△MAF 为等边三角形,则双曲线C 的离心率为( )A .﹣1B .2C .4D .6【分析】求出M 的坐标,利用双曲线的第二定义,列出方程,即可求出双曲线C 的离心率.【解答】解:由题意,A (﹣a ,0),F (c ,0),M (,),由双曲线的定义可得=∴c 2﹣3ac ﹣4a 2=0, ∴e 2﹣3e ﹣4=0, ∴e=4. 故选:C .【点评】本题考查双曲线C 的离心率,考查双曲线的第二定义,正确运用双曲线的第二定义是关键.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.已知||=||=2,(﹣)=﹣2,则与的夹角为.【分析】利用向量的数量积,化简求解,代入向量的夹角公式,求解即可.【解答】解:由(﹣)=﹣2,得=﹣2,=2,所以,与的夹角为.故答案为:.【点评】本题考查平面向量的数量积的应用,考查计算能力.14.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则使S n取最小值的n等于5.【分析】利用等差数列的性质判断数列的项与数列的单调性,然后求解即可.【解答】解:由题意S10=0,S15=25,可知,故数列{a n}是递增数列,所以a5<0,a6>0,所以使S n取最小值的n=5.故答案为:5.【点评】本题考查等差数列的性质的应用,考查计算能力.15.已知圆C的圆心在直线2x+y﹣1=0上,且经过原点和点(﹣1,﹣5),则圆C的方程为(x﹣2)2+(y+3)2=13.【分析】设圆心C(b,1﹣2b),利用圆的半径相等列出方程,求得b的值,可得圆心坐标和半径,即可得到圆的方程.【解答】解:由题意设圆的圆心C(b,1﹣2b),再根据圆过原点和点(﹣1,﹣5),可得C到原点的距离等于C到点(﹣1,﹣5)的距离,即b2+(1﹣2b)2=(b+1)2+(1﹣2b+5)2,解得b=2.可得圆心C(2,﹣3),半径=,则圆C的方程为:(x﹣2)2+(y+3)2=13.故答案为:(x﹣2)2+(y+3)2=13.【点评】本题考查圆的标准方程的求法,准确利用已知条件列出方程是解题的关键,是基础题.16.下列说法中正确的有:①③④.座位号为14的观众留下来座谈”是系统抽样;②推理过程“因为指数函数y=a x是增函数,而y=2x是指数函数,所以y=2x是增函数”中,小前提是错误的;③对命题“正三角形与其内切圆切于三边中点”可类比猜想:正四面体与其内切球切于各面中心;④在判断两个变量y与x是否相关时,选择了3个不同的模型,它们的相关指数R2分别为:模型1为0.98,模型2为0.80,模型3为0.50.其中拟合效果最好的是模型1.【分析】①根据抽样的定义进行判断,②根据合情推理的定义进行判断,③根据类比推理的定义进行判断,④根据关指数的定义进行判断.【解答】解:由题意可知,①是系统抽样,正确;②推理过程是大前提错误,而不是小前提,错误;③满足合情推理,因此③正确;④根据相关指数的定义可知,相关指数越接近于1,模型的拟合效果越好,因此④正确.故答案为:①③④.【点评】本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,但难度不大.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=cos(x+)+sinx.(1)利用“五点法”列表,并画出f(x)在[﹣,]上的图象;(2)a,b,c分别是锐角△ABC中角A,B,C的对边.若a=,f(A)=,求△ABC 面积的取值范围.【分析】(1)化简函数f(x),利用“五点法”列表、画出f(x)在上的图象即可;(2)利用正弦定理,结合三角函数的恒等变换与角的取值范围,即可求出三角形面积S的取值范围.【解答】解:(1)∵函数f(x)=cos(x+)+sinx=cosxcos﹣sinxsin+sinx=cosx+sinx=sin(x+),利用“五点法”列表如下,画出f(x)在上的图象,如图所示;(6分)(2)在△ABC中,a=,可知A=,由正弦定理可知===2,即b=2sinB,c=2sinC,∴S=bcsinA=bc=sinBsinC=sinBsin(﹣B),则S=sin2B﹣cos2B+=sin(2B﹣)+,其中,∴﹣<2B﹣<﹣<sin(2B﹣)≤1∴0<sin(2B﹣)+≤因此S的取值范围是.=Asin(ωx+φ)图象的应用问题,也考查了三角恒等变换和正弦定理的应用问题,是综合性题目.18.某便携式灯具厂的检验室,要检查该厂生产的某一批次产品在使用时的安全性.检查人员从中随机抽取5件,通过对其加以不同的电压(单位:伏特)测得相应电流(单位:安培),数据见如表(1)试估计如对该批次某件产品加以110伏电压,产生的电流是多少?(2)依据其行业标准,该类产品电阻在[18,22]内为合格品,电阻的计算方法是电压除以电流.现从上述5件产品中随机抽2件,求这两件产品中至少有一件是合格品的概率.(附:回归方程:,b=,a=,参考数据:=2250)【分析】(1)把数据代入相应的公式,即可求出回归方程;(2)经计算,产品编号为①③的是不合格品,其余为合格品,从中随机抽2件共有如下10种情况,其中至少有一件是合格品有9种情况,根据概率公式计算即可.【解答】解:(1)b==0.044,a=1.1﹣0.044×20=0.22,所以回归直线,故当电压加为110伏时,估计电流为5.06安培,(2)由R=可得,电阻分为为<18,=,=<18,=,=20经计算,产品编号为①③的是不合格品,其余为合格品,从中随机抽2件共有如下10种情况:①②,①③,①④,①⑤,②③,②④,②⑤,③④,③⑤,④⑤,其中至少有一件是合格品有9种情况,故所求事件的概率为.【点评】本题考查了回归方程和古典概率的问题,关键是会运用公式,属于基础题.19.在四棱锥P﹣ABCD中,AD∥BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2,∠DAC=30°,M为PB中点.(1)证明:AM∥平面PCD;(2)若三棱锥M﹣PCD的体积为,求M到平面PCD的距离.【分析】(1)取PC的中点为N,连结MN,DN,利用AD∥BC,通过证明NM∥AD,推出AM∥ND,即可证明AM∥平面PCD.(2)利用三棱锥M﹣PCD的体积为,转化求解V B,设点M到平面PCD的距离为﹣PCDh,通过体积,求解M到平面PCD的距离.【解答】(本小题满分12分)解:取PC的中点为N,连结MN,DN(1)∵M是PB的中点,∴∵AD∥BC,且BC=2AD,∴NM∥AD且NM=AD,∴四边形AMND为平行四边形,∴AM∥ND,又∵AM⊄平面PCD,ND⊂平面PCD所以AM∥平面PCD(6分)(2)∵M是PB的中点,∴∵所以PA=1∵CD⊥AD,CD⊥PA,∴CD⊥平面PAD,∴CD⊥PD又∵,∴PD=2,∴S△PCD=1设点M到平面PCD的距离为h,则,∴,故M到平面PCD的距离为(12分)【点评】本题考查几何体的体积的求法,直线与平面平行的判定定理的应用,考查计算能力.20.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线l交椭圆于A,B两点,|AB|的最小值为3,且△ABF2的周长为8.(1)求椭圆的方程;(2)当直线l不垂直于x轴时,点A关于x轴的对称点为A′,证明直线A′B恒过定点,并求此定点坐标.【分析】(1)判断AB⊥x轴时,|AB|最小,推出,利用ABF2的周长为4a,求解a,b,得到椭圆的方程.(2)设AB方程为y=k(x+1),A(x1,y1),B(x2,y2),A'(x1,﹣y1),联立直线与椭圆方程,利用韦达定理求出A'B的斜率,求解直线方程,利用直线系求解直线结果的定点.【解答】解:(1)因为AB是过焦点F1的弦,所以当AB⊥x轴时,|AB|最小,且最小值为,由题意可知,再由椭圆定义知,△ABF2的周长为4a,所以,所以椭圆的方程为,(2)设AB方程为y=k(x+1),A(x1,y1),B(x2,y2),A′(x1,﹣y1),则,化简得(3+4k2)x2+8k2x+4k2﹣12=0所以①,②则,∴A′B的方程为.化简有,将①②代入可得,所以直线A′B恒过定点(﹣4,0).【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,直线系方程的应用,考查转化思想以及计算能力.21.已知函数f(x)=x+alnx(a∈R).(1)若曲线y=f(x)在点(1,f(1))处与直线y=3x﹣2相切,求a的值;(2)若f(x)≥a恒成立,求a的取值范围.【分析】(1)求得f(x)的导数,求得切线的斜率,由已知切线方程,可得a的方程,解得a=2;(2)求出f(x)的导数,对a讨论,分a>0,a=0,a<0,求出单调区间,可得最值,由不等式恒成立的解法,即可得到所求范围.【解答】解:(1)f(x)=x+alnx的导数为f′(x)=1+,可得y=f(x)在点(1,f(1))处的切线的斜率为f'(1)=1+a=3,解得a=2;(2)f′(x)=1+,x>0,当a>0时,f(x)在(0,+∞)上单调递增,且值域为R;当a=0时,f(x)在(0,+∞)上单调递增;当a<0时,f(x)在(0,﹣a)上单调递减,(﹣a,+∞)上单调递增.则当a>0时,f(x)≥a不可能恒成立;当a=0时,f(x)=x≥0,成立;当a<0时,f(x)在x=﹣a处取得最小值f(﹣a),则只需f(﹣a)≥a,即﹣a+aln(﹣a)≥a,所以ln(﹣a)≤2,解得a≥﹣e2,所以﹣e2≤a<0.综上所述:a的范围是[﹣e2,0].【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查分类讨论的思想方法和不等式恒成立思想的运用,以及化简整理的运算能力,属于中档题.四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,弦BD、CA的延长线相交于点M,MN垂直BA的延长线于点N.(1)求证:DA是∠CDN的角平分线;(2)求证:BM2=AB2+AM2+2ABAN.【分析】(1)由AB是圆O的直径,得∠ADM=90°,又MN垂直BA的延长线于点N,得∠ANM=90°,可得M、N、A、D四点共圆,然后利用等量关系求得∠ADC=∠ADN,可得DA是∠CDN的角分线;(2)由M、N、A、D四点共圆,得ABNB=BMBD,B、C、A、D四点共圆,得MDMB=MAMC,联立可得MDMB+MBBD=MAMC+ABBN,从而得得BM2=MA2+AB2+MAAC+ABAN,再由B、C、M、N四点共圆,得MAAC=ABAN,可得BM2=AB2+AM2+2ABAN.【解答】证明:(1)∵AB是圆O的直径,∴AD⊥BD,即∠ADM=90°,又MN垂直BA的延长线于点N,即∠ANM=90°,∴M、N、A、D四点共圆,∴∠MDN=∠NAM,∵∠BAC=∠NAM,∠BAC=∠BDC,∴∠BDC=∠MDN,又∠ADM=∠ADB=90°,∴∠ADC=∠ADN,∴DA是∠CDN的角分线;(2)∵M、N、A、D四点共圆,∴ABNB=BMBD,①∵B、C、A、D四点共圆,∴MDMB=MAMC,②①+②有:MDMB+MBBD=MAMC+ABBN,得BM2=MA(MA+AC)+AB(AB+AN)=MA2+AB2+MAAC+ABAN,∵B、C、M、N四点共圆,∴MAAC=ABAN,∴BM2=AB2+AM2+2ABAN.【点评】本题考查与圆有关的比例线段,考查了四点共圆的条件,考查分析问题和解决问题的能力,是中档题.[选修4-4:坐标系与参数方程]23.,曲线C的方程为ρ=2.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.【分析】(1)利用两角和与差的三角函数化简极坐标方程,两边同乘ρ,然后求解直角坐标方程.(2)求出直线参数方程,代入圆的方程,根据直线参数方程t的几何意义,求解|PA|2+|PB|2即可.【解答】(本小题满分10分)解(1)由曲线C的极坐标方程可得,ρ2=2ρcosθ+2ρsinθ,因此曲线C的直角坐标方程为x2+y2=2x+2y点P的直角坐标为(1,0),直线l的倾斜角为135°,所以直线l的参数方程为为参数).将为参数)代入x2+y2=2x+2y,有,设A,B对应参数分别为t1,t2,有,根据直线参数方程t的几何意义有,|PA|2+|PB|2=.(10分)【点评】本题考查圆的极坐标方程以及直线的参数方程的应用,考查计算能力.[选修4-5:不等式选讲]24.=|x+1|+|x﹣2|,不等式f(x)≥t对∀x∈R恒成立.(1)求t的取值范围;(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:≤.【分析】(1)利用绝对值三角不等式求出f(x)的最小值,即可求t的取值范围;(2)求出t的最大值为T,化简a2+b2=T,利用基本不等式证明:≤.【解答】解:(1)f(x)=|x+1|+|2﹣x|≥|x+1+2﹣x|=3,所以t≤3.证明:由(1)知T=3,所以a2+b2=3(a>0,b>0)因为a2+b2≥2ab,所以,又因为,所以(当且仅当a=b时取“=”).(10分)【点评】本题考查绝对值不等式的值应用,基本不等式的应用,考查逻辑推理能力以及计算能力,转化思想的应用.。
长春市普通高中2016届高三质量监测(一)数学(文科)试题一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合{012}A =,,,{|,,}B z z x y x A y A ==+∈∈,则B =A. {}0,1,2,3,4B. {}0,1,2C. {}0,2,4D. {}1,22. 复数1+1ii-(i 是虚数单位)等于 A. 1 B. 2 C. i D. 2i3.抛物线24y x =-的准线方程为 A. 1y =-B. 1y =C. 1x =-D. 1x =4. 已知向量a ,b 满足(5,10)=-a +b ,(3,6)-=a b ,则a b = A. 12- B. 20- C. 12 D. 205.下列说法中正确的是A.“(0)0f =”是“函数()f x 是奇函数”的充要条件;B. 若2000:,10p x x x ∃∈-->R .则2:,10p x x x ⌝∀∈--<R ;C. 若p q ∧为假命题,则,p q 均为假命题;D. “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”. 6. 若实数,x y 满足2211x y y x y x -⎧⎪-+⎨⎪+⎩≥≥≤,则2z x y =-的最小值为A. 2-B. 1-C. 1D. 2 7.执行如图所示的程序框图,输出的s 为A.20152016B.20142015 C.20162015 D. 201720168.在ABC ∆中, 2,3AB AC ==,BC =则ABC ∆的面积为A.9. 已知几何体的三视图如图所示,则该几何体的表面积为A. 4+B. 6C. 2+D. 2+10.已知函数3||x x y e=,则其图像为A. B.C. D. 11. 函数()sin()cos()66f x x x ππ=++,给出下列结论: A.()f x 的最小正周期为2π B. ()6f x π-是奇函数C.()f x 的一个对称中心为(,0)6πD. ()f x 的一条对称轴为6x π=12. 设()f x 是定义在R 上的偶函数,对x ∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,1()()12x f x =-.若在区间[]2,6-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同实根,则a 的取值范围是A. 2a <<B. 12a <<a < D. 1a <<二、填空题(本大题共4小题,每小题5分,共20分)13.利用分层抽样的方式在学生总数为1200人的年级中抽出20名同学,其中有女生8人,则该年级男生的人数约为___________.14. 已知3log 21x =,则42xx-=________.15.设椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F .若椭圆上存在点P 使1290F PF ∠=︒.则椭圆的离心率的取值范围是________.16. 已知一个四面体的所有棱长都为2,则该四面体的外接球表面积为________. 三、解答题17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,20a = ,5421S a =-. (1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和为n T .18.(本小题满分12分)为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;(2)完成下面2()0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828P K k k ≥(22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2AB AC ==,13AA =.(1)过BC 的截面交1A A 于P 点,若PBC ∆为等边三角形,求出点P 的位置; (2)在(1)条件下,求四棱锥11P BCC B -与三棱柱111ABC A B C -的体积比. 20. (本小题满分12分)已知椭圆C 的方程为22221(0)x y a b a b +=>>,离心率2e =,过焦点且与长轴垂直的直线被椭圆所截得线段长为1.(1)求椭圆C 的方程;(2) D ,E ,F 为曲线C 上的三个动点, D 在第一象限, E ,F 关于原点对称,且||||DE DF =,问DEF ∆的面积是否存在最小值?若存在,求出此时D 点的坐标;若不存在,请说明理由.21. (本小题满分12分)已知函数()1x f x e ax =--. (1)判断函数()f x 的单调性;(2)若()()ln F x f x x x =-,若函数()F x 存在零点 ,求实数a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分) 选修4—1:几何证明选讲.已知ABC ∆中, AB AC =,以点B 为圆心,以BC 为半径的圆分别交AB ,AC 于两D ,E 两点,且EF 为该圆的直径.(1)求证: 2A F ∠=∠;(2)若112AE EC ==.求BC 的长. 23. (本小题满分10分) 选修4—4:坐标系与参数方程.已知曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l 的极坐标方程为sin()4πρθ+=(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)设点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 24.(本小题满分10分) 选修4—5:不等式选讲. 已知函数()|||5|f x x a x =-+-. (1)若不等式()3f x ≥恒成立,求a 的取值范围; (2)当2a =时,求不等式2()815f x x x -+≥的解集.长春市普通高中2016届高三质量监测(一) 数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 简答与提示:1. A 【命题意图】本题考查集合中元素的计算与集合的性质.【试题解析】A 题意可知,集合{|,,}{0,1,2,3,4}B z z x y x A y A ==+∈∈=,故选A. 2. C 【命题意图】本题考查复数的除法运算.【试题解析】C21(1)21(1)(1)2i i ii i i i ++===--+,故选C. 3. D 【命题意图】本题考查抛物线的准线的概念,是对学生的基础知识的直接考查. 【试题解析】D 由题意,抛物线24y x =-的准线为1x =,故选D. 4. D 【命题意图】本题主要对向量的基本运算进行考查.【试题解析】D ()()(4,2)2a b a b a ++-==-,()()(1,8)2a b a b b +--==- ,则41620a b ⋅=+=,故选D.5. D 【命题意图】本题是对逻辑问题的综合考查,全面考查考生对各种逻辑问题的理解.【试题解析】D 选项A 中,由奇函数定义可知,“(0)0f =”是“函数()f x 是奇函数”的既不充分也不必要条件;选项B 中,若p :0x ∃∈R ,20010x x -->,则p ⌝:x ∀∈R ,210x x --≤;选项C 中,若p q ∧为假命题,只能判定,p q 中至少有一个为假命题;选项D 的说法正确,故选D. 6. B 【命题意图】本题考查线性规划以及目标函数的几何意义等知识. 【试题解析】B 图为可行域,而目标函数2z x y =-可化为2y x z =-,即z -为该直线在y 轴上的截距,当直线过(0,1)时,截距取得最大值,此时z 取得最小值为1-,故选B.7. A 【命题意图】本题考查程序框图的基本运作过程,同时通过程序框图也对数列中的裂项求和做出考查.【试题解析】A 由程序框图,当2015k =时,还应该进入循环,而当2016k =时,不再进入循环,故输出结果为20152016,故选A. 8. C 【命题意图】本题主要考查解三角形,以及利用余弦定理搭建三角形中边与角的关系式. 【试题解析】C由题意,根据余弦定理可得,cos C =sin C =,故1sin 24ABC S AC BC C =⋅⋅=,故选C. 9. B 【命题意图】本题主要考查考生对三视图的理解,以及简单几何体表面积的计算.【试题解析】B 由三视图可知,该几何体是底面为等腰直角三角形,且顶点在底面上的投影为斜边的中点,据此可求得该几何体的表面积为6+故选B.10. A 【命题意图】本题考查考生对图像特征的理解,以及利用求导等手段发现函数特点的方法.【试题解析】A 函数3||x x y e=为奇函数,且0|0x y ='=,可推出在原点处切线斜率为0,故选A.11. B 【命题意图】本题考查三角变换公式,以及sin()y A x ωϕ=+中各个量对函数图像的影响.【试题解析】B 由题可知1()sin 262f x x π-=,故选B.12. A 【命题意图】本题主要考查函数图像、函数零点,通过指数函数和对数函数以及函数周期的表达式,来构建函数与函数关系. 【试题解析】A 由题意可知,()log (2)a f x x =+的图像如右图所示,若要保证()log (2)a f x x =+有三个交点,只需log 43log 8a a <<,即348a <<2a <<.二、填空题(本大题共4小题,每小题5分,共20分)简答与提示:13. 720【命题意图】本题考查分层抽样的主要知识.【试题解析】由于样本容量为20,所以其中的男生人数为12,从而年级男生人数为12120072020⨯=(人).14. 6【命题意图】本题考查对数运算的基本性质.【试题解析】由条件可知2log 3x =,故222log 3log 34222936xx-=-=-=.15.1e ≤<【命题意图】本题通过平面几何的性质考查椭圆离心率的求取,对学生的运算求解能力提出很高要求,是一道中档题.【试题解析】以线段12F F 为直径的圆与椭圆有公共点,所以22b c ≤,即222a c c -≤,212e ≤,所以1e ≤<. 16. 6π【命题意图】本题考查了球的内接几何体问题,特别涉及到了正方体的局部几何体的外接球问题.【试题解析】已知四面体棱长为26π.三、解答题17.(本小题满分12分)【命题意图】本题考查数列通项公式及其前n 项和公式的求法,其中涉及错位相减法在数列求和问题中的应用.【试题解析】 (1) 设公差为d ,有1110,510261a d a d a d +=+=+-,解得11,1d a =-=,所以2n a n =-. (6分)(2) 由(1)知,22n n b -=,所以212[1()]242112n n n T --==--. (12分) 18.(本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 选取的20名女生中,“睡眠严重不足”的有2人,设为,A B ,睡眠时间在[5,6)的有4人,设为,,,a b c d. 从中选取3人的情况有,,,A B aA B b A B c,,,,,,,,,,,,,,,ABd Aab Aac Aad Abc Abd Acd Bab Bac Bad Bbc Bbd Bcd abc abd ,acd bcd ,其中恰有1人“睡眠严重不足”的有12种,因此3人中恰有一个为“严重睡眠不足”的概率为123205= (6分) (2)20(126148)400.440 2.7062026142091k ⨯-⨯==≈<⨯⨯⨯所以没有90%的把握认为“睡眠时间与性别有关”(12分)19. (本小题满分12分)【命题意图】本小题以三棱柱为载体,考查立体几何的基础知识. 本题通过分层设计,考查了体积运算等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)由题意PC PB ==,在三棱柱中,由1AA ⊥平面ABC且2AB AC ==可得,2PA =,故点P 的位置为1AA 的三等分点,且靠近1A 处.(6分)(2) 由(1)可知,111122362ABC A B C V -=⨯⨯⨯=,111112221323P A B C V -=⨯⨯⨯⨯= 114222323P ABC V -=⨯⨯⨯⨯=,所以11426433P BCC B V -=--=,所以所求两个几何体的体积比为23. (12分)20.(本小题满分12分)【命题意图】本小题考查椭圆的标准方程的求取,直线和椭圆的位置关系及函数最值的求法,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意,c e a ==,又221b a =,可解得2,1a b ==,因此椭圆的标准方程为2214x y +=. (5分) (2) 由题意知OD EF ⊥,设:EF y kx =(0)k <,1:OD y x k=-设111122(,),(,),(,),E x y F x y D x y --由2214x y y kx⎧+=⎪⎨⎪=⎩,消去y 得22(14)4k x +=,所以1||2|EF x ==同理可得2x =,||OD ==所以1||||2DEF S OD EF ∆===当21112k =+,即21,1k k ==-时,DEFS ∆取最小值,此时D . (12分) 21.(本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图像的判定,考查学生解决问题的综合能力.【试题解析】解:(1) ()1xf x e ax =--,()xf x e a '=-, 当0a ≤时,()0f x '>,则()f x 在R 上单调递增;当0a >时,令()0xf x e a '=-=,得ln x a =,则()f x 在(,ln ]a -∞上单调递减,在(ln ,)a +∞上单调递增. (4分)(2) 令()()ln 0F x f x x x =-=,则1ln x e a x x x=--, 令11()ln ln x x e e h x x x x x x-=--=-,当x 无限靠近于0时,()h x 趋近于+∞.2211(1)(1)()x x x xe e e x h x x x x-+--'=-=,令()0h x '=可得1x =,可知(0,1)x ∈时,()h x 单调递减,(1,)x ∈+∞时,()h x 单调递增. 因此()h x 的值域为[(1),)h +∞,即为[1,)e -+∞,因此函数()F x 存在零点时,实数a 的取值范围是[1,)e -+∞.(12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到三角形相似等内容. 本小题重点考查考生对平面几何推理能力. 【试题解析】 (1) 因为AC AB =,所以ABC ACB ∠=∠,又因为BC BE =,所以BEC ECB ∠=∠,所以BEC ABC ∠=∠,所以2A EBC F ∠=∠=∠. (5分)(2) 由(1)可知ABC ∆∽BEC ∆,从而EC BCBC AC=,由1,2,3AE EC AC ===,得BC . (10分) 23.(本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用曲线的参数方程的几何意义求解曲线上点到直线的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 曲线C 的普通方程为2213x y +=,直线l 的直角坐标方程为40x y +-=.(5分)(2) 设点P坐标为,sin )θθ,点P 到直线l的距离)3d πθ==+所以点P 到直线l距离的最大值为 (10分)24.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 由于()|||5||5|f x x a x a =-+-≥-,所以()3|5|3f x a ≥⇔-≥,解得2a ≤或8a ≥.(5分)(2) 72,2()|2||5|3,2527,5x x f x x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,原不等式等价于2272815x x x x <⎧⎨-≥-+⎩,或2253815x x x ≤≤⎧⎨≥-+⎩,或2527815x x x x >⎧⎨-≥-+⎩解得25x ≤≤{|25x x ≤≤.(10分)。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ( )A.{}0,3 B 。
{}2,0,3 C 。
{}1,0,3 D.{}2,1,0,3【答案】C 。
考点:集合间的基本运算;2。
已知向量(,1)a λ→=,(2,1)b λ→=+,若a b a b →→→→+=-,则实数λ的值为( )A .1B .2C .﹣1D .﹣2【答案】C 。
【解析】试题分析:因为向量(,1)a λ→=,(2,1)b λ→=+,所以(22,2)a b λ→→+=+,(2,0)a b →→-=-,于是由a b a b →→→→+=-可得22(22)22λ++=,解之得1λ=-,故应选C 。
考点:平面向量的坐标运算;【方法点晴】本题主要考查平面向量的坐标运算和平面向量的模的概念,属于容易题。
解题时一定要注意正确的计算平面向量的坐标运算,并准确地运用平面向量模的概念建立等式关系,否则很容易导致计算错误.作为一道选择题还可以选择代值法,逐一进行验证每个选项是否满足已知条件,若不是,则排除之;若是,即为所求的答案。
3。
设等差数列{}na 的前n 项和为nS ,若469,11aa ==,则9S 等于( )A .180B .90C .72D .10【答案】B 。
考点:1、等差数列;2、等差数列的前n 项和;4。
下列函数中,既是偶函数又在(),0-∞上单调递增的函数是( ) A .2y x = B .2xy = C.21logy x= D .sin y x =【答案】C 。
【解析】试题分析:对于选项A ,函数2y x =为偶函数但在(),0-∞上单调递减的函数,不符合题意;对于选项B ,函数2xy =为偶函数但在(),0-∞上单调递减的函数,不符合题意;对于选项C ,函数21logy x=为偶函数且在(),0-∞上单调递增的函数,符合题意;对于选项D ,函数sin y x =为奇函数,不符合题意,故应选C .考点:1、函数的单调性;2、函数的奇偶性。
吉林省长春外国语学校2016届高三上学期第一次质量检测试题文数试题一、选择题(本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有 一项是符合题目要求的.)1•设集合 P = {3,log 26z}, Q = {a,h}f 若 PAe = {0},则 PUQ=()A. {3,0}B. {3,0,2}C. {3,0,1}D. {3,0,1,2}【答案】C. 【解析】试题分析:因为= 所即= 即进而可得b = 0,所以PU0={3A1},故应选C.考点:集合间的基本运算;A. 1B. 2C. - 1D. - 2【答案】C. 【解析】—> ―> —> ―> —>b — (A + 2,1),所以 a+ b = (22 + 2,2), ci — b — (—2,0), 考点:平面向量的坐标运算;【方法点睛】本题主耍考查平面向量的坐标运算和平面向量的模的概念,属于容易题.解题时 一定要注意正确的计算平面向量的坐标运算,并准确地运用平面向量模的概念建立等式关系, 否则很容易导致计算错误•作为一道选择题还可以选择代值法,逐一进行验证每个选项是否满 足已知条件,若不是,则排除之;若是,即为所求的答案.3. 设等差数列{%}的前n 项和为S“,若①=9,@ = 11,则S9等于()T T—> T若 a+b — a-h试题分析:因为向量0 =(入1),于是由T Tct+b =可得:J(2/l + 2)2+22 =2,解之得2 2.已知向量a = (2,1),=-1-》h = (A + 2,1), ,则实数兄的值为(【答案】B.【解析】试题分析:由等差数列的前«项和公式知,£=筈玉-«,所叹 s =鱼±玉9 =竺竺x9==Zt2x9=90,故应选月.2 2 2 '考点:1、等差数列;2、等差数列的前”项和;4.下列函数中,既是偶函数又在(—,0)上单调递增的函数是()A. y = x 2B. y = 2^C. y = log 2D. y - sin x【答案】C. 【解析】试题分析:对于选项A,函数y = F 为偶函数但在(_oo,0)上单调递减的函数,不符合题意; 对于选项B ,函数y =2x|为偶函数但在(-oo,0)上单调递减的函数,不符合题意;对于选项C ,y = sinx 为奇函数,不符合题意,故应选C.考点:1、函数的单调性;2、函数的奇偶性.2—5. ----------------------- 设复数z 二,则在复平面内八z 对应的点坐标为( )-1-zA .(1,1)B. (—1,1)C. (—1,-1)D. (1,-1)【答案】D. 【解析】A. 180B. 90C. 72D. 10函数y = log2丄 kl为偶函数且在(—,0)上单调递增的函数,符合题意;对于选项D,函数试题分析:因为复数Z二」一= 2(-1 + 2)=_1 +几所以z = -l-z,于是-1-z (-1-/X-1 + Z)rz = z(-l-z) = l-z,所以在复平面内i・z对应的点坐标为(1-1),故应选D.考点:1、复数的基本概念;2.复数的四则运算.A.求{丄}前10项和nC.求{丄}前11项和nB.求{丄}前10项和2/?D.求{丄}前11项和2n【答案】B.考点:1、算法与程序框图;3且该几何体的体积是二,则正视图中的兀的值是(23C.—D.32【答案】C.【解析】试题分析:由三视图可知,原几何体是一个四棱锥,其中底面是一个上、下、搞分别为1、2、2的直角梯形,一条边*s=on=2第6题图7.某几何体的三视图如右图所示,【解析】试题分析:程序框團首先对累加变量s 和循环变量氐赋值,第一;欠执行循环体:S = ^? « = 4, k = 2y M2 二次执行循环体:S =g +幵=6, k = 3^第三次执行循环体:S2 4第四次执行循环体:S-2 +丄+ : +« = 10, ", ••…,第九次执行循环体:2 4 6 8^ = - + - + - + - + - + —, « = 20,上"0;第十;欠执行循环体:5=- + - + - + - + - + — + —,2 4 6 8 18 2 4 6 8 18 20幵= 22,— 即表明这个算法是计算求{丄}前10项和,故应选月・2n长为兀的侧棱垂直于底面.于是其体积为-x 2x (1 + 2)x^-,解之得x = -,故应选C.3 2 2 2 考点:1、三视图;2、空间几何体的体积.8. 有下列关于三角函数的命题: 片:X/xw R,x 工 «兀 +彳(Pw Z ),若 tanx 〉0,贝0 sin2x> 0 ; 出:函数y = sin (x -乎)与函数y = cos 兀的图像相同;P y : 3x 0 G R, 2cosx 0 =兀;鬥:函数j=|cosx|(XG R )的最小正周期为2”.其中的真命题是()A.片,片B •号,马C •号,片D ・P { > P 2【答案】D. 【解析】试题分析:对于命题环 V XE R :X ■+—(A:E Z ),若tanx > 0,则 2曲2x = 2siiiH8SX= 2弹xco 汙=2口¥ 所以命题丹为真命题;对于命题E,函数sin^ x 4- cos" x 1 十 taiTjr cosx ,所以命题£为真命题;对于命题迟,由于COSXE [-L1],弓圧[-IL],所以命题E 为假命题;对于命题号,函^.y=\osx\ (XE R )满足:/0 +砒=|8琢+用)|=|-8"冃8SXt=/⑴,所以/⑴的最小正周期为X ,所以命题号为假命题.故应选考点:1命题的真假判断与应用;9. 下列四个结论正确的是( )1 - 6+ 1 - 4 + 1 _ 24=3JZ 3口y = sin(x -—) = sin(2^-i-x-—)=A.若兀组数据("J,…仇,儿)的散点都在y = -2x + l上,则相关系数r = -lB.冋归直线就是散点图中经过样本数据点最多的那条直线C.已知点A(-1,0),5(1,0),若网+ |PB| = 2,则动点P的轨迹为椭圆A 人D.设回归直线方程为〉'=2-2.5兀,当变量兀增加一个单位时,歹平均增加2.5个单位【答案】A.【解析】试题分析:对于选项X,因为幵组数据(兀…(忑,儿)的散点都在y = -2x+l±?则相关性最强,所以相关系数为-1,即选项虫为正确的;对于选项B ,回归直线方程指在一组具有相关关系的变量的数据间, —条最好地反映兀与卩之间的关系直线,不是散点图中经过样本数据点最多的那条直线,所以选项月不正确;对于选项C,因为\P^\PB\ = 2 = \AB\?所以动点尸的轨迹为线段屈,不是椭圆,所以选项C不A A正确;对于选项D,因为回归直线方程为2-2.5巴当变量兀増加一个单位时,卩平均减少25个单位,所以选项D不正确,故应选虫・考点:1、命题的真假判断;2、线性冋归方程;3、椭圆的定义.10.设a,b,c是空间三条直线,6C 〃是空间两个平面,则下列命题中,逆命题不成立的是( )A.当c丄a时,若c丄0,则a // (3B.当bua时,若b丄0,则a丄0C.当bua,且c是a在a内的射影时,若b丄c,则a丄bD.当bua,且c(za 时,若c // a ,则b // c【答案】B.【解析】试题分析:对于选项A ,其逆命题为:当c丄仅时,若。
长春市普通高中2016届高三质量监测(三) 数学文科(试卷类型A )第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项涂在答题卡上) 1. 设集合{|13}A x x =-<<,{|12}B x x =-<<,则A B =A. (1,2) B . (1,2)- C. (1,3) D. (1,3)-2. 复数1z ,2z 在复平面内对应的点关于虚轴对称,若12z i =+,则2z = A. 2i + B. 2i -+ C. 2i - D. 2i --3. 已知向量21=-(,)a ,01=(,)b ,则|2|=a +bA.C. 2D. 44. 已知函数5log ,0()2,0x x x f x x >⎧=⎨⎩≤,则1(())5f f =A. 2B.12 C. 2- D. 12- 5. 已知tan 2α=,则sin 2α=A. 35- C. 45 D. 356. 某集团计划提高某种产品的价格,为此销售部在3月1日至3月5日连续五天对某个大型批发市场中该产品一天的销售量及其价格进行了调查,其中该产品的价格x (元)与销售量(万件)之间的数据如下表所示:品的价格提高到12元时,估计该批发市场的日销售量约为 A. 4万件 B. 3.8万件 C. 2.6万件 D. 1.6万件7. 在ABC ∆中,,,a b c 分别是角,,A B C 的对边,满足cos cos a A b B =,则ABC ∆的形状为A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形 8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 18B. 14C. 12D. 99. 按右图所示的程序框图,若输入110011a =,则输出的b =A.B. C. 47D. 4510. 将函数()sin()(||)2f x x πϕϕ=+<的图象向右平移6π个单位后的图象关于y 对称,则函数()f x 在[0,]2π上的最小值为3B.12 C. 12-D. 3把a 的右数第i 位数字赋给t是 否开始 输入a6?i >1i i =+输出b 结束0b =1i =12i b b t -=+⋅11. 已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,以F 为圆心且与双曲线的渐近线相切的圆和双曲线的一个交点为M , 且MF 与双曲线的实轴垂直,则双曲线的离心率是A. 2D. 2 12. 已知函数()f x 是定义在R 上的奇函数,且在区间[0,)+∞上是增函数,若1|(ln )(ln )|(1)2f x f x f -<,则x 的取值范围是A. 1(0,)eB. (0,)eC. 1(,)e eD. (,)e +∞第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 已知实数,x y 满足120x y x y +⎧⎪⎨⎪⎩≤≤≥≥,则2+x y 的最大值为___________. 14.设函数()1xf x e =-的图象与x 轴的交点为P ,则曲线在点P 处的切线方程为_________.15. 已知椭圆221369x y +=的左、右焦点分别为12,F F ,直线:9l y =-与椭圆交于,A B 两点,则1ABF ∆的周长为__ .16. 已知四棱锥P ABCD -的底面为正方形,顶点P 在底面ABCD 上的射影是底面的中心,当该四棱锥的底面边长和高均为4时,其外接球的表面积为___________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,满足434(1)S a =+,3435a a =. (1)求数列{}n a 的通项公式; (2)求数列{||}n a 的前n 项和为n T .18. (本小题满分12分)某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如下(单位:cm ):7155789998161845298356170275461241801119男女男生成绩不低于175cm 的定义为“合格”,成绩低于175cm 的定义为“不合格”;女生成绩不低于165cm 的定义为“合格”,成绩低于165cm 的定义为“不合格”. (1)求女生立定跳远成绩的中位数;(2)若在男生中按成绩是否合格进行分层抽样,抽取6个人,求抽取成绩“合格”的男生人数;(3)若从(2)问所抽取的6人中任选2人,求这2人中恰有1人成绩“合格”的概率. 19. (本小题满分12分)已知等腰梯形ABCD 如图1所示,其中AB ∥CD ,,E F 分别为AB 和CD 的中点,且2AB EF ==,6CD =,M 为BC 中点,现将梯形ABCD 按EF 所在直线折起,使平面EFCB ⊥平面EFDA ,如图2所示,N 在线段CD 上,且2CN ND =.(1)求证:MN ∥平面ADFE ; (2)求三棱锥F ADN -的高. 20. (本小题满分12分)动点P 在抛物线2=2x y 上,过点P 作x 轴的垂线,垂足为Q ,设2PM PQ =.(1)求点M 的轨迹E 的方程;(2) 设点(4,4)N -,过点(4,5)H 的直线交轨迹E 于,A B (不同于点N )两点,设直线,NA NB 的斜率分别为12,k k ,求12k k 的值.21. (本小题满分12分)已知函数()ln ()f x x ax a =-∈R .(1)若函数()f x 在(1,)+∞上单调递减,求实数a 的取值范围; (2)当1a =时,1()()2g x f x x m x=++-有两个零点12,x x ,且12x x <,求证:121x x +>. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4—1:几何证明选讲.已知四边形ABCD 为圆O 的内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 的切线交DC 的延长线于点P .(1)求证:AB MD AD BM ⋅=⋅;(2) 若CP MD CB BM ⋅=⋅,求证:AB BC =. 23. (本小题满分10分)选修4—4:坐标系与参数方程.已知直线l的参数方程为22x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上.(1)若直线l 与曲线C 交于A ,B 两点,求||||FA FB ⋅的值; (2)求曲线C 的内接矩形的周长的最大值.24. (本小题满分10分)选修4—5:不等式选讲. 已知0x ∃∈R 使不等式|1||2|x x t ---≥成立. (1)求满足条件的实数t 的集合T ;(2) 若1,1m n >>,对t T ∀∈,不等式33log log m n t ⋅≥恒成立,求m n +的最小值.长春市普通高中2016届高三质量监测(三)数学(文科)参考答案及评分参考一、选择题(本大题包括12小题,每小题5分,共60分)1. B2. B3. B4. B5. C6. D7. D8. A9. A 10. D 11.C 12. C 简答与提示:1. B 【命题意图】本题主要考查集合的交运算,属于基础题.【试题解析】B 由题意可知{|12}A B x x =-<<. 故选B. 2. B 【命题意图】本题考查复平面上的点与复数的关系,属于基础题.【试题解析】B 由复数12,z z 在复平面内对应的点关于虚轴对称,所以实部相反,虚部相同,则复数22z i =-+. 故选B.3. B 【命题意图】本题主要考查平面向量的运算性质.【试题解析】B 由题可知2(2,1),+=a b得|2|+=a b B. 4. B 【命题意图】本题考查分段函数及指数、对数运算,是一道基础题.【试题解析】B11()1,(1)52f f =--=. 故选B. 5. C 【命题意图】本题考查三角函数定义及恒等变换.【试题解析】C 由三角函数定义sin 55αα==,或sin ,cos 55αα=-=-,故4sin 22sin cos 5ααα==. 故选C.6. D 【命题意图】本题考查回归直线的基本内容,属于基础题.【试题解析】D 由数据可知10,8,x y ==将(,)x y 代入回归直线方程,可得 3.2b =-,故当价格提高到12元时,ˆ 1.6y=.故选D. 7. D 【命题意图】本题主要考查解三角形的相关知识,是一道基础题.【试题解析】D 由题可知,sin 2sin 2A B =,所以A B =或22A B π+=,因此此三角形为等腰三角形或直角三角形. 故选D .8. A 【命题意图】本题主要考查四棱锥的体积,考查空间想象能力,属于基础题.【试题解析】A 该几何体可以看成由两个四棱锥组成,每个四棱锥的底面面积为9,高为3,故其体积为9,所以整个几何体体积为18. 故选A. 9. A 【命题意图】本题考查程序框图及进位制,属基础题.【试题解析】A 由题意知01234512120202121251b =⨯+⨯+⨯+⨯+⨯+⨯=. 故选A.10. D 【命题意图】本题主要考查三角函数的图像及性质,是一道中档题.【试题解析】D 由题可知,3πϕ=-,从而()sin()3f x x π=-,则该函数在0,2π⎡⎤⎢⎥⎣⎦的最小值为2-. 故选D. 11. C 【命题意图】本题是考查双曲线性质的中档题.【试题解析】C 由题可知2||,b MF b a b a===. 故选C. 12. C 【命题意图】本题是函数性质综合运用题,是一道较难题.【试题解析】C 由题可知函数在(,)-∞+∞上单调递增,所求不等式等价于|(ln )|(1)f x f <,从而(1)(ln )(1)f f x f -<<,进而1ln 1x -<<,所以1x e e<<. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13. 4 14. y x =- 15. 24 16. 36π 简答与提示:13. 4【命题意图】本题主要考查线性规划问题,是一道常规题. 从二元一次方程组到可行域,再结合目标函数的几何意义,全面地进行考查.【试题解析】令2z x y =+,根据可行域及z 的几何意义,可确定最优解为(2,0),从而2x y +的最大值为4.14. y x =-【命题意图】本题考查导数的几何意义.【试题解析】由题意(0,0)P ,(),(0)1xf x e f ''=-=-,从而曲线在点P 处的切线方程为y x =-.15. 24【命题意图】本题考查椭圆的定义.【试题解析】由题意知:9l y =-过椭圆的右焦点2F ,从而1ABF ∆的周长为1212424AF AF BF BF a +++==.16. 36π【命题意图】本题求四棱锥外接球表面积运算,是一道较难题.【试题解析】由题意可求出外接球的半径为3,故其表面积为36π. 三、解答题(本大题必做题5小题,三选一选1小题,共70分) 17. (本小题满分12分)【命题意图】本小题主要考查等差数列的通项公式,前n 项和公式,是一道基础题.【试题解析】解:(1) 由题意可求得⎩⎨⎧+=+++=+)3(5)2(3)12(4641111d a d a d a d a ,解得,2,91-==d a 所以n a n 211-=.(6分)(2) 设{}n a 的前n 项和为n S ,则210n n S n -=,设{}n a 的前n 项和为n T , 当5≤n 时,210,0n n S T a n n n -==>,当6≥n 时,50102)(2555765+-=-=--=----=n n S S S S S a a a S T n n n n综上得⎪⎩⎪⎨⎧≥+-≤-=6,50105,1022n n n n n n T n .(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,包括茎叶图、概率. 本题主要考查学生数据处理能力.【试题解析】(1). (3分) (2) 6个人,则抽取成绩“合格”人数为4人;(3分)(3) 由(2)设成绩“合格”的4人为A ,B ,C ,D ,成绩“不合格”的2人为b a ,,从中选出2人有(A ,B ),(A ,C ),(A ,D ),(A ,a ),(A ,b ),(B ,C ),(B ,D ),(B ,a ),(B ,b ),(C ,D ),(C ,a ),(C ,b ),(D ,a ),(D ,b ),(b a ,),共15种,其中恰有1人成绩“合格”的有(A ,a ),(A ,b ),(B ,a ),(B ,b ),(C ,a ),(C,b ),(D ,a ),(D ,b ),共8 (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 过点M 作EF MP ⊥于点P ,过点N 作FD NQ ⊥于点Q ,连接PQ . 由题意,平面⊥EFCB 平面EFDA ,所以⊥MP 平面EFDA且22=+=CFBE MP ,因为EF DF EF CF ⊥⊥,,所以⊥EF 平面CF D ,所以EF NQ ⊥,由FD NQ ⊥,所以⊥NQ 平面E F D A ,又12C N ND =,所以,即NQ MP NQ MP =,//,则MN //PQ ,由MN ⊄平面ADFE ,,所以平面 (6分)(2) AND S ∆=N 到平面AFD 的距离为2,3AFD S ∆=,所以三棱锥F ADN -的高2AFDANDS h S ∆∆== (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 设),(y x M ,有)2,(y x P ,将P 代入y x 22=,得y x 42=,从而点M 的轨迹E 的方程为y x 42=.(4分)(2) 设),(),,(2211y x B y x A ,联立⎩⎨⎧=+-=yx x k y 45)4(2,得0201642=-+-k kx x ,则⎩⎨⎧-==+201642121k x x k x x ,因为44,44222111+-=+-=x y k x y k ,所以 41)4)(4()14)(14(212121-=+++-+-=⋅x x k kx k kx k k .(12分)21. (本小题满分12分)【命题意图】本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性等情况. 本题对考生的逻辑推理与运算求解能力有较高要求.【试题解析】解(1) 因为()ax x x f -=ln ,则()xaxa x x f -=-='11, 若函数()ax x x f -=ln 在()∞+,1上单调递减,则10ax -≤在()∞+,1上恒成立, 即当1x >时1a x>恒成立,所以1≥a . (6分)(2) 证明:根据题意,()1ln (0)2g x x m x x =+->, 因为1x ,2x 是函数()1ln 2g x x m x=+-的两个零点, 所以111ln 02x m x +-=,221ln 02x m x +-=.两式相减,可得122111ln 22x x x x =- 即112221ln 2x x x x x x -=,故1212122ln x x x x x x -=.那么1211212ln x x x x x -=,2121212ln x x x x x -=.令12x t x =,其中01t <<,则1211112ln 2ln 2ln t t t t x x t t t---+=+=. 构造函数1()2ln (01)h t t t t t=--<<,则22(1)'()t h t t -=. 因为01t <<,所以'()0h t >恒成立,故()(1)h t h <,即12ln 0t t t--<.由ln 0t <,可知112ln t t t->,故121x x +>. (12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到切割线定理以及三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解(1) 由BC CD =可知,BAC DAC ∠=∠,在△ABD 中,则AB ADBM DM=,因此AB MD AD BM ⋅=⋅; (5分) (2) 由CP MD CB BM ⋅=⋅可知CP BM CB MD =,又由(1)可知BM AB MD AD =,则C P A BC B A D=,由题意BAD PCB ∠=∠,可得△BAD ∽△PCB ,则ADB CBP ∠=∠,又ADB ACB ∠=∠,即CBP ACB ∠=∠,又PB 为圆O 的切线,则CBP CAB ∠=∠,因此ACB CAB ∠=∠, 即AB AC =. (10分)23. (本小题满分10分) 【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解(1) 已知曲线C 的标准方程为221124x y +=,则其左焦点为(-,则m =-将直线l的参数方程22x y ⎧=-⎪⎪⎨⎪=⎪⎩与曲线C 的方程221124x y +=联立, 得2220t t --=,则12||||||2FA FB t t ⋅==. (5分) (2) 由曲线C 的方程为221124x y +=,可设曲线C上的定点,2sin )P θθ 则以P为顶点的内接矩形周长为42sin )16sin()(0)32ππθθθθ⨯+=+<<,因此该内接矩形周长的最大值为16.(10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(1) 令1,1()|1||2|23,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则1()1f x -≤≤,由于0x ∃∈R 使不等式|1||2|x x t ---≥成立,有{|1}t T t t ∈=≤. (5分)(2) 由(1)知,33log log 1m n ⋅≥,根据基本不等式33log log 2m n ≥+≥ 从而23mn ≥当且仅当3m n ==时取等号,再根据基本不等式6m n +≥当且仅当3m n ==时取等号,所以m n +的最小值为6. (10分)。
2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a=( ) A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12C.23D.564.△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b=( )A.√2B.√3C.2D.35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.346.将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4)B.y=2sin (2x +π3)C.y=2sin (2x -π4)D.y=2sin (2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b9.函数y=2x 2-e |x|在[-2,2]的图象大致为( )10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A.√32B.√22C.√33D.1312.若函数f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1]B.[-1,13]C.[-13,13]D.[-1,-13]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.;(Ⅰ)求|OH||ON|(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与☉O 相切;(Ⅱ)点C,D 在☉O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x+1|-|2x-3|. (Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B ∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A ∵(1+2i)(a+i)=(a -2)+(2a+1)i, ∴a -2=2a+1,解得a=-3,故选A.3.C 从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D 由余弦定理得5=22+b 2-2×2bcos A,∵cos A=23,∴3b 2-8b-3=0,∴b=3(b =-13舍去).故选5.B 如图,|OB|为椭圆中心到l 的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=c a =12.故选B.6.D 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin [2(x -π4)+π6]=2sin (2x -π3),故选D.7.A 由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR 3=28π3,故R=2,从而它的表面积S=78×4πR 2+34×πR 2=17π.故选A.8.B ∵0<c<1,∴当a>b>1时,log a c>log b c,A 项错误; ∵0<c<1,∴y=log c x 在(0,+∞)上单调递减,又a>b>0, ∴log c a<log c b,B 项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增, 又∵a>b>0,∴a c>b c,C 项错误;∵0<c<1,∴y=c x 在(0,+∞)上单调递减, 又∵a>b>0,∴c a<c b ,D 项错误.故选B.9.D 当x=2时,y=8-e 2∈(0,1),排除A,B;易知函数y=2x 2-e |x|为偶函数,当x∈[0,2]时,y=2x 2-e x ,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D.10.C 执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时(12)2+22≥36不成立;当n=3时,x=32,y=6,此时(32)2+62≥36成立,结束循环,输出x 的值为32,y 的值为6,满足y=4x,故选C.11.A 设正方体ABCD-A 1B 1C 1D 1的棱长为a.将正方体ABCD-A 1B 1C 1D 1补成棱长为2a 的正方体,如图所示.正六边形EFGPQR 所在的平面即为平面α.点A 为这个大正方体的中心,直线GR 为m,直线EP 为n.显然m 与n 所成的角为60°.所以m,n 所成角的正弦值为√32.故选A.12.C f '(x)=1-23cos 2x+acos x=1-23(2cos 2x-1)+acos x=-43cos 2x+acos x+53, f(x)在R 上单调递增,则f '(x)≥0在R 上恒成立,令cos x=t,t∈[-1,1],则-43t 2+at+53≥0在[-1,1]上恒成立,即4t 2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t 2-3at-5,则{g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a≤13,故选C.二、填空题 13.答案 -23解析 因为a ⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43 解析 解法一:∵sin (θ+π4)=√22×(sin θ+cos θ)=35, ∴sin θ+cos θ=3√25①, ∴2sin θcos θ=-725. ∵θ是第四象限角,∴sin θ<0,cos θ>0,∴sin θ-cos θ=-√1-2sinθcosθ=-4√25②, 由①②得sin θ=-√210,cos θ=7√210,∴tan θ=-17, ∴tan (θ-π4)=tanθ-11+tanθ=-43.解法二:∵(θ+π4)+(π4-θ)=π2,∴sin (θ+π4)=cos (π4-θ)=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k ∈Z, ∴cos (θ+π4)=45,∴sin (π4-θ)=45, ∴tan (π4-θ)=sin(π4-θ)cos(π4-θ)=43, ∴tan (θ-π4)=-tan (π4-θ)=-43. 15.答案 4π解析 把圆C 的方程化为x 2+(y-a)2=2+a 2,则圆心为(0,a),半径r=√a 2+2.圆心到直线x-y+2a=0的距离d=√2.由r 2=d 2+(|AB |2)2,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S=πr 2=4π. 16.答案 216 000解析 设生产产品A x 件,生产产品B y 件,利润之和为z 元,则z=2 100x+900y.根据题意得{ 1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ,y ∈N ,即{ 3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ,y ∈N ,作出可行域(如图).由{10x +3y =900,5x +3y =600得{x =60,y =100. 当直线2 100x+900y-z=0过点A(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000. 故所求的最大值为216 000元.三、解答题17.解析 (Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分) 所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n 得b n+1=bn 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分)记{b n }的前n 项和为S n ,则S n =1-(13)n1-13=32-12×3n -1.(12分)18.解析 (Ⅰ)证明:因为P 在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E,所以AB ⊥DE.(2分)又PD∩DE=D,所以AB ⊥平面PED,故AB ⊥PG.又由已知可得,PA=PB,从而G 是AB 的中点.(4分)(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F,F 即为E 在平面PAC 内的正投影.(5分)理由如下:由已知可得PB ⊥PA,PB ⊥PC,又EF ∥PB,所以EF ⊥PA,EF ⊥PC,又PA∩PC=P,因此EF ⊥平面PAC,即点F 为E 在平面PAC 内的正投影.(7分)连结CG,因为P 在平面ABC 内的正投影为D,所以D 是正三角形ABC 的中心,由(Ⅰ)知,G 是AB的中点,所以D 在CG 上,故CD=23CG.(9分)由题设可得PC ⊥平面PAB,DE ⊥平面PAB,所以DE ∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2,(11分)所以四面体PDEF 的体积V=13×12×2×2×2=43.(12分)19.解析 (Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700,所以y 与x 的函数解析式为y={3 800, x ≤19,500x -5 700,x >19(x ∈N).(4分) (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P (t 22p ,t).(1分)又N 为M 关于点P 的对称点,故N (t 2p ,t),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x1=0,x2=2t 2p.因此H(2t 2p,2t).(4分)所以N为OH的中点,即|OH||ON|=2.(6分)(Ⅱ)直线MH与C除H以外没有其他公共点.(7分) 理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)21.解析(Ⅰ)f '(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e2,则f '(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.(9分)(iii)设a<0,若a≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设O'是A,B,C,D 四点所在圆的圆心,作直线OO'.(7分)由已知得O 在线段AB 的垂直平分线上,又O'在线段AB 的垂直平分线上,所以OO'⊥AB. 同理可证,OO'⊥CD.所以AB ∥CD.(10分)23.解析 (Ⅰ)消去参数t 得到C 1的普通方程:x 2+(y-1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.(2分)将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(4分)(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组{ρ2-2ρsinθ+1-a 2=0,ρ=4cosθ.(6分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,(8分)由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C 1,C 2的公共点,在C 3上.所以a=1.(10分)24.解析(Ⅰ)f(x)={x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分)(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,(8分)故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或x>5}.(9分)所以|f(x)|>1的解集为{x|x<13或1<x<3或x>5}.(10分)。
文科数学长春市2016年高三模拟试卷文科数学单项选择题〔本大题共12小题,每题____分,共____分。
〕1.设全集,集合,,那么〔〕A.B.C.D.2.复数,,那么〔〕A.B.C.D.3.假设实数数列:成等比数列,那么圆锥曲线的离心率是〔〕A. 或B. 或C.D. 或4.函数的图象恒过定点,假设点在直线上,其中,那么的最小值为〔〕A.B.C.D.5.如图为某几何体的三视图,那么该几何体的外表积为〔〕A.B.C.D.6.气象意义上从春季进入夏季的标志为:“连续天每天日平均温度不低于〞,现有甲、乙、丙三地连续天的日平均温度的记录数据〔记录数据都是正整数,单位〕①甲地:个数据的中位数为,众数为;②乙地:个数据的中位数为,平均数为;,丙地:个数据中有一个数据是,平均数为,方差为.那么肯定进入夏季的地区有〔〕A. 0个B. 1个C. 2个D. 37.条件:,条件:直线与圆相切,那么是的〔〕A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8.平面截球所得的截面圆的半径为,球心到平面的距离为,那么此球的体积为〔〕A.B.C.D.9.假设如下图的程序框图输出的是,那么条件①可为〔〕A.B.C.D.10.假设函数的图象如下图,那么的范围为〔〕A.B.C.D.11.过双曲线的左焦点,作圆的切线交双曲线右支于点,切点为,的中点在第一象限,那么以下结论正确的选项是〔〕A.B.C.D.12.函数定义在上的奇函数,当时,,给出以下命题:①当时,②函数有个零点③的解集为④,都有,其中正确的命题是〔〕A. ①③B. ②③C. ③④D. ②④简答题〔综合题〕〔本大题共10小题,每题____分,共____分。
〕13.向量,,,那么向量与的夹角为____.14.,,那么____.15.假设满足条件,目标函数的最小值为____.16.假设是一个集合,是一个以的某些子集为元素的集合,且满足:①属于,空集属于;②中任意多个元素的并集属于;③中任意多个元素的交集属于.那么称是集合上的一个拓扑.集合,对于下面给出的四个集合:①; ②;③; ④.其中是集合上的一个拓扑的集合的所有序号是____.17. 在中,角、、的对边分别为、、,面积为,〔Ⅰ〕求证:;〔Ⅱ〕假设,,求.18. 如下图,该几何体是由一个直三棱柱和一个正四棱锥组合而成,,.〔Ⅰ〕证明:平面平面;〔Ⅱ〕求正四棱锥的高,使得该四棱锥的体积是三棱锥体积的4倍.19. 甲、乙两位学生参加某项竞赛培训,在培训期间,他们参加的项预赛成绩的茎叶图记录如下:(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加该项竞赛,从统计学的角度考虑,你认为选派哪位学生参加适宜?说明理由.20. 椭圆与的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,与的四个焦点构成的四边形面积是.〔Ⅰ〕求椭圆与的方程;〔Ⅱ〕设是椭圆上非顶点的动点,与椭圆长轴两个顶点,的连线,分别与椭圆交于点,.〔1〕求证:直线,斜率之积为常数;〔2〕直线与直线的斜率之积是否为常数?假设是,求出该值;假设不是,说明理由.21. 设函数,〔〕〔Ⅰ〕当时,求函数的单调区间;〔Ⅱ〕当,时,求证:22.如图,是圆外一点,是圆的切线,为切点,割线与圆交于,,,为中点,的延长线交圆于点,证明:〔Ⅰ〕;〔Ⅱ〕.23. 在直角坐标系中,曲线的参数方程为,〔为参数〕,直线的参数方程为,(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为.〔Ⅰ〕求点的直角坐标,并求曲线的普通方程;〔Ⅱ〕设直线与曲线的两个交点为,,求的值.24. 函数,〔Ⅰ〕假设,解不等式:;〔Ⅱ〕假设恒成立,求的取值范围.答案单项选择题1. C2. D3. A4. D5. B6. C7. A8. B9. B 10. D 11. A 12. C简答题13.14.15.-116.②④17.〔Ⅰ〕略;〔Ⅱ〕18.略19.〔1〕〔2〕甲比拟适宜。
长春市普通高中2016届高三质量监测(一)数学试题卷(文科)考生须知:1. 本试卷分试题卷和答题卡,满分150分,考试时间120分钟.2. 答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3. 所有答案必须写在答题卡上,写在试卷上无效.4. 考试结束,只需上交答题卡.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1. 已知集合{0,1,2}A =,{|,,}B z z x y x A y A ==+∈∈,则B =A. {0,1,2,3,4}B. {0,1,2}C. {0,2,4}D. {1,2}2. 复数11ii+-(i 是虚数单位)等于A. 1B. 2C. iD. 2i 3. 抛物线24y x =-的准线方程为A. 1y =-B. 1y =C. 1x =-D. 1x = 4. 已知向量b a ,满足)6,3(),10,5(=--=+b a b a ,则a b ⋅=r rA. 12-B. 20-C. 12D. 205. 下列说法中正确的是A. “(0)0f =”是“函数()f x 是奇函数”的充要条件;B. 若p :0x ∃∈R ,20010x x -->,则p ⌝:x ∀∈R ,210x x --<;C. 若p q ∧为假命题,则,p q 均为假命题;D. “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”. 6. 若实数,x y 满足2211y x y x y x -⎧⎪-+⎨⎪+⎩≥≥≤,则2z x y =-的最小值为A. 2-B. 1-C. 1D. 27. 执行如图所示的程序框图,输出的s 为A. 20152016B. 20142015C. 20162015D. 201720168. 在△ABC 中,2AB =,3AC =,BC =△ABC 的面积为A.4B.C.4D.169. 已知几何体的三视图如图所示,则该几何体的表面积为A. 4+B. 6+C. 2+D. 2+10. 已知函数3||x x y e=,则其图像为11. 函数()sin()cos()66f x x x ππ=++,下列判断正确的是 A. ()f x 的最小正周期为2πB. ()6f x π-是奇函数C. ()f x 的一个对称中心为(,0)6πD. ()f x 的一条对称轴为6x π=12. 设()f x 是定义在R 上的偶函数,对x ∈R ,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,若在区间[2,6]-内关于x 的方程()log (2)0a f x x -+=(1)a >恰有3个不同实根,则a 的取值范围是A. 2a <<B. 12a <<C.a <<D. 1a <<正视图侧视图俯视图第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13. 利用分层抽样的方式在学生总数为1200人的年级中抽出20名同学,其中有女生8人,则该年级男生的人数约为____________. 14. 已知3log 21x =,则42x x -=____________.15. 设椭圆22221(0)x y a b a b+= >>的左右焦点分别为12,F F . 若椭圆上存在点P 使1290F PF ∠=o . 则椭圆的离心率的取值范围是____________.16. 已知一个四面体的所有棱长都为2,则该四面体的外接球表面积为____________. 三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17. (本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,20a =,5421S a =-.⑴ 求数列{}n a 的通项公式;⑵ 设2n an b =,求数列{}n b 的前n 项和n T .18. (本小题满分12分)为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下: 女生:男生:⑴ 现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率; ⑵”?(2()()()()()n ad bc K ab c d a c b d -=++++,其中n a b c d =+++)19. (本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=o ,2AB AC ==,13AA =.⑴ 过BC 的截面交1A A 于P 点,若△PBC 为等边三角形,求出点P 的位置;⑵ 在⑴条件下,求四棱锥11P BCC B -与三棱柱111ABC A B C -的体积比.20. (本小题满分12分)已知椭圆C 的方程为22221x y a b+=(0)a b >>,离心率e =直的直线被椭圆所截得线段长为1.⑴ 求椭圆C 的方程;⑵ ,,D E F 为曲线C 上的三个动点,D 在第一象限,,E F 关于原点对称,且||||DE DF =,问△DEF 的面积是否存在最小值?若存在,求出此时D 点的坐标;若不存在,请说明理由. 21. (本小题满分12分) 已知函数()1xf x e ax =--.⑴ 判断函数()f x 的单调性;⑵ 设()()ln F x f x x x =-,若函数()F x 存在零点,求实数a 的取值范围. 请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1:几何证明选讲. 已知△ABC 中,AB AC =,以点B 为圆心,以BC 为半径的圆分别交,AB AC 于,D E 两点,且EF 为该圆的直径.⑴ 求证:2A F ∠=∠;⑵ 若112AE EC ==,求BC 的长.23. (本小题满分10分)选修4-4:坐标系与参数方程选讲.已知曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的极坐标方程为sin()4πρθ+=.⑴ 写出曲线C 的普通方程和直线l 的直角坐标方程;⑵ 设点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 24. (本小题满分10分)选修4-5:不等式选讲.已知函数()|||5|f x x a x =-+-.⑴ 若不等式()3f x ≥恒成立,求a 的取值范围; ⑵ 当2a =时,求不等式2()815f x x x -+≥的解集.CBA C 1B 1A 1长春市普通高中2016届高三质量监测(一) 数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. A2. C3. D4. D5. D6. B7. A8. C9. B 10. A 11. B 12. A 简答与提示:1. 【命题意图】本题考查集合中元素的计算与集合的性质.【试题解析】A 题意可知,集合{|,,}{0,1,2,3,4}B z z x y x A y A ==+∈∈=,故选A.2. 【命题意图】本题考查复数的除法运算.【试题解析】C21(1)21(1)(1)2i i ii i i i ++===--+,故选C. 3. 【命题意图】本题考查抛物线的准线的概念,是对学生的基础知识的直接考查. 【试题解析】D 由题意,抛物线24y x =-的准线为1x =,故选D. 4. 【命题意图】本题主要对向量的基本运算进行考查.【试题解析】D ()()(4,2)2a b a b a ++-==-r r r r r ,()()(1,8)2a b a b b +--==-r r r r r ,则41620a b ⋅=+=r r,故选D.5. 【命题意图】本题是对逻辑问题的综合考查,全面考查考生对各种逻辑问题的理解.【试题解析】D 选项A 中,由奇函数定义可知,“(0)0f =”是“函数()f x 是奇函数”的既不充分也不必要条件;选项B 中,若p :0x ∃∈R ,20010x x -->,则p ⌝:x ∀∈R ,210x x --≤;选项C 中,若p q ∧为假命题,只能判定,p q 中至少有一个为假命题;选项D 的说法正确,故选D.6. 【命题意图】本题考查线性规划以及目标函数的几何意义等知识.【试题解析】B 图为可行域,而目标函数2z x y =-可化为2y x z =-,即z -为该直线在y 轴上的截距,当直线过(0,1)时,截距取得最大值,此时z 取得最小值为1-,故选B.7. 【命题意图】本题考查程序框图的基本运作过程,同时通过程序框图也对数列中的裂项求和做出考查.【试题解析】A 由程序框图,当2015k =时,还应该进入循环,而当2016k =时,不再进入循环,故输出结果为20152016,故选A. 8. 【命题意图】本题主要考查解三角形,以及利用余弦定理搭建三角形中边与角的关系式.【试题解析】C由题意,根据余弦定理可得,cos C =sin C =,故1sin 2ABC S AC BC C =⋅⋅=V ,故选C.9. 【命题意图】本题主要考查考生对三视图的理解,以及简单几何体表面积的计算.【试题解析】B的三棱锥,且顶点在底面上的投影为斜边的中点,据此可求得该几何体的表面积为6+.故选B.10. 【命题意图】本题考查考生对图像特征的理解,以及利用求导等手段发现函数特点的方法.【试题解析】A 函数3||x x y e=为奇函数,且0|0x y ='=,可推出在原点处切线斜率为0,故选A.11. 【命题意图】本题考查三角变换公式,以及sin()y A x ωϕ=+中各个量对函数图像的影响.【试题解析】B 由题可知1()sin 262f x x π-=,故选B. 12. 【命题意图】本题主要考查函数图像、函数零点,通过指数函数和对数函数以及函数周期的表达式,来构建函数与函数关系.【试题解析】A 由题意可知,()log (2)a f x x =+的图像如右图所示,若要保证()log (2)a f x x =+有三个交点,只需log 43log 8a a <<,即348a <<2a <<.二、填空题(本大题共4小题,每小题5分,共20分)13. 72014. 615.12e ≤< 16. 6π简答与提示:13. 【命题意图】本题考查分层抽样的主要知识.【试题解析】由于样本容量为20,所以其中的男生人数为12,从而年级男生人数为12120072020⨯=(人). 14. 【命题意图】本题考查对数运算的基本性质.【试题解析】由条件可知2log 3x =,故222log 3log 34222936xx-=-=-=.15. 【命题意图】本题通过平面几何的性质考查椭圆离心率的求取,对学生的运算求解能力提出很高要求,是一道中档题.【试题解析】以线段12F F 为直径的圆与椭圆有公共点,所以22b c ≤,即222a c c -≤,212e ≤,所以12e ≤<. 16. 【命题意图】本题考查了球的内接几何体问题,特别涉及到了正方体的局部几何体的外接球问题.【试题解析】已知四面体棱长为2,从而其表面积为6π.三、解答题17. (本小题满分12分)【命题意图】本题考查数列通项公式及其前n 项和公式的求法,其中涉及错位相减法在数列求和问题中的应用.【试题解析】 (1) 设公差为d ,有1110,510261a d a d a d +=+=+-,解得11,1d a =-=,所以2n a n =-. (6分)(2) 由(1)知,22n n b -=,所以212[1()]242112n n n T --==--. (12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 选取的20名女生中,“睡眠严重不足”的有2人,设为,A B ,睡眠时间在[5,6)的有4人,设为,,,a b c d . 从中选取3人的情况有,,,ABa ABb ABc,,,,,,,,,,,,,,,ABd Aab Aac Aad Abc Abd Acd Bab Bac Bad Bbc Bbd Bcd abc abd ,acd bcd ,其中恰有1人“睡眠严重不足”的有12种,因此3人中恰有一个为“严重睡眠不足”的概率为123205=(6分) (2)20(126148)400.440 2.7062026142091k ⨯-⨯==≈<⨯⨯⨯所以没有90%的把握认为“睡眠时间与性别有关”(12分)19. (本小题满分12分) 【命题意图】本小题以三棱柱为载体,考查立体几何的基础知识. 本题通过分层设计,考查了体积运算等知识,考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1) 由题意PC PB ==,在三棱柱中,由1AA ⊥平面ABC 且2AB AC ==可得,2PA =,故点P 的位置为1AA 的三等分点,且靠近1A 处.(6分)(2) 由(1)可知,111122362ABC A B C V -=⨯⨯⨯=,111112221323P A B C V -=⨯⨯⨯⨯= 114222323P ABC V -=⨯⨯⨯⨯=,所以11426433P BCC B V -=--=,所以所求两个几何体的体积比为23. (12分)20. (本小题满分12分)【命题意图】本小题考查椭圆的标准方程的求取,直线和椭圆的位置关系及函数最值的求法,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意,2c e a ==,又221b a=,可解得2,1a b ==,因此椭圆的标准方程为2214x y +=. (5分) (2) 由题意知OD EF ⊥,设:EF y kx =(0)k <,1:OD y x k=-设111122(,),(,),(,),E x y F x y D x y --由2214x y y kx⎧+=⎪⎨⎪=⎩,消去y 得22(14)4k x +=,所以1||2|EF x ==同理可得2x =,||OD ==所以1||||2DEF S OD EF ∆===当21112k =+,即21,1k k ==-时,DEFS ∆取最小值,此时D . (12分) 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图像的判定,考查学生解决问题的综合能力.【试题解析】解:(1) ()1xf x e ax =--,()xf x e a '=-,当0a ≤时,()0f x '>,则()f x 在R 上单调递增; 当0a >时,令()0xf x e a '=-=,得ln x a =,则()f x 在(,ln ]a -∞上单调递减,在(ln ,)a +∞上单调递增. (4分)(2) 令()()ln 0F x f x x x =-=,则1ln x e a x x x=--, 令11()ln ln x x e e h x x x x x x-=--=-,当x 无限靠近于0时,()h x 趋近于+∞. 2211(1)(1)()x x x xe e e x h x x x x-+--'=-=,令()0h x '=可得1x =,可知(0,1)x ∈时,()h x 单调递减,(1,)x ∈+∞时,()h x 单调递增. 因此()h x 的值域为[(1),)h +∞,即为[1,)e -+∞,因此函数()F x 存在零点时,实数a 的取值范围是[1,)e -+∞.(12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】 (1) 因为AC AB =,所以ABC ACB ∠=∠,又因为BC BE =,所以BEC ECB ∠=∠,所以BEC ABC ∠=∠,所以2A EBC F ∠=∠=∠. (5分) (2) 由(1)可知ABC ∆∽BEC ∆,从而EC BCBC AC=,由1,2,3AE EC AC ===,得BC =(10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用曲线的参数方程的几何意义求解曲线上点到直线的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 曲线C 的普通方程为2213x y +=,直线l 的直角坐标方程为40x y +-=.(5分) (2) 设点P坐标为,sin )θθ,点P 到直线l的距离)3d πθ==+所以点P 到直线l距离的最大值为 (10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 由于()|||5||5|f x x a x a =-+-≥-,所以()3|5|3f x a ≥⇔-≥,解得2a ≤或8a ≥. (5分)(2) 72,2()|2||5|3,2527,5x x f x x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,原不等式等价于2272815x x x x <⎧⎨-≥-+⎩,或2253815x x x ≤≤⎧⎨≥-+⎩,或2527815x x x x >⎧⎨-≥-+⎩解得25x ≤≤+{|25x x ≤≤+.(10分)。