工程力学-扭转
- 格式:ppt
- 大小:2.56 MB
- 文档页数:46
第9章扭转(6学时)教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:9.1 引言工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图9-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图9-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
图9-1图9-2本章主要讨论圆轴扭转时的应力、变形、强度及刚度计算等问题,同时非圆截面杆进行简单介绍。
第7章 扭转7.1 扭转的概念和工程实际中的扭转问题扭转变形是杆件的基本变形之一。
它的外力特点是杆件受力偶作用,力偶作用在与轴线垂直的平面内,如图7-1所示。
杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面绕轴线相对转动的角度称为扭转角(angle of twist )ϕ。
以扭转变形为主的杆件通常称为轴。
工程上有很多圆截面等直杆,受到一对大小相等、方向相反的外力偶矩作用。
如图7-2所示的驾驶盘轴,在轮盘边缘作用一对方向相反的切向力构成一力偶。
根据平衡条件,在轴的另一端,必存在一反作用力偶,在此力偶矩作用下,各横截面绕轴线作相对旋转。
此轴产生的变形即为扭转变形。
在工程中,受扭杆件是很常见的,比如机械中的传动轴(图7-3)、攻螺纹所用丝锥的锥杆(图7-4)以及钻杆等,它们的主要变形都是扭转,但同时还可能伴随有拉压、弯曲等变形。
如果后者不大,往往可以忽略,或者在初步设计中,暂不考虑这些因素,将其视为扭转构件。
圆轴是最常见的扭转变形构件,本章主要讨论圆轴的扭转。
BAMAB ϕ图7-1图7-2图7-3图7-47. 2 杆件扭转时的内力要研究受扭杆件的应力和变形,首先需要计算杆件横截面上的内力。
一、外力偶矩的计算作用于圆轴上的外力偶矩往往不是直接给出的,通常是给出轴的转速n 和轴所传递的功率P 。
此时需要根据功率、转速、力矩三者之间的关系来计算外力偶矩的大小。
以工程中常用的传动轴为例,已知它所传递的功率P 和转速n ,作用在轴上的外力偶矩可以通过功率P 和转速n 换算得到。
因为功率是每秒钟内所做的功,有602101033πωn M M P e e ⨯⨯=⨯⨯=−− 于是,作用在轴上的外力偶矩为nPM e 9550= (7-1) 式中:M e —作用在轴上的外力偶矩,单位为N·mP —轴传递的功率, 单位为kW ω—转轴的角速度,单位为rad/s n —轴的转速,单位为是r/min 。
工程力学中的扭转力学分析扭转力学是工程力学中的一个重要分支,研究物体在受到扭转力作用时产生的变形和应力分布。
在工程实践中,扭转力学的应用非常广泛,特别是在建筑、机械、航空航天等领域。
一、引言扭转力学研究的对象是物体在受到外界扭转力矩作用下的行为。
扭转力学涉及到以下几个关键概念:扭转角、扭转应变、扭转应力等。
二、基本原理与公式推导在扭转力学分析中,我们需要借助一些基本原理和公式来描述扭转的行为。
其中,最基本的原理是胡克定律,它表明物体在弹性阶段的扭转行为与受到的扭转力矩成正比。
公式推导过程如下:(1)胡克定律:θ = T / (G * J)其中,θ表示物体的扭转角,T表示扭转力矩,G表示切变模量,J 表示抗扭转性能指标。
(2)扭转应变:γ = θ * r / L其中,γ表示扭转应变,r表示被扭转物体的半径,L表示物体的长度。
(3)扭转应力:τ = G * γ其中,τ表示扭转应力。
三、典型扭转问题的分析在工程实践中,我们常常遇到一些典型的扭转问题,如轴材料的扭转分析、螺旋桨的扭转分析等。
下面以轴材料的扭转分析为例,介绍典型问题的求解过程:(1)问题描述:一根长度为L,半径为r的均质轴材料,在受到扭转力矩T作用下,求解轴的扭转角和轴的最大扭转应力。
(2)解答过程:首先,根据胡克定律可以得到轴的扭转角:θ = T / (G * J),其中G 为轴材料的切变模量,J为轴的惯性矩。
然后,根据扭转应变公式可以得到轴的扭转应变:γ = θ * r / L。
最后,根据扭转应力公式可以得到轴的扭转应力:τ = G * γ。
四、工程应用示例扭转力学在工程中的应用非常广泛,例如在机械工程中,通过对扭转力学的分析,我们可以设计出更加合理的轴、齿轮等零件;在建筑工程中,我们可以通过扭转力学的分析,预测结构在风荷载下的变形和损伤等。
五、总结扭转力学是工程力学中的重要分支,研究物体在受到扭转力作用下的变形和应力分布。
本文通过引言、基本原理与公式推导、典型扭转问题的分析以及工程应用示例的介绍,对扭转力学的相关内容进行了阐述。