第六章 分布滞后模型和自回归模型
- 格式:ppt
- 大小:170.50 KB
- 文档页数:7
实验六 自回归分布滞后模型(ADL )的运用实验指导一、实验目的理解ADL 模型的原理与应用条件,学会运用ADL 模型来估计变量之间长期稳定关系。
理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。
理解ADL 模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。
而进行标准的协整分析前,必须把变量分类成(0)I 和(1)I 。
二、基本概念Jorgenson(1966)提出的(,p q )阶自回归分布滞后模型ADL(autoregressive distributed lag):011111i t t p t p t t q t q i t i i y y y ταφφεθεθεβ-----='=++++--+∑x ,其中t i -x 是滞后i 期的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为i τ,i β是参数向量。
当不存在外生变量时,模型就退化为一般ARMA (,p q )模型。
如果模型中不含有移动平均项,可以采用OLS 方法估计参数,若模型中含有移动平均项,线性OLS 估计将是非一致性估计,应采用非线性最小二乘估计。
三、实验内容及要求(1)实验内容运用ADL 模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt 和对数可支配收入xt 之间的长期稳定关系。
(2)实验要求在认真理解模型应用条件的基础上,通过实验掌握ADL 模型的实际应用方法,并熟悉Eniews 的具体操作过程。
四、实验指导(1)数据录入打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated-regular frequency ”,在“Data specification ”栏中“Frequency ”中选择“Monthly ”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok ,见图6-1,这样就建立了一个工作文件。
第六章分布滞后模型与自回归模型分析分布滞后模型(Distributed Lag Models)和自回归模型(Autoregressive Models)是常用于时间序列分析的两种方法。
本章将分别介绍这两种模型以及其在经济学和社会科学领域中的应用。
分布滞后模型是一种广义的线性回归模型,用于分析变量之间的滞后效应。
它的基本形式可以表示为:Yt = α + β1Xt + β2Xt-1 + ... + βpXt-p + et其中,Yt是被解释变量,Xt是解释变量,β1到βp是与解释变量相关的系数,et是误差项。
模型中的滞后项Xt-1到Xt-p表示X在当前时间以及过去的一段时间内对Y的影响。
分布滞后模型可以用来研究两个或多个变量之间的滞后效应,并帮助研究者了解这些变量之间的动态关系。
分布滞后模型在经济学和社会科学领域中有广泛的应用。
例如,在宏观经济学中,可以用分布滞后模型来研究货币政策对经济增长的长期影响。
在健康经济学中,可以用分布滞后模型来研究疫苗接种对流行病传播的影响。
在社会学研究中,可以用分布滞后模型来研究教育程度对就业机会的影响。
自回归模型是一种基于时间序列的统计模型,用于预测一个变量在时间上的变化。
它的基本形式可以表示为:Yt = α + φ1Yt-1 + φ2Yt-2 + ... + φpYt-p + et其中,Yt是被预测的变量,φ1到φp是自回归系数,et是误差项。
自回归模型假设当前时间的值与过去时间的值有关,并且根据过去时间的值来预测未来时间的值。
自回归模型可以帮助研究者预测变量的趋势和周期性,并提供关于未来值的信息。
自回归模型在经济学和社会科学领域中也有广泛的应用。
例如,在金融学中,可以用自回归模型来预测股票价格的变化。
在气象学中,可以用自回归模型来预测天气变化。
在市场研究中,可以用自回归模型来预测产品销售量。
总之,分布滞后模型和自回归模型是两种常用的时间序列分析方法。
它们可以帮助研究者了解变量之间的滞后效应和趋势,并用于预测未来值。
空间自回归模型和空间滞后模型空间自回归模型和空间滞后模型,这两个名字听起来就像是从数学教室里跑出来的怪兽,但其实它们在分析数据的时候可是大有用处哦。
想象一下,你在一个小镇上,大家的房子都挨得很近,街坊邻里关系那是密不可分。
你的朋友小张如果今天心情好,邻居小李也可能会受到影响。
空间自回归模型就是要把这种“情绪传染”的现象给捉住。
它就像是在说,哎呀,咱们小镇上,如果小张心情好,没准大家的幸福指数也跟着蹭蹭上涨呢。
再说说空间滞后模型。
这家伙有点像是你等了很久的公交车,虽然你在这儿等着,但那辆车的到来还得看其他路上的情况。
空间滞后模型就告诉我们,某个地方的现象,不光是看自己这片区域,还得考虑周围的影响。
比如说,经济发展,某个城市的增长往往跟邻近城市的经济状况息息相关。
一个地方经济繁荣,附近的地方也会跟着水涨船高。
这就好比是,你的小区里开了一家超级火爆的餐厅,周围的店铺也跟着吸引了不少顾客,大家都是捞一把。
再想象一下,如果你在聚会上,大家都在聊最近的电影,你一来就提到那部让你失望的烂片。
可别小看了这个发言,可能会影响其他人的观感哦。
空间自回归模型和空间滞后模型就是在做这种事情,分析区域之间的互动,研究他们是如何影响彼此的,真的是个非常巧妙的想法。
就像是我们日常生活中,朋友圈子里的影响,谁都逃不掉。
听起来可能有点复杂,但其实它们的运用在我们生活中随处可见。
比如说,城市规划、环境监测,甚至是疫情的传播。
这些模型就像是研究人员的秘密武器,帮助他们了解各种现象背后的奥秘。
说到疫情,谁能忘记那段特殊的日子呢?在那时,研究人员就用这些模型来分析病毒的传播路径,看看哪个地方可能会成为“重灾区”,这对公共卫生决策真是至关重要。
哎,空间模型可不是只有学术界的专属。
咱们日常生活中,有时候也得用用这些思维,想想自己的行为会对周围的人造成怎样的影响。
就像你买了新衣服,如果你开心地穿出去,朋友们看到后也可能会去买,时尚就是这样流行开来的。
空间滞后模型和空间自回归模型空间滞后模型(Spatial Lag Model)和空间自回归模型(Spatial Autoregressive Model)是空间计量经济学中常用的两种模型,用于分析空间数据中的空间依赖性。
空间滞后模型是一种描述因变量与其邻近地区的自变量之间的依赖关系的模型。
它假设一个地区的因变量取决于该地区的自身特征以及其邻近地区的特征。
换句话说,该模型认为一个地区的因变量受到其邻近地区因变量的影响。
空间滞后模型可以用以下公式表示:Y = ρWy + Xβ + ε。
其中,Y是因变量,Wy是空间权重矩阵,ρ是空间滞后参数,X是自变量矩阵,β是自变量系数,ε是误差项。
空间滞后模型考虑了空间上的依赖性,可以用来解释因变量的空间聚集现象。
空间自回归模型是一种描述因变量与其邻近地区的因变量之间的依赖关系的模型。
它假设一个地区的因变量取决于该地区的自身特征以及其邻近地区的因变量。
换句话说,该模型认为一个地区的因变量受到其邻近地区因变量的影响。
空间自回归模型可以用以下公式表示:Y = ρWY + Xβ +ε。
其中,Y是因变量,W是空间权重矩阵,ρ是空间自回归参数,X是自变量矩阵,β是自变量系数,ε是误差项。
空间自回归模型考虑了空间上的依赖性,可以用来解释因变量的空间自相关现象。
这两种模型都考虑了空间上的依赖性,但是它们的依赖关系不同。
空间滞后模型是因变量与邻近地区的自变量之间的依赖关系,而空间自回归模型是因变量与邻近地区的因变量之间的依赖关系。
在实际应用中,选择使用哪种模型取决于具体问题和数据的特征。
总结起来,空间滞后模型和空间自回归模型是两种常用的空间计量经济学模型,用于分析空间数据中的空间依赖性。
它们都考虑了因变量与邻近地区之间的依赖关系,但是依赖关系的对象不同,一个是自变量,一个是因变量。