第六章_自回归模型和分布滞后模型
- 格式:ppt
- 大小:508.50 KB
- 文档页数:88
广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
计量经济学: 是经济学的一个分支学科,是以揭示经济活动中的客观存在的数量关系为内容的分支学科。
计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。
截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。
时间序列数据:把反映某一总体特征的同一指标的数据,按照一定的时间顺序和时间间隔排列起来,这样的统计数据称为时间序列数据面板数据:指时间序列数据和截面数据相结合的数据。
总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
样本回归函数:指从总体中抽出的关于Y,X的若干组值形成的样本所建立的回归函数。
随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
总离差平方和:用TSS表示,用以度量被解释变量的总变动。
回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。
残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
协方差:用Cov(X,Y)表示,度量X,Y两个变量关联程度的统计量。
R表示,该值越接近1,模型拟合优度检验:检验模型对样本观测值的拟合程度,用2对样本观测值拟合得越好。
实验六 自回归分布滞后模型(ADL )的运用实验指导一、实验目的理解ADL 模型的原理与应用条件,学会运用ADL 模型来估计变量之间长期稳定关系。
理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。
理解ADL 模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。
而进行标准的协整分析前,必须把变量分类成(0)I 和(1)I 。
二、基本概念Jorgenson(1966)提出的(,p q )阶自回归分布滞后模型ADL(autoregressive distributed lag):011111i t t p t p t t q t q i t i i y y y ταφφεθεθεβ-----='=++++--+∑x ,其中t i -x 是滞后i 期的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为i τ,i β是参数向量。
当不存在外生变量时,模型就退化为一般ARMA (,p q )模型。
如果模型中不含有移动平均项,可以采用OLS 方法估计参数,若模型中含有移动平均项,线性OLS 估计将是非一致性估计,应采用非线性最小二乘估计。
三、实验内容及要求(1)实验内容运用ADL 模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt 和对数可支配收入xt 之间的长期稳定关系。
(2)实验要求在认真理解模型应用条件的基础上,通过实验掌握ADL 模型的实际应用方法,并熟悉Eniews 的具体操作过程。
四、实验指导(1)数据录入打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated-regular frequency ”,在“Data specification ”栏中“Frequency ”中选择“Monthly ”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok ,见图6-1,这样就建立了一个工作文件。
《计量经济学》各章重点知识总结整理笔记第二章1、变量间的关系分为函数关系与相关关系。
相关系数是对变量间线性相关程度的度量。
2、现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。
3、总体回归函数(PRF )是将总体被解释变量Y 的条件均值()i i E Y X 表现为解释变量X 的某种函数。
样本回归函数(SRF )是将被解释变量Y 的样本条件均值^i Y 表示为解释变量X 的某种函数。
总体回归函数与样本回归函数的区别与联系。
4、随机扰动项i u 是被解释变量实际值i Y 与条件均值()i i E Y X的偏差,代表排除在模型以外的所有因素对Y 的影响。
5、简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)6、普通最小二乘法(OLS )估计参数的基本思想及估计式;OLS 估计式的分布性质及期望、方差和标准误差;OLS 估计式是最佳线性无偏估计式。
7、对回归系数区间估计的思想和方法。
8、拟合优度是样本回归线对样本观测数据拟合的优劣程度,可决系数是在总变差分解基础上确定的。
可决系数的计算方法、特点与作用。
9、对回归系数假设检验的基本思想。
对回归系数t 检验的思想与方法;用P 值判断参数的显著性。
10、被解释变量平均值预测与个别值预测的关系,被解释变量平均值的点预测和区间预测的方法,被解释变量个别值区间预测的方法。
11、运用EViews 软件实现对简单线性回归模型的估计和检验。
第二章主要公式表第三章1、多元线性回归模型是将总体回归函数描述为一个被解释变量与多个解释变量之间线性关系的模型。
通常多元线性回归模型可以用矩阵形式表示。
2、多元线性回归模型中对随机扰动项u的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。
第六章分布滞后模型与自回归模型分析分布滞后模型(Distributed Lag Models)和自回归模型(Autoregressive Models)是常用于时间序列分析的两种方法。
本章将分别介绍这两种模型以及其在经济学和社会科学领域中的应用。
分布滞后模型是一种广义的线性回归模型,用于分析变量之间的滞后效应。
它的基本形式可以表示为:Yt = α + β1Xt + β2Xt-1 + ... + βpXt-p + et其中,Yt是被解释变量,Xt是解释变量,β1到βp是与解释变量相关的系数,et是误差项。
模型中的滞后项Xt-1到Xt-p表示X在当前时间以及过去的一段时间内对Y的影响。
分布滞后模型可以用来研究两个或多个变量之间的滞后效应,并帮助研究者了解这些变量之间的动态关系。
分布滞后模型在经济学和社会科学领域中有广泛的应用。
例如,在宏观经济学中,可以用分布滞后模型来研究货币政策对经济增长的长期影响。
在健康经济学中,可以用分布滞后模型来研究疫苗接种对流行病传播的影响。
在社会学研究中,可以用分布滞后模型来研究教育程度对就业机会的影响。
自回归模型是一种基于时间序列的统计模型,用于预测一个变量在时间上的变化。
它的基本形式可以表示为:Yt = α + φ1Yt-1 + φ2Yt-2 + ... + φpYt-p + et其中,Yt是被预测的变量,φ1到φp是自回归系数,et是误差项。
自回归模型假设当前时间的值与过去时间的值有关,并且根据过去时间的值来预测未来时间的值。
自回归模型可以帮助研究者预测变量的趋势和周期性,并提供关于未来值的信息。
自回归模型在经济学和社会科学领域中也有广泛的应用。
例如,在金融学中,可以用自回归模型来预测股票价格的变化。
在气象学中,可以用自回归模型来预测天气变化。
在市场研究中,可以用自回归模型来预测产品销售量。
总之,分布滞后模型和自回归模型是两种常用的时间序列分析方法。
它们可以帮助研究者了解变量之间的滞后效应和趋势,并用于预测未来值。
计量经济学教学大纲计量经济学是经济类专业的核课程之一。
它是以经济理论为基石,以经济数据为基础,运用从概率论与数理统计学中产生的计量经济学方法量化经济变量间的相互关系,以证实或证伪经济理论,提出政策建议或进行政策评价与结构分析,以减少未来经济活动中的不确定性的一门经济学的分支学科。
目前,华中师范大学经济学院所有本科专业均开设了这门课程。
该课程在华中师范大学的课程编号为40320700。
《计量经济学》教学所使用的教材为:李庆华编著《计量经济学》,中国经济出版社,2005年2月,北京。
教学参考书有:1.林少宫译,古扎拉蒂著. 计量经济学. 上下册,北京:中国人民大学出版社,1997 2.林少宫.多元线性回归系数的“其它情况不变”释义. 华中科技大学经济学院,20023.林少宫等.简明经济统计与计量经济. 上海:上海人民出版社,1993年。
4.威谦H.格林著,王明舰等译. 经济计量分析. 北京:中国社会科学出版社,19985.詹姆斯 D. 汉密尔顿[美]著,刘明志译. 时间序列分析. 北京:中国社会科学出版社,1999 6.罗伯特S. 平狄克,丹尼尔L. 鲁宾费尔德箸,钱小军等译. 计量经济模型与经济预测.(th4Edition),北京:机械工业出版社,20037.邹至庄.经济计量学. 北京:中国友谊出版社公司,19888.李子奈. 计量经济学. 北京:高等教育出版社,20009.张晓峒,《计量经济分析》,经济科学出版社,北京:200010.张守一. 市场经济与经济预测. 北京:社会科学文献出版社,200011.张晓峒. 计量经济学软件EV iews应用指南. 天津:南开大学出版社,200312.马薇. 协整理论与应用. 天津:南开南开大学出版社,200413.赵国庆等. 计量经济学. 北京:中国人民大学出版社,200014.刘振亚. 计量经济学教程. 北京:中国人民大学出版社,199715.童光荣. 动态经济模型分析. 武汉:武汉大学出版社,1999根据教学计划本课程的课堂教学课时为72个课时。
第六章动态经济模型:自回归模型和分布滞后模型6.1 (1)错。
(2)对。
(3)错。
估计量既不是无偏的,又不是一致的。
(4)对。
(5)错。
将产生一致估计量,但是在小样本情况下,得到的估计量是有偏的。
(6)对。
6.2对于科克模型和适应预期模型,应用OLS法不仅得不到无偏估计量,而且也得不到一致估计量。
但是,部分调整模型不同,用OLS法直接估计部分调整模型,将产生一致估计值,虽然估计值通常是有偏的(在小样本情况下)。
6.3科克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即:Yt=α+βXt÷β λ Xt-ι ÷β λ2χt.2 +...+ ut其中O<λ<l0这实际上是假设无限滞后分布,由于0<入<1, X的逐次滞后值对Y的影响是逐渐递减的。
而阿尔蒙方法的基本假设是,如果Y依赖于X的现期值和若干期滞后值, 则权数由一个多项式分布给出。
由于这个原因,阿尔蒙滞后也称为多项式分布滞后。
即在分布滞后模型工=α + β0X t + B1X—+∙∙∙ ++ %中,假定:βi =tz0 +tz1z + a2i2 H ------ F a p i p其中P为多项式的阶数。
也就是用一个P阶多项式来拟合分布滞后,该多项式曲线通过滞后分布的所有点。
6.4(1)估计的Y值是非随机变量X1和X2的线性函数,与扰动项v无关。
(2)与利维顿方法相比,本方法造成多重共线性的风险要小一些。
6.5(1)M∣= aγxγ2+ βλγλY t-∕3lχl(l-χ2)Y l.l+ β2γ2R t-β2r2(1 -∕1)R t.l ÷(2 - ∕l—χ2)μt-∖-(1-∕ι )(1-Yι)M t_2÷[u t—(2 —∕1-χ2)〃1 ÷(I -∕ι )(1-Yz )u t-21 其中&)是a、为和72的函数。
(2)第(1)问中得到的模型高度参数非线性,它的参数需采用非线性回归技术来估计。
计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。
答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小n2min。
只有在满足了线性回归模型的古典假设时候,采用OLS才能保证eii1参数估计结果的可靠性。
在不满足根本假设时,如出现异方差,就不能采用OLS。
加权最小二乘法是对原模型加权,对较小残差平方和 2 e赋予较大的权重,对较大i2e赋予较小的权i重,消除异方差,然后在采用OLS估计其参数。
在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法。
最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列。
6、虚拟变量有哪几种根本的引入方式?它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
7、联立方程计量经济学模型中构造式方程的构造参数为什么不能直接应用OLS估计?答:主要的原因有三:第一,构造方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。
2、计量经济模型有哪些应用。
答:①构造分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。
计量经济学-滞后模型复习题第六章分布滞后模型与⾃回归模型⼀、单项选择题1.对于有限分布滞后模型在⼀定条件下,参数i β可近似⽤⼀个关于i 的多项式表⽰(i=0,1,2,….,k ),其中多项式的阶数m 必须满⾜( A )。
A .k m <B k m =C k m >D k m ≥2.设⽆限分布滞后模型tt t t t u X X X Y +++++=-- 22110βββα满⾜库伊克变换的假定,则长期影响乘数为( A ) A .λβ-10 B 0βλk C 011λλ--k D 不能确定3.在分布滞后模型Y t =α+β0X t +β1X t-1+β2X t-2+…+u t 中,短期影响乘数为( D ).A .αβ-11 B.1β C.αβ-11 D.0β4.在⾃适应预期模型和库伊克模型中,假定原始模型的随机扰动项t u 满⾜古典线性回归模型的所有假设,则对于这两个模型中的滞后随机解释变量1-t Y 和误差项*t u ,下列说法正确的有( D )A .0),(,0),(*1**1==--t t t t u u Cov u Y Cov tk t k t t t t u X X X X Y + + + + + + = - - - ββββα 2 2 1 1 0B .0),(,0),(*1**1≠=--t t t t u u Cov u Y Cov C .0),(,0),(*1**1=≠--t t t t u u Cov u Y Cov D .0),(,0),(*1**1≠≠--t t t t u u Cov u Y Cov 5.经济变量的时间序列数据⼤多存在序列相关性,在分布滞后模型中,这种序列相关性就转化为( D )。
A .异⽅差问题 B. 多重共线性问题C .序列相关性问题 D. 设定误差问题6.对⾃回归模型进⾏估计时,假定原始模型的随机扰动项t u 满⾜古典线性回归模型的所有假设,则估计量是⼀致估计量的模型有( B )A .库伊克模型 B. 局部调整模型C ⾃适应预期模型D ⾃适应预期和局部调整混合模型 7.对⾃回归模型进⾏⾃相关检验时,下列说法正确的有()B .使⽤DW 检验时,DW 值往往趋近于0C .使⽤DW 检验时,DW 值往往趋近于2D .使⽤DW 检验时,DW 值往往趋近于48.关于⾃适应预期模型和局部调整模型,下列说法错误的有( C )A .它们都是由某种期望模型演变形成的B .它们最终都是⼀阶⾃回归模型C .它们都满⾜古典线性回归模型的所有假设,从⽽可直接OLS ⽅法进⾏估计D .它们的经济背景不同9.检验⾃回归模型扰动项的⾃相关性,常⽤德宾h 检验,下列命题正确的是()A .德宾h 检验只适⽤⼀阶⾃回归模型B .德宾h 检验适⽤任意阶的⾃回归模型C .德宾h 统计量服从t 分布D .德宾h 检验可以⽤于⼩样本问题10.库伊克模型不具有如下特点( D )A .它要求原始模型为⽆限分布滞后模型,且滞后系数按某⼀固定⽐例递减。
自回归分布滞后模型自回归分布滞后模型(ARIMA)是一种可用于自回归过程的统计建模技术。
它的主要优点是它能够使用时间序列数据预测未来或者检测和调整自回归过程中可能存在的性质变化。
ARIMA是一种重要的时间序列分析技术,它可以用来预测变量的自回归过程(AR),如动量(MA)和季节性过程(I)。
一、什么是自回归分布滞后模型(ARIMA)自回归分布滞后模型(ARIMA)是一种用于分析和预测时间序列数据的统计学方法。
ARIMA模型可以帮助研究者分析并预测事件的发生情况,以及由事件的发生情况产生的结果。
ARIMA模型的结构可以被定义为简单的一般线性二阶拟合模型。
二、ARIMA模型的有效性ARIMA模型通常证明是有效预测时间序列数据的一种有效方法。
无论是实现和应用于单变量和多变量时间序列上,ARIMA模型都可以为研究者提供可靠的预测结果。
在单变量的时间序列数据分析中,ARIMA 模型可以帮助研究者发现一些未知的趋势,从而判断该变量在未来的运动趋势。
三、ARIMA模型的应用ARIMA模型的应用,可以分为零度模型和非零度模型应用。
它们可以应用于单变量时间序列(零度模型)和多变量时间序列(非零度模型)上。
零度模型可以用来描述和预测单变量时间序列,而非零度模型可以用来描述和预测多变量时间序列中变量之间的关系。
此外,ARIMA模型还可以应用于时间序列平滑、广义线性模型、转换型自回归等领域。
四、ARIMA模型的优缺点ARIMA模型的优点是它能够有效地描述时间序列的差异性,可以使用时间序列数据预测未来或者检测已经发生的变化,进而找出时间序列中可能存在的自回归过程的特征,从而可以有效的预测和预测时间序列的发展趋势。
缺点是在使用自回归过程时,数据分析人员必须对变量进行较小的调整,以保持变量在ARIMA模型中是稳定的,而如果调整失败,将无法得到良好的分析结果。