系统分析的基础知识
- 格式:ppt
- 大小:890.00 KB
- 文档页数:36
测量系统分析(MSA)基础知识及操作指导测量系统分析(MSA)操作指导书⼀、⽬的规定测量系统分析和评价⽅法,以及明确测量系统的接收准则,并针对分析状况组织相关改善,从⽽确保测量数据的有效性。
⼆、适⽤范围1.0、公司内任何计量仪器测量系统;2.0、检测设备每次校准/维修纠正之后;3.0、新设备/仪器来⼚校准后;4.0、质量改善数据收集阶段。
三、职责1.0、本⼿册由品质部负责编写及修订;2.0、实验室计量部门负责MSA相关评估及数据收集;3.0、量具使⽤部门须⽆条件配合计量部门对量具进⾏评估;四、相关术语1.0、量具:任何⽤来获得测量结果的装置,包括⽤来测量合格/不合格的装置;2.0、分辨⼒:是仪器可以探测到并如实显⽰的参考值的变化量,也可以称为可读性或分辨率;3.0、测量系统:⽤来获得表⽰产品或过程特性的数值的系统,称之为测量系统,测量系统是与测量结果有关的仪器、设备、软件、程序、操作⼈员、环境等的集合;4.0、偏倚:指同⼀操作⼈员使⽤相同量具,测量同⼀零件之相同特性多次数所得平均值与采⽤更精密仪器测量同⼀零件之相同特性所得之平均值之差,即测量结果的观测平均值与基准值的差值,也就是我们通常所称的“准确度”;5.0、线性:指测量系统在预期的⼯作范围内偏倚的变化;6.0、稳定性:指测量系统在某持续时间内测量同⼀样品或基准的单⼀特性时获得的测量值总变差;7.0、量具重复性:指同⼀个评价⼈,采⽤同⼀种测量仪器,多次测量同⼀零件的同⼀特性时获得的测量值变差;8.0、量具再现性:指由不同评价⼈,采⽤同⼀种测量仪器,多次测量同⼀零件的同⼀特性时获得的测量平均值变差;五、测量系统分析1.0、测量系统分析前,必须确保测量系统处于校准合格情况之下;2.0、偏倚分析偏倚分析采⽤独⽴取样法,具体操作如下:2.1、选取⼀个样品,建⽴可追溯标准的真值或基准值,若⽆样本,则可从⽣产线取⼀个落在中⼼值域的样品当成标准值,且应针对预期测试值的最低值、最⾼值及中程数的标准各取得样本或标准件,每个样本要求单独分析,并利⽤更⾼级别量具对每个样本或标准件测量10次,计算其平均值,并把其当成基准值。
电力系统分析基础知识点总结电力系统分析基础目录稳态部分一.电力系统的基本概念填空题简答题二.电力系统各元件的特征和数学模型填空题简答题三.简单电力网络的计算和分析填空题简答题四.复杂电力系统潮流的计算机算法简答题五.电力系统的有功功率和频率调整1.电力系统中有功功率的平衡2.电力系统中有功功率的最优分配3.电力系统的频率调整六.电力系统的无功功率和频率调整1.电力系统的无功功率平衡2.电力系统无功功率的最优分布3.电力系统的电压调整暂态部分一.短路的基本知识1.什么叫短路2.短路的类型3.短路产生的原因4.短路的危害5.电力系统故障的分类二.标幺制1.数学表达式2.基准值的选取3.基准值改变时标幺值的换算4.不同电压等级电网中各元件参数标幺值的计算三.无限大电源1.特点2.产生最大短路全电流的条件3.短路冲击电流im4.短路电流有效值Ich四.运算曲线法计算短路电流1.基本原理2.计算步骤3.转移阻抗4.计算电抗五.对称分量法1.正负零序分量2.对称量和不对称量之间的线性变换关系3. 电力系统主要元件的各序参数六.不对称故障的分析计算1.单相接地短路2.两相短路3.两相接地短路4.正序增广网络七.非故障处电流电压的计算1.电压分布规律2.对称分量经变压器后的相位变化稳态部分一一、填空题1、我国国家标准规定的额定电压有 3kv 、6kv、 10kv、 35kv 、110kv 、220kv 、330kv、 500kv 。
2、电能质量包含电压质量、频率质量、波形质量三方面。
3、无备用结线包括单回路放射式、干线式、链式网络。
4、有备用界结线包括双回路放射式、干线式、链式、环式、两端供电网络。
5、我国的六大电网:东北、华北、华中、华东、西南、西北。
6、电网中性点对地运行方式有:直接接地、不接地、经消弧线圈接地三种,其中直接接地为大接地电流系统。
7、我国110kv及以上的系统中性点直接接地,35kv及以下的系统中性点不接地。
系统分析方法
系统分析是指对一个系统进行研究、分析和评估的过程,以便了解其运作方式、结构和行为。
系统分析方法是指在进行系统分析时所采用的一系列技术、工具和方法论。
在信息技术领域中,系统分析方法被广泛应用于软件开发、信息系统设计等方面,它有助于确保所开发的系统能够满足用户需求,具有高效性和可靠性。
首先,系统分析方法包括需求分析和系统设计两个主要阶段。
需求分析阶段旨
在确定系统的功能需求和非功能需求,包括用户的需求、系统的约束条件等。
而系统设计阶段则是根据需求分析的结果,设计出系统的结构、模块、界面等方面的具体方案。
其次,系统分析方法还包括了一系列工具和技术,如数据流图、实体关系图、
结构化分析等。
这些工具和技术可以帮助分析人员更好地理解系统的运作方式,找出系统中存在的问题,并提出改进方案。
此外,系统分析方法还注重对用户需求的准确理解和表达。
在系统分析的过程中,分析人员需要与用户进行充分的沟通,确保对用户需求的理解是准确的,以避免在后期系统开发过程中出现需求不匹配的情况。
在实际应用系统分析方法时,还需要考虑到系统的可行性、成本效益等因素。
系统分析人员需要综合考虑技术、经济、法律、社会等方面的因素,以确保所设计的系统是可行的、具有可持续性的。
综上所述,系统分析方法是一个系统工程中至关重要的环节,它能够帮助我们
更好地理解和设计复杂系统,满足用户需求,提高系统的质量和效率。
因此,我们需要不断学习和掌握各种系统分析方法,以不断提升自身的分析能力和水平。
测量系统分析基础知识详解名目第1章量测系统介绍1.1 概述、目的、术语 11.2 量测系统之统计特性 21.3 量测系统的标准 31.4 量测系统的通则 31.5 选择/制定检定方法 3 第2章量测系统之评判2.1概述 52.1.1鉴别力 52.1.2量测系统变异的类型72.2量测系统分析82.2.1再现性82.2.2再生性92.2.3零性间变异102.2.4偏性102.2.5稳固性112.2.6线性132.2.7范例说明152.3量测系统研究之预备202.4计量值量测系统之研究212.4.1稳固性之准则212.4.2偏性之准则212.4.2.1独立取样法212.4.2.2图表法222.4.2.3分析232.4.3再现性与再生性之准则232.4.3.1全距法232.4.3.2平均值与全距法232.4.3.2.1执行研究242.4.3.2.2图表分析262.4.3.2.3运算及研究342.4.3.3变异数分析法382.5量具绩效曲线432.6计数值量具研究472.6.1短期法472.6.2长期法48 第3章附录3.1标准常态分配表523.2常数表543.3如何适当的选用量测系统分析流程553.4表格56量测系统分析3.0版(Measurement System Analysis)第1章量测系统介绍1.1概述、目的、术语1.1.1概述我们明白,一个制程的状况必须经由量测来猎取相关信息,因此量测数据将会决定制程是否应被调整,假如统计结果,制程超出管制界限,即制程能力不足时,则须对制程作某些调整,否则,制程将会在无调剂的状态下运作。
量测数据的另一用途是能够检视二个或更多变异彼此之间是否存在某种关系性,如塑料件的尺寸将与进料温度有关。
因此,量测数据的品质关于制程分析结果占有相当重要的因素,为了确保分析结果不致对制程误判,就必须重视数据的品质。
量测数据品质与制程是否在稳固状况下所获得的多种量测有关,若在稳固状况下所获得某一特性的量测数据,其结果”近似于”该特性的标准值,则数据品质可谓”高”;若某些或全部数据偏离标准值甚远,则数据品质可谓”低”。
电力系统分析基础知识点总结电力系统分析是电力工程中重要的一部分,它涉及到电力系统的运行、规划和优化等方面。
本文将对电力系统分析的基础知识点进行总结,包括电力系统的组成、电力系统的稳态分析和暂态分析等内容。
一、电力系统的组成电力系统由发电厂、输电网和配电网组成。
发电厂负责将能源转换为电能,输电网负责将电能从发电厂输送到各个用电点,配电网负责将电能分配给最终用户。
1. 发电厂:发电厂根据能源的不同可以分为火力发电厂、水力发电厂、核能发电厂等。
发电厂的主要设备包括发电机、锅炉、汽轮机等。
2. 输电网:输电网主要由高压输电线路、变电站和配电站组成。
高压输电线路用于将电能从发电厂输送到各个变电站,变电站负责将电能从高压输电线路转换为适合分配的电压,配电站则将电能分配给最终用户。
3. 配电网:配电网主要由低压配电线路和变压器组成。
低压配电线路将电能从配电站输送到各个用户,变压器则负责将电能从高压转换为低压。
二、电力系统的稳态分析电力系统的稳态分析是指在电力系统运行稳定的情况下,对电力系统进行分析和计算。
稳态分析主要包括功率流分析、电压稳定分析和短路分析等。
1. 功率流分析:功率流分析是指在电力系统中计算各个节点的电压、功率和功率因数等参数的过程。
通过功率流分析可以确定电力系统中各个节点的电压稳定性和负荷分配情况。
2. 电压稳定分析:电压稳定分析是指在电力系统中计算各个节点的电压稳定性的过程。
电压稳定性是指电力系统中各个节点的电压是否能够保持在合理的范围内,不会出现过高或过低的情况。
3. 短路分析:短路分析是指在电力系统中计算短路电流和短路电压的过程。
短路电流是指在电力系统中发生短路故障时,电流的大小;短路电压是指在电力系统中发生短路故障时,电压的大小。
三、电力系统的暂态分析电力系统的暂态分析是指在电力系统发生突发故障或扰动时,对电力系统进行分析和计算。
暂态分析主要包括过电压分析、过电流分析和电力系统的稳定性分析等。
测量系统分析(MSA)基础知识及操作指导在进行MSA之前,需要明确测量系统的目标,例如测量系统是否要用
于决策、控制过程或产品规范。
这将决定需要评估哪些方面的测量系统性能。
主要的MSA指标包括可重复性、再现性和准确性。
可重复性是指在相
同条件下,同一测量人重复测量同一件物品时,测量结果的一致性。
再现
性是指在相同条件下,不同测量人重复测量同一件物品时,测量结果的一
致性。
准确性是指测量结果与真实值之间的偏差,通常通过与已知参考值
进行比较来评估。
进行MSA的一种常用方法是通过使用方差分析(ANOVA)来评估测量
系统的偏差和变异。
这涉及到对多个测量人、多个测量仪器和多个样本进
行测量,并使用统计工具来分析数据。
ANOVA可以帮助确定是否存在系统
误差、测量人和仪器之间的差异以及这些差异对测量结果的影响。
进行MSA时,还需要确保测量系统的稳定性。
这意味着测量仪器应该
经过校准和维护,以确保其在测量过程中的稳定性和精确性。
此外,测量
人员也需要受过培训和了解测量程序,以减少人为误差。
基于MSA的结果,可以采取相应措施来改善测量系统的性能。
例如,
如果发现测量仪器存在较大的偏差,则可能需要调整或更换仪器。
如果发
现测量人员之间存在较大的差异,则可能需要对其进行培训或重新分配任务。
总之,测量系统分析(MSA)是一个评估测量系统性能的重要工具,
可用于确保测量结果的准确性和可靠性。
通过对测量系统进行分析和改进,可以提高质量控制和过程改进的效果,进而提高产品或服务的质量。
电力系统分析基础知识一、电力系统的基本概念No.1 电力系统的组成和接线方式1、电力系统的四大主要元件:发电机、变压器、电力线路、负荷。
2、动力系统包括动力部分(火电厂的锅炉和汽轮机、水电厂的水库和水轮机、核电厂的核反应堆和汽轮机)和电力系统。
3、电力网包括变压器和电力线路。
4、用户只能从一回线路获得电能的接线方式称为无备用接线方式。
No.2 电力系统的运行特点1、电能的生产、传输、分配和消费具有:①重要性、②快速性、③同时性。
2、电力系统运行的基本要求:①安全可靠持续供电(首要要求)、②优质、③经济3、根据负荷的重要程度(供电可靠性)将负荷分为三级。
4、电压质量分为:①电压允许偏差、②三相电压允许不平衡度、③公网谐波、④电压允许波动与闪变5、衡量电能质量的指标:①电压、②频率、③波形(电压畸变率)6、10kV公用电网电压畸变率不超过4%。
7、抑制谐波的主要措施:①变压器星三角接线、②加装调谐波器、③并联电容/串联电抗、④增加整流器的脉冲次数8、衡量电力系统运行经济性的指标:①燃料损耗率、②厂用电率、③网损率9、线损包括:①管理线损、②理论线损、③不明线损10、线损计算方法:①最大负荷损耗时间法②最大负荷损失因数法③均方根电流法No.3 电力系统的额定频率和额定电压1、电力线路的额定电压(也称电力网的额定电压)与用电设备的额定电压相同。
2、正常运行时电力线路首端的运行电压常为用电设备额定电压的105%,末端电压为额定电压。
3、发电机的额定电压比电力网的额定电压高5%。
4、变压器的一次绕组相当于用电设备,其额定电压与电力线路的额定电压相同;但变压器直接与发电机相连时,其额定电压与发电机额定电压相同,即为该电压级额定电压的105%。
5、变压器的二次绕组相当于电源,其输出电压应较额定电压高5%,但因变压器本身漏抗的电压损耗在额定负荷时约为5%,所以变压器二次侧的额定电压规定比额定电压高10%。
6、降压变压器二次侧连接10kV线路,当短路电压百分比小于7.5%(变压器本身漏抗的电压损耗较小)时,比线路额定电压高5%。
系统分析的名词解释系统分析是一种重要的方法论,被广泛应用于各种领域,包括工程、管理、信息技术等。
它通过对现实世界中的系统进行观察、分析和优化,从而改进问题解决的效率和质量。
本文将对系统分析的概念、目标、方法、工具等方面进行了解释和分析。
一、概述系统分析是指对现实世界中的系统进行系统性、科学性的分析。
所谓系统,是指由相互关联的组成部分和相互作用方式构成的整体。
系统分析的核心是关注系统的结构、功能、交互、约束和效果等方面,以全面理解和改进系统。
二、目标1. 理解系统:系统分析旨在深入理解系统的本质、结构和功能,并发现其中的规律和关系。
通过对系统各个组成部分的研究和分析,可以更准确地把握系统的运行机制和演化趋势。
2. 发现问题:系统分析的一个重要目标是发现系统中潜在的问题和矛盾。
通过对系统各个环节的评估和定量分析,可以发现系统的瓶颈和薄弱环节,为后续的改进提供依据。
3. 优化系统:系统分析的最终目标是通过优化系统的结构、流程、资源配置等方面,提高系统的性能和效率。
通过对现有系统的诊断和评估,可以找到系统改进的关键点,并制定相应的改进措施。
三、方法系统分析是一个复杂而综合的过程,包括观察、记录、建模、分析、预测和优化等环节。
具体方法主要包括:1. 观察方法:通过对系统的实地观察,获取系统的输入、输出、行为和特点等信息。
观察可以采用直接观察或间接观察的方式,通过观测系统的运作状态,揭示系统中存在的问题和矛盾。
2. 记录方法:在系统分析过程中,及时准确地记录相关数据和信息是至关重要的。
通过采用现代技术手段,如录像、摄影、录音等,可以更全面地记录系统的运行状态。
3. 建模方法:系统分析需要对系统进行抽象和模型化的过程,以便更好地理解和分析系统。
建模方法可以采用流程图、数据流图、状态转换图等工具,以形象直观的方式展示系统的结构和流程。
4. 分析方法:通过对系统输入、输出、功能、效果等方面进行分析,找出系统中的问题和矛盾,确定改进的方向和关键点。