《信号与系统基础及应用》第1章 信号与系统基础知识
- 格式:pptx
- 大小:6.07 MB
- 文档页数:93
第1章 信号与系统的基本概念1.1 引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。
我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。
我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。
更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。
我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。
例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。
系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。
很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。
隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。
信号用函数表示,可以是数学表达式,或是波形,或是数据列表。
在本课程中,信号和函数的表述经常不加区分。
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。
系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。
这些区别导致分析方法的重要差别。
本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。
例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。
为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。
信号与系统基础知识嘿,朋友们!今天咱来聊聊信号与系统基础知识这玩意儿。
你说信号像不像我们生活中的各种消息呀?就好比你和朋友之间说的话,或者手机收到的通知,这都是信号呢!而系统呢,就像是一个大管家,专门来处理这些信号。
比如说家里的电路系统吧,电就是一种信号,那些电线、开关啥的就是系统的一部分。
电信号通过电线跑来跑去,开关就像个小指挥官,决定啥时候让电通过,啥时候不让。
再想想我们的手机,手机接收的各种信息也是信号呀,而手机本身就是一个超级复杂的系统。
它得把接收到的信号处理得妥妥当当,然后再以我们能看懂的方式呈现出来,比如屏幕上显示的画面或者发出的声音。
那信号与系统的知识有啥用呢?这用处可大了去啦!没有这些知识,那些高科技的玩意儿咋能做得出来呢?就像盖房子得先有稳固的地基一样,信号与系统就是科技大厦的根基呀!你想想,如果工程师们不懂信号与系统,那通信设备能好用吗?我们打电话的时候岂不是会乱套,说不定这边说的话到那边就变成外星人语啦!还有那些智能家电,要是没有对信号与系统的深入理解,它们怎么能乖乖听我们的指挥呢?学习信号与系统就像是打开了一扇通往神奇科技世界的大门。
你可以了解到信号是怎么传播的,系统是怎么工作的。
这就好像你知道了魔术背后的秘密,是不是很有意思呢?而且哦,这可不是什么高深莫测、遥不可及的东西。
就像我们每天走路、吃饭一样自然,只要用心去学,肯定能搞明白。
比如说,信号的频率就像是人的心跳速度,不同的频率就代表着不同的“性格”。
有的信号频率高,就像个急性子,跑得飞快;有的信号频率低,就像个慢性子,慢悠悠的。
再看看那些滤波器,它们就像是个筛子,把有用的信号留下来,把没用的信号给筛掉。
这多神奇呀!总之呢,信号与系统基础知识是个超级有趣又超级有用的东西。
我们生活中的好多高科技都离不开它呢!大家可别小瞧了它,好好去探索一番,说不定你会发现一个全新的世界呢!这可不是我在吹牛哦,不信你自己去试试看!。
信号与系统知识点信号与系统是电子工程及相关学科中的重要基础知识,其主要研究对象是信号的产生、传输、处理和分析,以及系统的特性和响应。
本文将探讨一些与信号与系统相关的重要知识点。
一、信号的分类信号是信息的表达方式,可以分为连续信号和离散信号。
连续信号是在时间和幅度上都是连续变化的,如模拟音频信号。
离散信号则是在时间或幅度上存在着间隔,如数字音频信号。
二、信号的表示和性质信号可以用数学函数进行表示,常见的信号类型有周期信号和非周期信号。
周期信号以某种周期性重复出现,如正弦信号;非周期信号则无规则的重复性。
信号还具有幅度、频率和相位等性质,这些性质对信号的分析和处理非常重要。
三、系统的响应系统是对输入信号做出某种处理的过程,系统的响应可以分为时域响应和频域响应。
时域响应是指系统对输入信号随时间的响应过程,可以通过巴特沃斯滤波器等工具进行分析。
频域响应则是指系统对不同频率的输入信号的响应情况,可以通过傅里叶变换等方法进行分析。
四、系统的特性系统的特性是描述系统行为的重要指标,主要包括线性与非线性、时不变与时变、稳定与不稳定等。
线性系统具有叠加性和比例性,输入和输出之间存在着线性关系;非线性系统则没有这种特性。
时不变系统的性质不随时间变化,稳定系统的输出有界且收敛于有限值,而不稳定系统则可能产生无界的输出。
五、卷积与相关卷积和相关是信号与系统分析中常用的运算符号。
卷积表示两个信号的叠加与重叠,它可以用于系统的输入与输出之间的关系描述。
相关则是通过计算信号之间的相似性,用于信号的匹配与识别。
六、傅里叶变换傅里叶变换是信号与系统分析中最重要的数学工具之一。
它可以将信号从时域转换到频域,使得信号的频率特性更加清晰。
傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,分别适用于连续信号和离散信号的频域分析。
七、采样与重构采样和重构是数字信号处理中常用的技术。
采样是将连续信号转换为一系列离散的采样点,重构则是通过这些离散采样点还原出原始信号。
第一章课后作业解答1-3粗略画出下列各序列的图形。
(5)1()2(1)n x n u n −=−解:因为11,12,1(1)()0,10,1n n n u n x n n n −≥⎧≥⎧−=⇒=⎨⎨<<⎩⎩,其图形如下所示1-5 说明下列函数的信号是周期信号还是非周期信号?若是周期信号,求周期T 。
(1) asint-bsin3t (3)asin4t+bcos7t判断准则:两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
有理数:也即分数,包括:正、负整数;正、负分数;零。
怎么求分数的最小公倍数:先通分,然后求两个分子的最小公倍数,然后通分后的分母做最小公倍数的分母,分子的最小公倍数做分子,所得的分数就是要求的最小公倍数了。
比如:22626[,][,]213333===, 127428[,][,]227141414=== 解:(1)asint 是周期信号,周期为: T1= 2π/1=2π,bcos3t 也是周期信号,其周期为: T2= 2π/3,由于T1/T2=3为有理数,故为asint-bsin3t 周期信号,其周期为T1和T2的最小公倍数2π。
(3)asin4t 是周期信号,周期为: T1= 2π/4=π/2bcos7t 也是周期信号,其周期为: T2= 2π/7由于T1/T2=7/4为有理数,故为asint-bsin3t 周期信号,其周期为T1和T2的最小公倍数2π。
1-6:判断下示各序列是否是周期性的?如果是周期性的,试确定其周期。
(1)3x(n)=Acos()78n π−, (2) 8x(n)=j n e π−, (3) ()8x(n)=n j e π−−对于连续的正弦/余弦信号,抽样得到的离散序列信号未必是周期序列,对于形如0()sin()x n A w n φ=+,0()cos()x n A w n φ=+和0()()j w n x n e ϕ+=的离散序列而言,其周期性判断准则如下: (1)当02Pw Qπ=为有理数时(P 、Q 为互素的整数),x(n) 为周期性且周期为P. (2)当02Pw Qπ=为无理数时,x(n)为非周期性序列 解:(1)022143/73w πππ==为无理数,x(n)为非周期性序列 (2)02216/8w πππ==为有理数,x(n)为周期性序列,其周期为16 (3)022161/8w πππ==为无理数,x(n)为非周期性序列 1-10应用冲激信号的筛选特性(又称抽样特性),求下列各表达式的函数值。
考研《信号与系统》考研重点考点归纳第1章信号与系统1.1考点归纳一、信号的描述及分类1.信号的定义信号是指消息的表现形式与传送载体。
2.信号的分类及特性(1)确定信号与随机信号确定信号:由确定系统产生、具有确定参数、按确定方式变化的信号。
随机信号:具有不可预知的不确定性信号。
实际中的信号绝大部分都是随机信号。
(2)连续信号与离散信号连续信号:在定义的时间区域内任意时间点上都有定义的信号。
离散信号:只在某些不连续时间值上给定函数值的信号。
(3)周期信号与非周期信号周期信号:=,n∈Z非周期信号:≠,n∈Z(4)奇信号与偶信号偶信号:或。
奇信号:或。
任何信号=一个偶信号+一个奇信号,其中偶部和奇部分别为:(5)功率信号与能量信号功率信号:信号平均功率为非零的有限值。
能量信号:信号总能量为非零的有限值。
3.信号的能量与功率表1-1 能量与功率计算公式说明:(1)总能量有限的信号,平均功率为零;(2)平均功率有限的信号,能量无穷大。
二、信号的运算1.信号的相加与相乘同一时刻两信号之值对应相加减乘:或2.信号的延时信号延时后的信号:式中,>0,波形在保持信号形状不变的同时,右移的距离;<0则向左移动。
3.信号的反褶与尺度变换(1)信号的反褶形式:,波形对称于纵坐标轴的反褶。
(2)信号的尺度变换形式:,有以下规则:①,波形为的波形在时间轴上压缩为原来的;②,波形为的波形在时间轴上扩展为原来的。
③,波形为的波形反转并压缩或展宽至。
4.形如的波形变换(1)先向右(左)平移b个单位,再在此基础上压缩或扩展原来的;(2)先压缩或扩展原来的,再向右(左)平移个单位。
三、指数信号与正弦信号1.连续时间复指数信号与正弦信号连续时间复指数信号具有如下形式:其中C和α一般为复数。
(1)实指数信号实指数信号:C和α都是实数的x(t)。
α的正负对波形的影响:①若α是正实数,x(t)随t的增加而呈指数增长;②若α是负实数,x(t)随t的增加而呈指数衰减。
信号与系统基础知识 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 信号与系统的基本概念引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。
我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。
我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。
更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。
我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。
例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。
系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。
很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。
隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。
信号用函数表示,可以是数学表达式,或是波形,或是数据列表。
在本课程中,信号和函数的表述经常不加区分。
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。
系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。
这些区别导致分析方法的重要差别。
本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。
例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。