(完整版)信号与系统的理解与认识
- 格式:doc
- 大小:566.03 KB
- 文档页数:4
信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统概念总结信号与系统是计算机科学中非常基础和重要的研究领域之一,涵盖了许多不同的概念和技术,包括信号处理、图像处理、控制系统、通信系统等。
本文将总结信号与系统的概念,并对其进行拓展。
1. 信号与系统的概念信号是指一组时间序列数据,可以是离散的或连续的,可以是周期性的或非周期性的。
信号可以用于描述各种物理系统,如音频、视频、电磁波等。
系统是指由一组相互作用的物理量组成的系统,这些物理量可以用于控制和调节系统的行为。
系统可以是线性的或非线性的,具有输入和输出,可以用于描述各种实际系统,如控制系统、通信系统、光学系统等。
信号与系统是一个广泛的研究领域,涉及到许多不同的概念和技术,包括滤波器、变换器、放大器、抗干扰技术、时域和频域分析、自适应控制等。
2. 信号与系统的应用信号与系统在计算机科学中有许多应用,包括音频处理、图像处理、通信系统、计算机视觉、机器学习等。
在音频处理中,信号与系统可以用于处理音频信号,包括降噪、均衡、压缩等。
在图像处理中,信号与系统可以用于图像增强、图像分割、目标检测等。
在通信系统中,信号与系统可以用于调制、解调、信道均衡等。
在计算机视觉中,信号与系统可以用于图像识别、目标跟踪、人脸识别等。
3. 信号与系统的发展趋势随着计算机科学的不断发展,信号与系统也在不断发展。
未来,信号与系统将继续在音频处理、图像处理、通信系统、计算机视觉、机器学习等领域发挥重要作用。
未来,信号与系统的发展趋势包括以下几个方面:(1)非线性系统的研究:随着计算机技术的发展,非线性系统已经成为信号与系统研究的重要方向,非线性系统的研究将更加深入。
(2)自适应控制的研究:自适应控制技术是信号与系统研究中的重要方向,未来自适应控制技术将得到更加广泛的应用。
(3) 多模态信号与系统的研究:多模态信号与系统可以用于处理多种不同类型的信号,未来多模态信号与系统的研究将得到更多关注。
(4) 数字信号处理的研究:数字信号处理技术是信号与系统研究的重要方向,未来数字信号处理技术将得到更加广泛的应用。
信号与系统总结一、信号与系统的基本概念信号是指随时间或空间变化而变化的物理量,可以用数学函数表示。
信号可以分为连续信号和离散信号两种类型。
系统是指将一个输入信号转换为一个输出信号的过程,可以用数学函数或者图形表示。
二、时域分析时域分析是对信号在时间上的变化进行分析。
其中包括对连续信号和离散信号的时域分析方法。
连续信号的时域分析方法主要有时域图像法、傅里叶级数法、拉普拉斯变换法等;离散信号的时域分析方法主要有离散时间傅里叶级数法、离散傅里叶变换法等。
三、频域分析频域分析是对信号在频率上的特性进行研究。
其中包括对连续信号和离散信号的频域分析方法。
连续信号的频域分析方法主要有傅里叶变换法、拉普拉斯变换法等;离散信号的频域分析方法主要有离散傅里叶变换法等。
四、滤波器设计滤波器是一种能够改变输入信号特性的系统。
根据滤波器的传递函数可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器设计的主要目的是根据所需的频率响应,确定合适的滤波器类型和参数。
五、采样与重构采样是指将连续信号转换为离散信号的过程。
重构是指将离散信号转换为连续信号的过程。
采样定理规定了采样频率必须大于等于信号最高频率两倍才能保证无失真地还原原始信号。
六、时域与频域之间的转换时域和频域之间可以通过傅里叶变换进行转换。
连续信号可以通过傅里叶变换转换到频域,离散信号可以通过离散傅里叶变换进行转换。
七、控制系统基础控制系统是一种能够对输出进行调节以达到期望目标的系统。
其中包括开环控制系统和闭环控制系统两种类型。
闭环控制系统具有更好的稳定性和精度,因此在实际应用中更加广泛。
八、小结信号与系统作为电子信息学科的基础课程,是掌握电子信息学科的重要基础。
信号与系统的基本概念、时域分析、频域分析、滤波器设计、采样与重构、时域与频域之间的转换以及控制系统基础都是信号与系统课程中需要掌握的重要内容。
信号与系统基础知识 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 信号与系统的基本概念引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。
我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。
我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。
更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。
我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。
例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。
系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。
很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。
隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。
信号用函数表示,可以是数学表达式,或是波形,或是数据列表。
在本课程中,信号和函数的表述经常不加区分。
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。
系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。
这些区别导致分析方法的重要差别。
本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。
例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
信号与系统摘要:信号与系统是电子工程、通信工程、自动化等领域中的重要基础课程,它研究的是信号的特征、信号的传输、信号的处理以及系统对信号的响应等问题。
本文将从信号与系统的基本概念、信号的分类、信号的传输与处理以及系统的特性等方面展开论述,旨在帮助读者更好地理解和应用信号与系统的相关知识。
一、引言信号与系统作为电子工程、通信工程、自动化等领域中的一门重要课程,是相关专业学习的基础。
信号与系统研究的是信号的特征、信号的传输和处理,以及系统对信号的响应。
信号与系统的学习对于我们理解和应用相关领域的知识具有重要意义。
二、信号的基本概念信号是对所研究对象状态或信息的某种表示。
信号可以是连续的,也可以是离散的。
连续信号是指在时间上连续变化的信号,而离散信号是指在时间上以一定的间隔取样的信号。
信号可以是模拟的,也可以是数字化的。
模拟信号是以连续形式存在的信号,而数字信号是以离散形式存在的信号。
在信号的表示中,常用的数学函数包括正弦函数、余弦函数和指数函数等。
三、信号的分类根据信号的形式和表示方式,信号可以分为几类。
最常见的分类是连续信号和离散信号。
另外,根据信号的能量和功率特性,信号可以分为能量信号和功率信号。
能量信号是指有限时间内能量有限的信号,而功率信号是指平均功率有限的信号。
此外,信号还可以按照周期性和非周期性分类,周期性信号在一定时间上重复出现,非周期性信号则没有这种规律性。
四、信号的传输与处理信号的传输是指信号从发送端经过传输媒介到达接收端的过程。
在信号传输过程中,可能会遇到噪声、失真等问题,因此需要对信号进行处理。
信号处理包括滤波、采样、量化、编码等过程,旨在提高信号的质量和可靠性。
滤波是对信号进行频率选择的操作,采样是将连续信号转换为离散信号的过程,量化是对信号幅度进行离散化处理的过程,编码则是对信号进行数字化表示的过程。
五、系统的特性系统是对信号进行处理和响应的装置或过程。
系统可以是线性的或非线性的,线性系统的特点是满足叠加原理,即输入信号和输出信号之间存在线性关系。
1.《信号与系统》这门课程主要讲述什么内容?《信号与系统》是一门重要的专业基础课程。
它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。
分析系统对信号的响应一个任务连续时间系统两种系统离散事件系统主要时域法内两类方法容变换域法傅里叶变换三大变换拉斯变换Z变换2.这门在我们的知识架构中占有什么地位?是一门承上启下的重要的专业基础课程。
其基本概念和方法对所有的专业都很工科重要。
信号与系统的分析方法的应用范围一直不断的在扩大。
信号与系统不仅仅是工科教育中一门最基本的课程,而且能够成为工科类学生最有益处而又引人入胜又最有用处的一门课程。
《信号与系统》是将我们从电路分析的知识领域引入信号处理与传输领域的关键性课程。
《高等数学》《通信原理》《线性代数》《信号与系统》《数字信号处理》《复变函数》《自动控制原理》《电路分析》·学习这门课程有什么用处?3.学习这门课程有什么用处呢?百度告诉我:通过本课程的学习,学生将理解信号的函数表示与系统分析方法,掌握连续时间系和离散时间系统的时域分析和频域分析,连续时间系统的S 域分析和散时间系统的Z分析,以及状态方程与状态变量分析法等相关内容。
通过上机实验,使学生掌握利用计算机进行信号与系统分析的基本方法加深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。
在百度上和道客巴巴还有知乎上都是很多这样看起来很高大上的解释,但是作为学生的我还是不能很清楚的了解到学习这门课程有什么用处,后面我发现了这样一个个例子,觉得对信号与系统的用处有了一定的了解。
设计的呢?如图这样一个轮子是怎么,就是很神奇的一个轮子,交通工具)(打印有可能打印不出来没学过信号与系统的小明想到了反馈与系统,在轮子上放一个传感器,轮子正不正系统就知道了,所以设计这个轮子其实就是设计一个系统。
名词解释1.系统:由若干相互关联、相互作用的事物按一定规律组合而成的具有某种功能的整体。
2.连续系统:当系统的输入是连续时间信号时,若系统的输出也是连续时间信号,则称该系统为连续系统。
3.连续信号:在连续时间范围内(—∞<t<∞)有定义的信号。
4.系统的时域分析:若求解系统响应的整个过程是在时间域里进行的,则为系统的时域分析。
5.线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统为线性系统;否则,为非线性系统。
6.时不变系统:如果激励作用于系统引起零状态响应时,当激励延迟了一定时间后作用于系统时,其引起的零状态响应也延迟了相同时间的系统。
它具有微分特性和积分特性。
7.系统建模:根据实际系统的结构、元件特性,利用有关基本定律寻找能表征系统特征的数学关系式。
8.阶跃响应:当激励为单位阶跃函数时,系统的零状态响应为单位阶跃响应。
9.网络输出阻抗:将激励源置零保留激励源为阻抗,此时输出口得等效阻抗为网络输出阻抗。
10.谐振电路的选择性:若串联谐振电路中有不同频率的电源同时作用时,则接近谐振频率的电流成分将较大,而偏离谐振频率的电流成分则较小,由此可将谐振频率附近的电流成分选择出来。
11.线性性质包含的两个内容:齐次性:当激励增大a倍时,零状态响应也增大a倍。
叠加性:当多个激励作用于系统时,其零状态等于各激励单独作用时所引起的零状态响应之和。
12.零状态线性:如果零状态响应,既满足齐次性,又满足叠加性,为零状态线性。
13.自由响应(固有响应):仅依赖于系统本身的特性,而与激励的函数形式无关的齐次解的函数形式。
14.强迫响应:由激励确定特解的函数形式。
15.单位冲激响应:当激励为冲激函数δ(t)时,系统的零状态响应称为单位冲激响应。
系统的冲激响应与该系统的零输入响应具有相同的函数形式。
16.求系统的冲击函数步骤:一、选新变量y(t),使它满足的微分方程在等号右端只含有f(t);二、根据线性时不变系统零状态响应的线性性质和微分特性,即可求出系统的冲激函数。
信号与系统---基本概念⼀、系统理论概念1、信号:信号是信息和能量的载体。
2、系统:系统⽤来对信号并因此也对信息和能量进⾏处理;3、信息:信息是⼀种知识内容,这种知识的物理体现(知识表现)就是信号;4、抽象的系统:为了进⾏系统研究,需要使⽤⼀个数学模型。
已经表明,在采⽤抽象的数学公式进⾏描述时,许多表⾯上不同的系统都表现为相同的形式。
系统理论的巨⼤优势就在于这种数学上的抽象概括。
因此不同专业领域的⼈就可以说同⼀种语⾔,并且能够共同地处理⼀项任务。
由于这个原因,系统理论具有了中⼼的地位。
抽象理论的另⼀个优点是,对系统进⾏描述,与系统的实际实现⽆关。
系统理论是⼀个思想流派,它允许:进⾏更⼴义的思考;把外来的解决⽅案应⽤到其他问题上。
5、数学模型:⼀个真实系统的数学模型是⼀组数学⽅程。
为了能够脱离物理意义⽽⼯作,常常是采⽤定标的,⽆量纲形式对信号进⾏记录的。
为了使数学上的⼯作量保持在可控的范围内,在模型中只对实际系统中需要关注的主要部分进⾏映像变换。
因此简单化的模型不再与实际样本相符。
但是,只要模型能够为真实系统的特征提供有⽤的解释和预测,这样的由于简化⽽带来的不符合也就⽆关紧要了。
否则就必须使模型得到逐步完善。
从原则上讲,⼀个模型应当尽可能简单,⽽且只要在必要时才是复杂的。
在应⽤⽅⾯,最为困难的部分是建模。
⾄于⼀个模型是否能够精确地解决⼀个具体课题,就只能通过经验回答这个问题了。
可以通过仿真对模型的特征与实际系统的特征进⾏⽐较。
但是为此需要对各种物理关系有深⼊的认识。
系统理论做为纯粹的数学学科不能对这种物理诠释提供⽀持。
因此,系统理论也只不过是⼀种⼯具(尽管是⼀种引⼈⼊胜的强⼤⼯具)⽽已,绝不可能使使⽤者摒弃其原专业领域坚实的专业知识。
系统理论在电⽓技术⽅⾯的主要应⽤领域是通信技术、调节技术和测量技术。
这些专业的典型特征是抽象并侧重理论,⽽且理论具有通⽤性。
对于应⽤⽽⾔,除了理论以外,在理论应⽤过程中所获得经验也是必要的。
信号与系统基础知识 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 信号与系统的基本概念引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。
我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。
我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。
更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。
我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。
例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。
系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。
很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。
隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。
信号用函数表示,可以是数学表达式,或是波形,或是数据列表。
在本课程中,信号和函数的表述经常不加区分。
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。
系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。
这些区别导致分析方法的重要差别。
本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。
例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。
(完整版)信号与系统知识点整理第一章1.什么是信号?是信息的载体,即信息的表现形式。
通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。
2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。
4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与非周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。
6.离散信号:只在某些离散的时刻或位置才有定义的信号。
通常考虑自变量取等间隔的离散值的情况。
7.确定信号:任何时候都有确定值的信号。
8.随机信号:出现之前具有不确定性的信号。
可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。
9.能量信号的平均功率为零,功率信号的能量为无穷大。
因此信号只能在能量信号与功率信号间取其一。
10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。
(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。
对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。
例:测试电路的瞬态响应。
13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。
要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。
15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。
1.《信号与系统》这门课程主要讲述什么内容?
《信号与系统》是一门重要的专业基础课程。
它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。
2.
这门在我们的知识架构中占有什么地位? 是一门承上启下的重要的专业基础课程。
其基本概念和方法对所有的
工科专业都很重要。
信号与系统的分析方法的应用范围一直不断的在扩大。
信号与系统不仅仅是工科教育中一门最基本的课程,而且能够成为工科类学生最有益处而又引人入胜又最有用处的一门课程。
《信号与系统》是将我们从电路分析的知识领域引入信号处理与传输领域的关键性课程。
3.学习这门课程有什么用处?
学习这门课程有什么用处呢?百度告诉我:通过本课程的学习,学生将理解信号的
函数表示与系统分析方法,掌握连续时间系和离散时间系统的时域分析和频域分析,
连续时间系统的S域分析和散时间系统的Z分析,以及状态方程与状态变量分析法等
相关内容。
通过上机实验,使学生掌握利用计算机进行信号与系统分析的基本方法加
深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。
在百度上和道客巴巴还有知乎上都是很多这样看起来很高大上的解释,但是作为学
生的我还是不能很清楚的了解到学习这门课程有什么用处,后面我发现了这样一个个
例子,觉得对信号与系统的用处有了一定的了解。
如图这样一个轮子是怎么设计的呢?
(打印有可能打印不出来,就是很神奇的一个轮子,交通工具)
没学过信号与系统的小明想到了反馈与系统,在轮子上放一个传感器,轮子正不正
系统就知道了,所以设计这个轮子其实就是设计一个系统。
好,现在我们有了一个传感器,要是机器朝左边偏一度,他就会输出一个信号。
这个信号接下来就会传给处理器进行处理。
处理器再控制电机,让他驱动轮子产生向左
的加速度,加速度就相当于给予系统向右的力,来修正向左的偏移。
小明就按照这一思想设计了一个小车车。
踏上踏板,一上电,尼玛,他和他的车车就变成了一个节拍器。
左边摔一下,右边摔一下。
幸亏小明戴了头盔。
小明觉得被骗了。
找了一本反馈理论来看,原来有些反馈系统是不稳定的。
想要这个系统稳定地立着,我该怎么办?小明眼神呆滞,望着天空。
天边传来一个声音:你要分析环路稳定性呀。
怎么分析呢?
你要从信号传输入手,分析信号的传输函数。
首先,使用小信号模型来建模。
从你的输入开始,假设你的输入信号是一个位移,然后,这个位移被你的传感器sense到,输出一个误差电流。
电流流过一个滤波器,得
到一个电压。
电压送到模数转换器,变成数字信号。
数字信号被处理器处理了一下,
使用了某种算法。
算到的结果被传到电机上,控制电机电流,电流变成对应的加速度。
加速度变成力速度是加速度的积分位移是速度的积分。
ok.现在你输入给系统的位移信号,转了一圈回来了,又变成了一个位移信号。
可是这个过程当中,这个信号被计算(处理)了这么多次。
需要信号系统的知识,
来计算这些传输函数。
把时域特性变换成频域来分析系统的稳定性。
打个比方,上面提到了两次积分器,积分器的传输函数是什么呀?1/s
这个传输函数对应的频域响应是什么啊?是一条-20db/dec的线。
相位呢?是九十度的delay.
……
好了,小明建模建好了。
他发现自己的系统不能满足奈奎斯特标准,也就是说,没有
相位裕度了所以没有办法稳定于是震荡了。
通过分析传输函数,小明发现相位裕度很容易提高,只需要在加一个零点就行。
或者
增加负载。
小明后来怎么样了我就不知道了。
这全看小明信号与系统的知识学得怎么样,他的计
算是不是正确。
这个例子有点长,但是充分告诉了我们学习《信号与系统》的好处。
如果学完信号与系统可以深刻理解电子信号在电路中传播过程,如何滤波,,如何
进行采样,如何进行频域分析。
比如音频信号,你可以利用你所学的知识把其中噪声
给去掉,还原出高质量的音乐效果。
再者,图片也属于信号处理范围,你可以把模糊
的图片,比如云遮挡的图片,运用信号处理,把云下面的东西显示出来。
4.与《信号与系统》相关的学科体系是什么?
随着信息技术的不断发展和信息技术应用领域的不断扩展,其内容也从单一的电信号与系统分析扩展到许多非电信号与系统分析,课程也逐步扩展成电子信息、自动控制、电子技术、电气工程、计算机技术、生物医学工程等众多电类专业的专业基础课程,甚至在很多非电专业中也设置了这门课程。
它同时与很多专业课(例如通信原理、数字信号处理、通信电路、图象处理、微波技术等)有很强的联系,是学习这些专业
课程的重要基础性先修课程课程内容涉及到大量的数学课程的内容,例如线性微分方程、积分变换、复变函数、离散数学等等多门数学课程的内容。
5.以《信号与系统》的相关理论及思维方式为基础的前沿科学都有什么?
它同时与很多专业课(例如通信原理、数字信号处理、通信电路、图象处理、微波技术等)有很强的联系,是学习这些专业课程的重要基础性先修课程
6.怎样才能学好(或教好)信号与系统这门课程?
怎样学好信号与系统呢?
问了几个学过信号与系统的学长学姐,都给出了几个答案现总结如下
1>如果你是没有动机的去学,就按照高三的方式刷题就行。
多在例题中感受
信号与系统的互动关系
2>如果你要是有动机的去学(如和老师做些图形处理项目,或者一些高端点
的电子设计,并在过程中感受到了一种对手头东西缺乏本质深刻认识并有急需充电的需求的话),结合参考书和各种资料,争取能从数学角度理解每个概念和公式。
理解是最重要的,真正理解那些知识后,它们就会自成系统。
做题什么的更是不在话下。
理解是很重要的一方面,但其实这些课程的真正意义,特别是对工科生来说,是能在理解的基础上应用它,所谓理论结合实践的能力,也正是现在的教育体背景下学生们欠缺的能力。
在工程实践中体味理论的意义,这样能理解的更加深刻。
比如在学傅里叶变换的时候,自己拿调制器搭锁定放大器。
在学拉普拉斯变换的时候,开始学设计电子滤波器,巴特沃斯、切比雪夫、椭圆滤波器等等。
在学Z变换和离散傅里叶变换,开始用DSP做FIR滤波器。
那自然而然就学好了。
以上就是我对这六个问题的回答,大部分都是自己手打的,希望老师能多给点分。
祝老师身体健康,天天开心。