气井动态储量计算方法
- 格式:ppt
- 大小:33.90 MB
- 文档页数:37
37一、前言徐深气田低渗透储层主要发育于登娄库组、营城组和沙河子组,埋藏深度从3000m到5000m左右,储层致密(统计密度大于2.52g/cm3占70%、渗透率小于0.1md 占65%、孔隙度均小于10%),埋藏越深储层物性越差。
为求取储层物性参数,编制开发方案,上交储量通常进行短期试采(开井30-90天),为准确求得地层参数往往还进行长期试采(180天以上),据统计单井压后长期试采(180天以上)处于不稳定流状态,很难达到拟稳定流动状态或边界控制流动状态,不但浪费了大量的天然气资源,还难以达到试采目的,确定储量。
因此,探索低渗透气井储量计算可靠方法,具有重要经济意义。
表1 试采井统计分析数据表二、常规气井储量计算方法分析气藏动态储量的计算方法主要有4大类[1]:一是物质平衡法(压降法、流动物质平衡法),二是通过试井方法预测(弹性二相法、油藏影响函数法、气藏探边测试法、试凑法、压力恢复试井法),三是经验法(经验公式法、产量累计法、衰歇曲线法、水驱曲线法),四是典型曲线特征法(Blasingame典型曲线分析法、A-G典型曲线分析法、NPI典型曲线分析法、不稳定典型分析法)。
在开发早期计算动态储量的常用压降储量分析法,但此法需有足够的试采资料,即三次以上的关井压力恢复数据,此外,借助一次压力恢复试井资料,也可求得影响半径和控制储量;在开发后期,气井进入递减期,可以釆用递减法和其它数学法进行动态储量计算;但每一种算法都有一定的局限性,有的不适应于气藏开发初期,有的要求开井前压力稳定或者关井前已生产了很长时间,压力已趋于稳定,有的算法要求有很高的压力计量精度和苟刻的测试条件;试井方法计算储量也是受多解性的影响比较严重,经验法计算的储量往往误差比较大。
其中应用较广泛的是物质平衡法(压降法)、弹性第二相法、典型曲线法。
三、储量计算改进方法针对低渗透气井物质平衡法计算储量关井压力难以获得的问题,以及典型曲线法边界控制流动很难出现的问题,分别制定了两种不同的方法,下面以XS9-1井为例进行说明计算储量思路。
不稳定试井确定单井控制储量在气藏勘探开发过程中,利用不稳定试井分析能够得到气井泻气区范围内的储层平均压力、有效渗透率、完井效率、储层介质类型以及边界性质等。
对于定容气藏来说,通过适当的理论延伸,还可以利用不稳定试井资料估算单井控制储量。
而对于无限延伸气藏来说,单井控制储量一般取决于井网分布。
利用动态资料评价油气藏储量的方法主要有:压降曲线法、压恢曲线法、物质平衡法、产量增长曲线法、产量递减曲线法、水驱曲线法等。
一般情况下,物质平衡法、产量递减曲线法、水驱曲线法等适用于气藏开采的中、后期,这时有足够的生产动态资料可供分析。
产量增长曲线法能够对中、前的生产资料进行分析,但分析结果的可信度取决于应用模型的选择,而且需要一定量的生产资料。
在气藏开发早期,压降曲线法和压恢曲线法是估算单井控制储量的主要方法。
该方法可能对于裂缝型、岩性封闭型及复杂断块型气藏更为有效,因为这种情况下很难用其他方法定准含气面积、有效厚度、有效孔隙度以及含气饱和度等,结果必然使得用容积法计算储量的误差增大。
利用压降曲线法和压恢曲线法所需要的资料主要有:‘(1)原始(或平均)地层压力、地层温度、地层气体PVT性质及目标井的产能;(2)压力降落或压力恢复测试的数据资料;(3)长时间试采中,井底压力及产量随时间的变化数据(可选)。
显然,地层气体PVT的准确性以及不稳定测试资料的有效性将影响分析结果的精度。
地层气体的粘度和压缩因子等物性是系统压力的函数。
地层气体的渗流方程具有强非线性,一般比较严格的方法是采用Al-Hussaing(1966)拟压力函数减弱方程的强非线性,然后对所导出的控制方程右端扩散系数一项取初始值进行线性化。
拟压力函数定义为:P,,P,d,()2 (1) ,P0()(),,z,通常,拟压力对于低压情形能够简化为压力平方函数而对于高压情形能够简化压力函数。
地层气体不稳定渗流无量纲控制方程为:2,,,1,,,DDD (2) ,,2,rr,r,tDDDD方程中所用的无量纲量定义为:Tkh(),,,,sci,, DTPQscscr r,Drwktktktem,,,,, ttt222DeDmD,(,c)r,(,c)r,(,c)rggtiwggtiwggtiw根据以上渗流方程,可以从理论上得到探测半径与生产时间的解析关系式,这个关系式是我们利用不稳定试井资料分析单井控制储量的基础之一。
流动物质平衡法计算低渗透气藏单井动态储量钟海全;周俊杰;李颖川;蒲浩;谭燕【摘要】气井动态储量的确定是单井合理配产和开发方案制订的重要依据,但对低渗透气藏,由于地层的低渗透性及强非均质性特征,很难准确计算出气井的动态储量。
针对此问题,结合低渗透气藏单井的动态生产数据,统计分析了大量气井生产指示曲线,将其划分为3种类型,即标准型、波动型、分段型,并描述了不同类型气井生产指示曲线的表现特征及形成的原因,最终提出了正确利用流动物质平衡法计算气井动态储量的方法。
实例分析表明,利用流动物质平衡法计算低渗透气藏单井动态储量所需数据量少,计算结果合理、可信,可为低渗透气藏单井动态储量的确定起到一定的指导作用。
%The dynamic reserve of gas well is very important to allocate reasonable production and draw up development programs. However, due to low permeability and strong heterogeneity of low permeability gas reservoir, it is hard to calculate the dynamic reserve correctly. Combined with dynamic production data of low permeability gas reservoir, through statistical analysis, the production index curves of single wells were divided into three types: standard type, fluctuation type, multi-section type, and the characteristics of production index curve of single wells and the related reasons were analyzed. Finally, the method for determining dynamic reserve of different wells based on flowing material balance method was proposed. The ease study shows that it is reasonable that using flowing material balance method to calculate the single well dynamic reserves of low permeability gas reservoir.【期刊名称】《岩性油气藏》【年(卷),期】2012(024)003【总页数】4页(P108-111)【关键词】低渗透气藏;动态储量;流动物质平衡法【作者】钟海全;周俊杰;李颖川;蒲浩;谭燕【作者单位】西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500;西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500;西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500;中国石油四川石化南充炼油厂,四川南充637000;中国石油青海油田分公司采油三厂,甘肃敦煌816400【正文语种】中文【中图分类】TE3320 引言大牛地气田构造上位于鄂尔多斯盆地伊陕斜坡北部东段,属典型的低渗透砂岩气藏。
气井动态储量计算方法1.确定井口流量:井口流量是指从气井井口涌出的天然气流量。
通常通过测定井口压力和流量来获得。
根据测得的井口压力和流量数据,可以使用龙格-库塔法或其他数值方法进行反演计算,得到准确的井口流量。
2.产油水比的确定:产油水比是指在气井生产过程中,随着时间的推移,油和水的产量相对于天然气产量的比例。
产油水比的确定通常需要进行历史数据分析和产能测试。
通过实际生产数据和现场测试,可以获得较准确的产油水比。
3.动态储量计算:根据井口流量和产油水比的确定,可以使用以下公式计算气井的动态储量:Q=Qg+Qo+Qw其中,Q为动态储量,Qg为天然气的动态储量,Qo为石油的动态储量,Qw为水的动态储量。
Qg=Q×(1-Ro-Rw)Qo=Q×RoQw=Q×Rw其中,Ro为产油比例,Rw为产水比例。
二、动态储量修正方法1.渗流体动态储量修正:在气井开采过程中,地层渗流可能会影响气井的产能和动态储量。
根据地层渗流的影响可以对动态储量进行修正,修正公式如下:Q'=Q×(1+Ke)其中,Q'为修正后的动态储量,Q为未修正的动态储量,Ke为地层渗流系数。
2.压力衰减动态储量修正:由于气井开采导致地层压力的衰减,可能会对动态储量的计算造成偏差。
根据地层压力的衰减程度可以进行修正,修正公式如下:Q'=Q×(P0/P)^(1/n)其中,Q'为修正后的动态储量,Q为未修正的动态储量,P0为初衰减时的地层压力,P为实际测得的地层压力,n为衰减指数。
以上介绍的是一种常用的气井动态储量计算方法,但实际计算中还需要考虑其他因素的影响,如地层渗流和压力衰减。
此外,动态储量的计算应该结合实际生产数据和现场测试结果,尽可能准确地评估气井的产能和储量。
天然气勘探与开发NATURAL GAS EXPLORATION AND DEVELOPMENT· 1 ·2021年3月 第44卷 第1期作者简介:陈元千,1933年生,教授级高级工程师,1952年考入清华大学石油工程系;长期从事油气藏工程、油气田开发和油气储量评价工作。
地址:(100083)北京市海淀区学院路20号910信箱。
评价气藏原始地质储量和原始可采储量的动态法——为修订的《SY/T 6098—2010》标准而作陈元千中国石油勘探开发研究院摘 要 气藏的原始地质储量(Initial gas in-place )和原始可采储量(Initial recoverable reserves )是对气藏的标量名称。
我国将两者简称为地质储量(Gas in-place )和可采储量(Recoverable reserves )是不准确的。
气藏的原始可采储量等于原始地质储量与采收率的乘积。
由于不同地质与开发条件的影响,气藏的采收率是难以准确确定的,因而,利用动态法评价气藏的原始地质储量和原始可采储量就显得非常重要。
用于评价气藏原始地质储量的动态法有:物质平衡法、压降法和弹性二相法;用于评价气藏原始可采储量的动态法有:产量递减法和预测模型法。
根据气藏类型和拥有的动态数据情况,可以选用合适的方法进行原始地质储量、原始可采储量和剩余可采储量(Remaining recoverable reserves )的评价。
由于剩余可采储量最具有实际意义,因此,国际上统一的年报均为剩余可采储量并简用reserves 一词表示。
剩余可采储量是原始可采储量与累积产量的差值,它与年度产量之比值为储采比(RPR )是重要参数。
为此基于近年新的研究成果,对上述5种动态法进行完善推导,并通过实例加以应用。
关键词 气藏 原始地质储量 原始可采储量 动态法 应用DOI :10.12055/gaskk.issn.1673-3177.2021.01.001Dynamic methods for estimating initial gas in-place andinitial recoverable reserves in gas reservoirs —For the revised 《SY/T 6098—2010》Chen Yuanqian(PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China)Abstract: Both initial gas in-place and initial recoverable reserves are two scalar terms for gas reservoirs. However, that they are abbreviated for "gas in-place" and "recoverable reserves" by some Chinese scholars is inaccurate. For one gas reservoir, the original geological reserves multiplied by the recovery factor equals the original recoverable reserves. Affected by different geological setting and development conditions, it is difficult to accurately determine the recovery factor. Therefore, it is very important to use some dy-namic methods to evaluate the initial gas in-place and initial recoverable reserves. The evaluation methods for the initial gas in-place include material balance method, pressure drop method, and elastic two-phase method. While those for the initial recoverable reserves contain production decline method and prediction model method. According to reservoir type and available dynamic data, certain appropriate methods can be used to evaluate the initial gas in-place, the initial recoverable reserves, and the remaining recoverable reserves. Because the remaining recoverable reserves have the most practical significance, remaining recoverable, as an international and unified term abbreviated as reserves, is used in annual report. The remaining recoverable reserves are the difference between the original recoverable reserves and the cumulative production. The ratio of the remaining recoverable reserves to the annual production is an important parameter of the reserve-production ratio (RPR ). Based on the latest achievement, these mentioned-above five dynamic methods are perfected and derived, and have been applied in practice.Keywords: Gas reservoir; Initial gas in-place; Initial recoverable reserves; Performance method; Application陈元千:评价气藏原始地质储量和原始可采储量的动态法· 2 ·2021年3月第44卷 第1期0 引言天然气是关系到国家发展、社会进步和人民幸福的重要能源之一。
油、气储量是油、气油气勘探开发的成果的综合反应,是发展石油工业和国家经济建设决策的基础。
油田地质工作这能否准确、及时的提供油、气储量数据,这关系到国民经济计划安排、油田建设投资的重大问题。
油、气储量计算的方法主要有容积法、类比法、概率法、物质平衡法、压降法、产量递减曲线法、水驱特征曲线法、矿场不稳定试井法等,这些方法应用与不同的油、气田勘探和开发阶段以及吧同的地质条件。
储量计算分为静态法和动态法两类。
静态法用气藏静态地质参数,按气体所占孔隙空间容积算储量的方法,简称容积法;动态法则是利用气压力、产量、累积产量等随时间变化的生产动态料计算储量的方法,如物质平衡法(常称压降法)、弹性二相法(也常称气藏探边测试法)、产量递法、数学模型法等等。
容积法:在评价勘探中应用最多的容积法,适用于不同勘探开发阶段、不同圈闭类型、储集类型和驱动方式的油、气藏。
容积法计算储量的实质是确定油(气)在储层孔隙中所占的体积。
按照容积的基本计算公式,一定含气范围内的、地下温压条件下的气体积可表达为含气面积、有效厚度。
有效孔隙度和含气饱和度的乘积。
对于天然气藏储量计算与油藏不同,天然气体积严重地受压力和温度变化的影响,地下气层温度和眼里比地面高得多,因而,当天然气被采出至地面时,由于温压降低,天然气体积大大的膨胀(一般为数百倍)。
如果要将地下天然气体积换算成地面标准温度和压力条件下的体积,也必须考虑天然气体积系数。
容积法是计算油气储量的基本方法,但主要适用与孔隙性气藏(及油藏气顶)。
对与裂缝型与裂缝-溶洞型气藏,难于应用容积法计算储量纯气藏天然气地质储量计算G = 0.01A ·h ·φ(1-Swi )/ Bgi= 0.01A ·h ·φ(1-Swi )Tsc·pi/ (T ·Psc·Zi)式中,G----气藏的原始地质储量,108m3;A----含气面积, km2;h----平均有效厚度, m;----平均有效孔隙度,小数;Swi ----平均原始含水饱和度,小数;Bgi ----平均天然气体积系数Tsc ----地面标准温度,K;(Tsc = 20ºC)Psc ----地面标准压力, MPa; (Psc = MPa) T ----气层温度,K;pi ----气藏的原始地层压力, MPa;Zi ----原始气体偏差系数,无因次量。
弹性二相法是气藏开发早期或试采阶段的一种重要储量评价方法。
对于其推导过程,目前相关书籍和文献均直接从拟稳态阶段P wf 2与t 的直线关系式出发,然后根据该直线斜率的表达式推导出储量计算式。
本章对弹性二相法进行完整推导时发现,所谓的P wf 2与t 直线关系是基于两个假设前提而建立的;此外,本章还研究了气藏采出程度对该法精度的影响规律。
2.1弹性二相法的原理及误差分析2.1.1 弹性二相法的原理分析当气井以恒定产量生产,并进入拟稳态后,任一时刻t 的产能方程为:322wf 1.291103ln 4e w r q zT P P S Dq kh r μ-⎛⎫⨯-=-++ ⎪⎝⎭(2.1) 式中,P 为t 时刻的平均地层压力,MPa ;P wf 为t 时刻的井底流压,MPa ;q 为转换成标准状态下的日产气量,m 3/d ;μ为t 时刻井底流压和平均地层压力的平均值所对应的气体粘度,mPa·s ;Z 为t 时刻井底流压和平均地层压力的平均值所对应的偏差因子[20];T 为t 时刻的储层温度,K ;k 为储层的径向渗透率,mD ;h 为储层的有效厚度,m ;r e 为泄气区域的外边界半径,m ;r w 为井筒半径,m ;S 为表皮;D 为紊流系数,d/m 3。
当气藏在较短时间内达到拟稳态,假设气体、岩石和束缚水的压缩性在短期内可忽略,则有:()i i ti sc G P P C q t -= (2.2)式中,P i 为原始地层压力,MPa ;G i 为原始地质储量转换为地面标准条件下的体积,m 3;t 为从投产到目前的累计生产时间,d 。
结合式(2.1)和(2.2)可消去平均地层压力得出:232sc e wf i sc i ti w 1.291100.472-ln sc q t q zT r P P S Dq G C kh r μ-⎛⎫⎛⎫⨯=-++ ⎪ ⎪⎝⎭⎝⎭ (2.3) 整理可得:2322sc i sc sc e wf i sc i ti i ti w 2 1.291100.472-ln q Pt q t q zT r P P S Dq G C G C kh r μ-⎛⎫⎛⎫⨯=-+++ ⎪ ⎪⎝⎭⎝⎭ (2.4)假设:2sc i ti 0q t G C ⎛⎫= ⎪⎝⎭(2.5) 则式(2.4)可简化为:322sc i sc e wf i sc i ti w 2 1.291100.472-ln q Pt q zT r P P S Dq G C kh r μ-⎛⎫⨯=-++ ⎪⎝⎭(2.6) 令⎪⎪⎭⎫ ⎝⎛++⨯-=-sc w e sc 32i 472.0ln 10291.1Dq S r r kh T z q P μα (2.7)sc i i ti2q P G C β=(2.8) 则式(2.6)可简化为: t P βα-2w f =(2.9)这表明当气藏进入拟稳态时,井底流压平方与时间呈直线关系,如下图2.1所示。
苏里格气田苏五区块天然气动态储量的计算摘要运用气藏开发动态资料,选取与气藏相适应的计算方法就能准确地确定其动态储量,故而筛选不同气藏的动态储量计算方法十分重要。
为此,针对鄂尔多斯盆地苏里格低渗透强非均质性气田的生产动态特征,在动态资料不断补充和丰富的基础上,综合运用压降分析法、弹性二相法、广义物质平衡法、不稳定生产拟合法、递减曲线分析法等方法对苏里格气田的可动储量进行了对比计算,分析了各种方法的适应性以及计算结果的可靠性。
结论认为,苏5区块宜采用压降法和不稳定生产拟合法计算其天然气动态储量,Ⅰ类井平均单井动态储量为2936×104m3,Ⅱ类井平均单井动态储量为1355×104m3,Ⅲ类井平均单井动态储量仅为981×104 m3。
所得结果对苏里格气田开发中后期调整方案的制定以及气藏产能的评价具有参考价值。
关键词鄂尔多斯盆地苏里格气田苏五区块低渗透储集层非均质性动态储量计算方法开发中后期调整方案气藏可动储量是指在现有工艺技术和现有井网开采方式不变的条件下,已开发地质储量中投入生产直至天然气产量和波及范围内的地层压力降为零时,可以从气藏中流出的天然气总量叫。
运用气藏开发动态资料,筛选与之相适应的动态计算方法才能准确确定动态储量[2-4],而对不同气藏筛选气藏动态储量的计算方法具有十分重要的意义。
苏里格气田位于鄂尔多斯盆地伊陕斜坡西北侧,是大面积分布的砂岩岩性气藏,主要产层为二叠系下石盒子组盒8段和山西组山1段。
该气田储集层条件复杂,具有低丰度、低压、低渗、非均质性严重等特征。
针对苏里格气田低渗透、强非均质性特征,笔者分别运用气藏工程压降法、弹性二相法、广义物质平衡法、不稳定生产拟合法、递减曲线分析法对苏里格气田不同开发时期可动储量进行了计算[5-10],分析了不同方法的适应性和可靠性,目的是筛选适合于苏里格低渗透强非均质气田可动储量的计算方法,对气田开发中后期调整方案制定以及气藏产能评价提供技术支持,这对苏里格低渗透强非均质气田开发中后期调整方案制定以及气藏产能评价都具有借鉴意义[11]。