理论力学刚体平面运动加速度分析
- 格式:pdf
- 大小:196.47 KB
- 文档页数:21
§6.3* 平面运动刚体上点的加速度由于平面运动可以看成是随同基点的牵连平移与绕基点的相对转动的合成运动,于是图形上任一点的加速度可以由加速度合成定理求出。
设已知某瞬时图形内A 点的加速度a A ,图形的角速度为ω,角加速度为α,如图6-13所示。
以A 点为基点,分析图形上任意一点B 的加速度a B 。
因为牵连运动为动坐标系随同基点的平移,故牵连加速度a e =a A 。
相对运动是点B 绕基点A 的转动,故相对加速度a r =a BA ,其中a BA 是点B 绕基点A 的转动加速度。
由式 (5.3.7)可得图6-13 加速度分析的基点法 α (6.3.1) BA A B αα+=由于B 点绕基点A 转动的加速度包括切向加速度和法向加速度a ,故式(6.3.1)可写为t BA a n BAa (6.3.2) n t BA BA A B a a a ++=即平面图形上任意一点的加速度,等于基点的加速度与该点绕基点转动的切向加速度和法向加速度的矢量和。
当基点A 和所求点B 均作曲线运动时,它们的加速度也应分解为切向加速度和法向加速度的矢量和,因此,式(6.3.2)可表示为(6.3.3)n t n t n t BA BA A A B B a a a a a a +++=+在式(6.3.3)中,相对切向加速度与点A 和B 连线方向垂直,相对法向加速度沿点A 和B连线方向从B 指向A ;仅当点A 和B 的运动轨迹已知时,才可以确定点A 和B 的切向加速度a 和及法向加速度和a 。
t BA a n BA a t A t B a n A a n B 在应用式(6.3.2)或(6.3.3)计算平面图形上各点的加速度时,只能求解矢量表达式中的两个要素。
因此在解题时,要注意分析所求问题是否可解。
当问题可解时,将式(6.3.2)或(6.3.3)在平面直角坐标系上投影,即可由两个代数方程联立求得所需的未知量。
例6.3-2:半径为R 的车轮沿直线滚动,某瞬时轮心O 点的速度为v O ,加速度为a O ,如图a 所示。
第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕcos )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角θ 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:RvR v A A ==ωhv AC v AP v ABθθω2000cos cos ===习题6-1图ABCv 0hθ习题6-2图PωABv CABCv ohθ习题6-2解图习题6-3解图习题6-3图v A = vv B = v ωAωBR vR v B B 22==ω B A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
理论力学中的动力学分析与加速度的计算动力学是理论力学中重要的一个分支,研究物体在受到力作用下的运动规律。
在动力学的分析中,计算加速度是非常重要的,它能揭示物体的速度变化情况以及力对物体运动的影响。
本文将介绍动力学分析中的基本概念以及计算加速度的方法。
一、运动物体的描述动力学研究的是物体在受力作用下的运动情况,为了描述运动物体的状态,我们需要引入一些基本概念。
1. 位移:物体在运动过程中,由于位置的变化而引起的变量称为位移。
通常用符号Δx表示。
2. 速度:速度是位移随时间的变化率,即单位时间内位移的大小。
用符号v表示。
3. 加速度:加速度是速度随时间的变化率,即单位时间内速度的变化量。
用符号a表示。
根据以上基本概念,我们可以推导出物体在匀变速运动的情况下,速度和加速度的计算方法。
二、匀变速运动中加速度的计算匀变速运动指的是物体的加速度保持恒定,速度按照一定规律变化的运动。
在这种情况下,我们可以通过已知的物理量来计算加速度。
假设一个物体的初速度为v0,末速度为v,时间为t,加速度为a。
根据物体运动的基本关系式可以得到以下等式:v = v0 + at (1)v = Δx / t (2)将式(1)代入式(2),可得:Δx / t = v0 + at通过变形,可以得到加速度a的计算公式:a = (v - v0) / t以上公式表明,当已知物体在运动过程中的初速度、末速度以及所用时间时,我们可以通过公式计算出加速度。
三、实际应用中的动力学分析与加速度计算动力学分析和加速度计算在实际应用中有着广泛的应用,下面以一个常见的例子来说明。
假设一个小球从高处自由落下,我们想要计算小球下落过程中的加速度。
首先,我们需要测量小球下落的时间,并记录为t。
同时,我们需要测量小球下落的距离,记录为Δx。
根据自由落体运动的特点,小球在自由落下过程中的加速度近似为地球的重力加速度g,约等于9.8 m/s^2。
根据公式a = Δx / t,我们可以计算出小球下落过程中的加速度。
理论力学中的刚体运动与力学参数计算理论力学是力学的基础理论之一,研究物体在力的作用下的运动规律以及相关力学参数的计算。
刚体运动是理论力学研究的重要内容之一,刚体是指在外力作用下,物体内部各部分的相对位置保持不变的物体。
本文将针对理论力学中的刚体运动进行探讨,并介绍相关的力学参数计算方法。
一、刚体运动的类型刚体运动主要包括平动和转动两种类型。
平动是指刚体的质心沿直线轨迹运动,质心速度相等。
而转动是指刚体围绕某一轴旋转,各点角速度相等,且轴上任意两点连线垂直于轴。
根据刚体的运动类型,可以采用不同的方法进行力学参数的计算。
二、平动刚体运动的力学参数计算1. 速度:平动刚体的速度由质心速度来表示,质心速度的计算公式为v = Δx/Δt,其中Δx为质心位置变化的距离,Δt为质心位置变化所经过的时间。
2. 加速度:平动刚体的加速度由质心加速度来表示,质心加速度的计算公式为a = Δv/Δt,其中Δv为质心速度变化的差值,Δt为质心速度变化所经过的时间。
3. 质量:平动刚体的质量常用m来表示,可以通过测量质心处的物体质量来得到,计算公式为m = F/g,其中F为物体所受合力的大小,g为重力加速度。
三、转动刚体运动的力学参数计算1. 角速度:转动刚体的角速度由角位移与时间的比值来表示,角速度的计算公式为ω = Δθ/Δt,其中Δθ为角位移的变化值,Δt为变化所经过的时间。
2. 角加速度:转动刚体的角加速度由角速度变化的差值与时间变化量的比值来表示,角加速度的计算公式为α = Δω/Δt,其中Δω为角速度的变化差值,Δt为角速度变化所经过的时间。
3. 转动惯量:转动刚体的转动惯量常用I来表示,转动惯量决定了物体在旋转运动中的惯性大小。
转动惯量的计算公式为I = ΣmiRi^2,其中mi为物体质点的质量,Ri为质点到转轴的距离。
四、力学参数计算实例以平动刚体为例,假设一个质量为m的物体受到一个水平方向的恒定力F作用,求该物体在t时间后的速度v。
刚体运动的理论力学分析刚体运动是经典力学研究的重要内容之一,涉及物体在空间中作直线运动、旋转运动以及复杂运动等方面的分析和研究。
本文将针对刚体运动的理论力学进行分析,并探讨刚体运动的力学定律和相关公式。
一、刚体的定义与特性刚体是指物体在受力作用下,各部分的相对位置不会发生变化的物体。
刚体具有以下特性:1. 形状不变性:刚体的形状和大小在运动过程中保持不变。
2. 组成部分的相对位置不变:刚体各部分相对位置保持不变,即不发生形变。
3. 刚体可以进行平动和转动。
二、刚体运动的描述刚体运动可以通过刚体在空间中的位置和姿态的变化来描述。
刚体可以存在三种运动状态:平动、转动和整体运动。
1. 平动:刚体的各个部分保持平行移动,位置和相对位置不发生变化。
平动运动可以由平动的速度和加速度来描述。
2. 转动:刚体绕固定轴线旋转,各个部分围绕轴线进行圆周运动。
转动运动可以通过角速度和角加速度来描述。
3. 整体运动:刚体在空间中同时进行平动和转动,即平动和转动的叠加。
三、刚体运动的力学定律刚体运动的力学定律主要包括牛顿第二定律和角动量守恒定律。
1. 牛顿第二定律:对于平动的刚体,根据牛顿第二定律可以得出以下公式:$$\sum F = ma$$其中,$\sum F$表示作用在刚体上的合力,m为刚体的质量,a为刚体的加速度。
2. 角动量守恒定律:对于转动的刚体,根据角动量守恒定律可以得出以下公式:$$L = I\omega$$其中,L为刚体的角动量,I为刚体的转动惯量,$\omega$为刚体的角速度。
四、刚体运动的相关公式1. 刚体的质心位置:刚体的质心位置可以通过以下公式计算:$$\bar{r} = \frac{1}{M}\int r dm$$其中,$\bar{r}$为质心的位置矢量,M为刚体的总质量,r为刚体中各个质点的位置矢量,dm为刚体中微小质元的质量。
2. 刚体的转动惯量:刚体的转动惯量可以通过以下公式计算:$$I = \int r^2 dm$$其中,I为刚体的转动惯量,r为刚体质点到转轴的距离,dm为刚体中微小质元的质量。