3刚体的平面运动例题 PPT
- 格式:ppt
- 大小:358.00 KB
- 文档页数:15
第十章刚体的平面运动一、内容提要1、基本概念(1)刚体的平面运动的定义刚体运动时,若其上任一点至某个固定平面的距离保持不变,则称该刚体作平面运动。
(2)刚体的平面运动的简化刚体的平面运动可以简化为平面图形在自身平面内的运动。
(3)刚体平面运动方程为x o'=f1(t) , y o'=f2(t) , ϕ=f3(t) ,(4)刚体平面运动的分解平面图形的运动可以分解为随基点的平动和绕基点的转动。
2、平面图形上各点的速度(1)基点法(速度合成法)V M= V O+V MO(2)速度投影法(V M)MO=(V O)MO(3)速度瞬心法V M=MC∙ω(C点为速度瞬心)3、平面图形上各点的加速度加速度分析主要用基点法(加速度合成法)a M= a O+aτMO+a n MOaτMO =MO∙ε方向垂直于MO,并与ε的转向一致。
a n MO =MO∙ω2 方向由点M指向基点O。
二、基本要求1、熟练掌握平面图形上各点的速度的求解。
2、熟练掌握平面图形上各点的加速度的求解。
三、典型例题例如图所示平面机构,由四杆依次铰接而成。
已知AB=BC=2R,C D=DE=R,AB杆和DE杆分别以匀角速度ω1与ω2绕A、E轴转动。
在图示瞬时,AB与CD铅直,BC与DE水平。
4142 试求该瞬时BC 杆转动的角速度和C 点加速度的大小。
解 AB 杆和DE 杆作定轴转动,BC 杆CD 杆均作平面运动。
(1)求BC 杆的角速度ωBC 因为V B =2R ω1 , V D =R ω2 分别以B 点和D 点为基点,分析C 点速度,有V C = V B + V CB (1)V C = V D + V CD (2) 所以 V B + V CB = V D + V CD (3) 沿BC 方向投影式(3)得V B = V CD则CD 杆的角速度ωCD = V CD /CD=V B /R=2ω1 (逆时针) 沿DC 方向投影式(3)得V CB = V D则BC 杆的角速度ωBC = V CB /BC=V D /2R=0.5ω2 (逆时针)(2)求C 点的加速度a C 因为a B =a B n =2R ω12 ,a D =a D n =R ω22分别以B 点和D 点为基点,分析C 点加速度,有 a C = a B + a CB τ + a CB n (4)a C =a D +a CD τ+a CD n (5)所以 a B + a CB τ + a CB n =a D +a CD τ+a CD n (6) 沿CD 方向投影式(6)得a B n - a CB τ = a CD na CB τ=a B n - a CD n =2R ω12-R(2ω1)2=-2R ω12又将式(4)分别沿x 、y 轴投影式得a Cx =-a CD n =-2R ωBC 2= -0.5R ω22a Cy =-a B n + a CB τ = -2R ω12-2R ω12= - 4R ω12故C 点加速度大小a C =22cy cx a a +=4241642ωω+R43。
第九章刚体的平面运动刚体的平面运动是工程机械中较为常见的一种刚体运动,它可以看作为平移与转动的合成,也可以看作为绕不断运动的轴的转动。
在运动中,刚体上的任意一点与某一固定平面始终保持相等的距离。
平面运动刚体上的各点都在平行于某一固定平面的平面内运动。
注意与平移区别()Oϕ'--基点,转角,Oxy--定系用一个平面图形代表作平面运动的刚体;用平面内的任意线段的位置来确定平面图形的位置;用线段上任意点0′的坐标和一个夹角来确定该线段的位置。
平面图形的运动方程对于任意的平面运动,可在平面图形上任取一点O′,称为基点。
在这一点假想地安上一个平移参考系O’x’y’,平面图形运动时,动坐标轴方向始终保持不变,可令其分别平行于定坐标轴Ox和Oy,平面的平面运动可看成为随同基点的平移和绕基点转动这两部分运动的合成。
平移坐标系-'''y x O平移-----牵连运动转动-----相对运动四、重要结论:平面运动可取任意基点而分解为平移和转动。
其中平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关.任何平面图形的运动可分解为两个运动(1)牵连运动,即随同基点O′的平移;(2)相对运动,即绕基点O′的转动。
平面图形内任一点M的运动也是两个运动的合成,因此可用速度合成定理来求它的速度,这种方法称为基点法。
注意:此处动点、动系、基点在同一个刚体上。
但属于刚体上的不同点。
点M 的牵连速度v v点M的相对速度v vω'M O v v v v 'ωv v AB v v ω结论:平面图形内任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和。
平面图形内任意两点A 和B 的速度确定基点A ,一般应使V A 为已知条件。
O’M 上速度分布图角速度与相对速度有关AABAABBAvlABvωϕ=v v v应使V B位于平行四边形的对角线上V BA=AB·ω,此处ω是尺AB的角速度3、角速度分析例9-2图所示平面机构中,AB=BD=DE=l=300mm。
3、平面运动刚体的运动微分方程平面运动刚体的运动微分方程y x C '':过质心平移参考系平面运动随质心平移 绕质心转动()()e e ()C C C ma FJ M F α⎫=∑⎪⎬=∑⎪⎭()()2e 22e 2d d d ()d C C C r m F tJ M F t ϕ⎫=∑⎪⎪⎬⎪=∑⎪⎭投影式: ()()()e e e ()Cx xCy y C C ma F ma F J M F α⎫=∑⎪⎪=∑⎬⎪=∑⎪⎭()()()e te ne ()Ct C n C C ma F ma F J M F α⎫=∑⎪⎪=∑⎬⎪=∑⎪⎭以上各组均称为刚体平面运动微分方程平面运动刚体的运动微分方程已知:半径为r ,质量为m 的均质圆轮沿水平直线滚动,如图所示.设轮的惯性半径为,作用于轮的力偶矩为M .求轮心的加速度.如果圆轮对地面的滑动摩擦因数为f ,问力偶M 必须符合什么条件不致使圆轮滑动?C 例 1M平面运动刚体的运动微分方程解: N 2Cx Cy C ma Fma F mg m M Fr ρα⎫=⎪=-⎬⎪=-⎭()()2222N ,,,CC C C F r Mra M r m r F ma F mgρρ+==+==纯滚动的条件: s NF f F ≤即22s Cr M f mgρ+≤C a 0C a r α=分析圆轮,受力和运动情况如图所示。
由平面运动刚体运动微分方程:平面运动刚体的运动微分方程例2已知:均质圆轮半径为r 质量为m,受到轻微扰动后,在半径为R 的圆弧上往复滚动,如图所示.设表面足够粗糙,使圆轮在滚动时无滑动.求:质心C 的运动规律.平面运动刚体的运动微分方程t Ca rα=解: t sin Cma F mg θ=-C J Frα=-θcos 2mg F r R v m N C -=-()θr R s -=0d d 2322=-+s rR gt s )sin(00βω+=t s s ()r R g -=3220ω0,0v s== s 初始条件 ()gr R v s 23,000-==β运动方程为()⎪⎫ ⎛⋅-=t gr R v s 2sin 30分析圆轮,受力和运动情况如图所示。