运筹学——第3章_线性规划问题的计算机求解
- 格式:ppt
- 大小:1.00 MB
- 文档页数:32
课程:管理运筹学管理运筹学作业第二章线性规划的图解法P23:Q2:(1)-(6);Q3:(2)Q2:用图解法求解下列线性规划问题,并指出哪个问题具有唯一最优解,无穷多最优解,无界解或无可行解。
(1)Min f=6X1+4X2约束条件:2X1+X2>=1,3X1+4X2>=3X1, X2>=0解题如下:如图1Min f=3.6X1=0.2, X2=0.6本题具有唯一最优解。
图1(2)Max z=4X1+8X2约束条件:2X1+2X2<=10-X1+X2>=8X1,X2>=0解题如下:如图2:Max Z 无可行解。
图2(3) Max z =X1+X2 约束条件 8X1+6X2>=24 4X1+6X2>=-12 2X2>=4 X1,X2>=0 解题如下:如图3: Max Z=有无界解。
图3(4) Max Z =3X1-2X2 约束条件:X1+X2<=1 2X1+2X2>=4 X1,X2>=0 解题如下:如图4: Max Z 无可行解。
图4(5)Max Z=3X1+9X2 约束条件:X1+3X2<=22-X1+X2<=4X2<=62X1-5X2<=0X1,X2>=0解题如下:如图5:Max Z =66;X1=4 X2=6本题有唯一最优解。
图5(6)Max Z=3X1+4X2 约束条件:-X1+2X2<=8X1+2X2<=122X1+X2<=162X1-5X2<=0X1,X2>=0解题如下:如图6Max Z =30.669X1=6.667 X2=2.667本题有唯一最优解。
图6Q3:将线性规划问题转化为标准形式(2)min f=4X1+6X2约束条件:3X1-2X2>=6X1+2X2>=107X1-6X2=4X1,X2>=0解题如下:1)目标函数求最小值化为求最大值:目标函数等式左边min改为max,等式右边各项均改变正负号。
第三章思考题、主要概念及内容“管理运筹学”软件的操作方法“管理运筹学”软件的输出信息分析复习题1.见第二章第7题,设x1为产品Ⅰ每天的产量,x2为产品Ⅱ每天的产量,可以建立下面的线性规划模型:max z=500x1+400x2;约束条件:2x1≤300,3x2≤540,2x1+2x2≤440,1.2x1+1.5x2≤300,x1,x2≥0.使用“管理运筹学”软件,得到的计算机解如图1所示图1根据图3-5回答下面的问题:(1) 最优解即最优产品组合是什么?此时最大目标函数值即最大利润为多少?(2) 哪些车间的加工工时数已使用完?哪些车间的加工工时数还没用完?其松弛变量即没用完的加工工时数为多少?(3) 四个车间的加工工时的对偶价格各为多少?请对此对偶价格的含义予以说明.(4) 如果请你在这四个车间中选择一个车间进行加班生产,你会选择哪个车间?为什么?(5) 目标函数中x1的系数c1,即每单位产品Ⅰ的利润值,在什么范围内变化时,最优产品的组合不变?(6) 目标函数中x2的系数c2,即每单位产品Ⅱ的利润值,从400元提高为490元时,最优产品组合变化了没有?为什么?(7) 请解释约束条件中的常数项的上限与下限.(8) 第1车间的加工工时数从300增加到400时,总利润能增加多少?这时最优产品的组合变化了没有?(9) 第3车间的加工工时数从440增加到480时,从图3-5中我们能否求得总利润增加的数量?为什么?(10) 当每单位产品Ⅰ的利润从500元降至475元,而每单位产品Ⅱ的利润从400元升至450元时,其最优产品组合(即最优解)是否发生变化?请用百分之一百法则进行判断.(11) 当第1车间的加工工时数从300增加到350,而第3车间的加工工时数从440降到380时,用百分之一百法则能否判断原来的对偶价格是否发生变化?如不发生变化,请求出其最大利润.2. 见第二章第8题(2),仍设xA为购买基金A的数量,xB为购买基金B的数量,建立的线性规划模型如下:max z=5xA+4xB;约束条件:50xA+100xB≤1 200 000,100xB≥300 000,xA,xB≥0.使用“管理运筹学”软件,求得计算机解如图2所示.图2根据图2,回答下列问题:(1) 在这个最优解中,购买基金A和基金B的数量各为多少?这时获得的最大利润是多少?这时总的投资风险指数为多少?(2) 图3-7中的松弛/剩余变量的含义是什么?(3) 请对图3-7中的两个对偶价格的含义给予解释.(4) 请对图3-7中的目标函数范围中的上、下限的含义给予具体说明,并阐述如何使用这些信息.(5) 请对图3-7中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息.(6) 当投资总金额从1 200 000元下降到600 000元,而在基金B上至少投资的金额从300 000元增加到600 000元时,其对偶价格是否发生变化?为什么?3. 考虑下面的线性规划问题:min z=16x1+16x2+17x3;约束条件:x1+x3≤30, -x2+6x3≥15,05x13x1+4x2-x3≥20,x1,x2,x3≥0.其计算机求解结果如图3所示.图3根据图3,回答下列问题:(1) 第二个约束方程的对偶价格是一个负数(为-3622) ,它的含义是什么? ,它的含义是什么?(2) x2的相差值为0703(3) 当目标函数中x1的系数从16降为15,而x2的系数从16升为18时,最优解是否发生变化?(4) 当第一个约束条件的常数项从30减少到15,而第二个约束条件的常数项从15增加到80时,你能断定其对偶价格是否发生变化吗?为什么?。
线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
《数据、模型和决策》作业一学号:2461604112 姓名:王康兵班级:2016秋MBA2周末班一、第三章线性规划问题的计算机求解习题6 (P35)答:根据图3-10回答问题如下:(1)最优解即最优产品组合是产品Ⅰ每天的产量是150个,产品Ⅱ每天的产量是70个。
此时最大的目标函数即最大利润为103000元。
(2)车间1和车间3的加工工时数已使用完,车间2和车间4的加工工时数还没用完。
车间2的松弛变量即没用完的加工工时数为330工时,车间4的松弛变量即没用完的加工工时数为15工时。
(3)车间1的加工工时的对偶价格为50元,即增加一个工时就可能使总利润增加50元;车间2的加工工时的对偶价格为0元,即增加一个工时不会使总利润有所增加;车间3的加工工时的对偶价格为200元,即增加一个工时就可能使总利润增加200元;车间4的加工工时的对偶价格为0元,即增加一个工时不会使总利润有所增加。
(4)如果要在这四个车间选择一个车间进行加班生产,我会选择车间3。
因为在车间3的加工工时的对偶价格为200元,即每增加一个工时就可能使总利润增加200元,能为公司创造价值。
(5)目标函数中x1的系数c1,即每单位产品Ⅰ的利润值,当c1在400与+∞之间变化时,最优产品组合不变。
(6)目标函数中x2的系数c2,即每单位产品Ⅱ的利润值,当c2从400元提高到490元时,最优产品组合没有变化。
因为当c2=490元时,0《490《500,仍在c2的系数变化范围内,所以其最优产品组合没有变化。
(7)约束条件中的常数项的现在值由图3-10可知,b1=300,b2=540,b3=440,b4=300。
所谓常数项的上限和下限是指当约束条件中的常数项在此范围内变化时,与其对应的约束条件的对偶价格不变。
具体地说,当车间1的加工工时数在200到440的范围内时,其对偶价格都为50元;当车间2的加工工时数在210到+∞范围内时,其对偶价格为零;当车间3的加工工时数在300到460范围内时,其对偶价格都为200元;当车间4的加工工时数在285到+∞范围内时,其对偶价格为零。
运筹学本科版答案【篇一:运筹学课后习题答案】xt>1.用xj(j=1.2…5)分别代表5中饲料的采购数,线性规划模型: minz?0.2x1?0.7x2?0.4x3?0.3x4?0.8x5st.3x1?2x2?x3?6x4+18x5?700x1?0.5x2?0.2x3+2x4?x5?300.5x1?x2?0.2x3+2x4?0.8x5?1002.解:设x1x2x3x4x5x6x表示在第i个时期初开始工作的护士人数,z表示所需的总人数,则minz?x1?x2?x3?x4?x5?x6st.x1?x6?60x?x2?701x2?x3?60x3?x4?50x4?x5?20x5?x6?30xj(j?1,2,3,4,5,6)?03.解:设用i=1,2,3分别表示商品a,b,c,j=1,2,3分别代表前,中,后舱,xij表示装于j舱的i种商品的数量,z表示总运费收入则:maxz?1000(x11?x12?x13)?700(x21?x22?x23)?600(x31?x32?x3 3)st.x11?x12?x13?600x21?x22?x23?1000x31?x32?x33?80010x11?5x21?7x31?40010x12?5x22?7x32?540010x13?5x23?7x33?15008x11?6x21?5x31?20008x12?6x22?5x32?30008x13?6x23?5x33?15008x?6x21?5x3111?0.158x12?6x22?5x328x?6x23?5x3313?0.158x12?6x22?5x328x?6x21?5x3111?0.18x13?6x23?5x33xij?0(i?1,2.3.j?1,2,3)xi(i?1,2.3.4.5.6)?05. (1)z = 4(2)maxz?x1?x2st.6x1?10x2?120x1?x2?705?x1?10解:如图:由图可得:x?(10,6);z*t*3?x2?8?16*即该问题具有唯一最优解x?(10,6)t(3)无可行解(4)maxz?5x1?6x2st.2x1?x2?2?2x1?3x2?2 x1,x2?0如图:由图知,该问题具有无界解。
第四章 线性规划问题的计算机求解4.1 有以下线性规划数学问题: max Z=2x l +3 x 2 S.T. x l + x 2≤10 2x l + x 2≥4x l +3 x 2≤24 2x l + x 2≤16x l 、 x 2≥01、 用EXCEL 线性规划求解模板求解该数学模型。
2、 本问题的最优解是什么?此时最大目标函数值是多少?3、 四个约束条件中,哪些约束条件起到了作用?各约束条件的剩余量或松弛量及对偶价格是多少?4、 目标函数中各变量系数在什么范围内变化时,最优解不变?5、 确定各给定条件中的常数项的上限和下限。
解: 1、2、最优解:(3,7),最优值:273、 可变单元格约束对于求最大化的问题,对偶价格=阴影价格松弛量/剩余量对偶价格x l+ x2≤10 0 1.52x l+ x2≥4 9 0x l+3 x2≤24 0 0.52x l+ x2≤16 13 0 因第一、第三个约束条件的松弛量/剩余量为0 ,所以这两个约束条件起到了约束作用。
4、目标函数中各变量系数1≤C1≤32≤C1≤65、常数项8≤b1≤9.2无限≤b2≤1318≤b3≤3013≤b4≤无限4.2 有以下线性规划数学问题:min f=8x l+3 x2S.T. 500x l+100 x2≤12000005x l+4 x2≥60000100x l≥300000x l 、x2≥01、用EXCEL线性规划求解模板求解该数学模型。
2、本问题的最优解是什么?此时最大目标函数值是多少?3、各约束条件的剩余量或松弛量及对偶价格是多少?分别解释其含义。
4、目标函数中各变量系数在什么范围内变化时,最优解不变?5、确定各给定条件中的常数项的上限和下限。
解:本问题无解。
4.3 有以下线性规划数学问题:max Z=x l+2 x2+3 x3- x4S.T. x l+2 x2+3 x3≤152x l+ x2+5 x3≤20x l+2 x2+ x3+ x4≤10x l 、x2、x3、x4≥01、用EXCEL线性规划求解模板求解该数学模型。
运筹学实验报告实验课程:运筹学实验日期: 2020年4月4日任课教师:杨小康班级:数学1802 姓名:王超学号:2501180224一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用二、实验目的:了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。
熟悉Lingo 软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力三、实验要求:1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。
4、能给出最优解和最优值;5、能给出实际问题的数学模型,并利用lingo求出最优解四、报告正文(文挡,数据,模型,程序,图形):1.在Lingo中求解下面的线性规划数学模型;(1)12132412512345 max2543..28,,,,0z x xx xx xs tx x xx x x x x=++=⎧⎪+=⎪⎨++=⎪⎪≥⎩(2)12121212max2343..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(3)12121212max243..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(4)12121212max324 ..3,0z x xx xs t x xx x=+-≤⎧⎪-+≤⎨⎪≥⎩(5)1212121212max102401.530.50,0z x xx xx xs tx xx x=++≤⎧⎪+≤⎪⎨+≥⎪⎪≥⎩2、某工厂利用三种原料生产五种产品,其有关数据如下表。
原料可利用数(千克)每万件产品所用材料数(千克)A B C D E甲10 1 2 1 0 1 乙24 1 0 1 3 2 丙21 1 2 2 2 2 每万件产品的利润(万元)8 20 10 20 21 (l)建立该问题的运筹学模型。
(2)利用lingo 软件求出最优解,得出最优生产计划解:(1)设xi(i=1,2...,5)为所用材料生产的件数则数学模型,,,,21 2222242 3102;212010208max543215 43215431532154321≥≤++++≤+++≤+++++++ =xxxxxx xxxxt xxxx xxxxsxxxxxz (2)结果为220.3:现有15米长的钢管若干,生产某产品需4米、5米、7米长的钢管各为100、150、120根,问如何截取才能使原材料最省?(建立线性规划模型并利用lingo软件求解)解:方案4米5米7米剩余量截取长度1 3 0 0 32 2 1 0 23 2 0 1 04 1 2 0 15 0 3 0 06 0 1 1 37 0 0 2 14人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
管理运筹学》复习提纲第一章绪论(P1-P9)1. 决策过程(解决问题的过程)(1)认清问题。
(2)找出一些可供选择的方案。
(3)确定目标或评估方案的标准。
(4)评估各个方案:解的检验、灵敏性分析等。
(5)选出一个最优的方案:决策。
(6)执行此方案:回到实践中。
(7)进行后评估:考察问题是否得到圆满解决。
其中:(1)(2)(3)形成问题。
(4)(5)分析问题:定性分析与定量分析,构成决策2. 运筹学的分支:线性规划、整数线性规划、动态规划、图与网络模型、存储论、排队论、排序与统筹方法、决策分析、对策论、预测、目标规划,此外,还有多目标规划、随机规划、模糊规划等。
3. 运筹学在工商管理中的应用1)生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、物料管理等,追求利润最大化和成本最小化。
2)库存管理:多种物资库存量的管理,某些设备的库存方式、库存量等的确定。
3)运输问题:确定最小成本的运输线路、物资的调拨、运输工具的调度以及建厂地址的选择等。
4)人事管理:对人员的需求和使用的预测,确定人员编制、人员合理分配,建立人才评价体系等。
5)市场营销:广告预算、媒介选择、定价、产品开发与销售计划制定等。
6)财务和会计:预测、贷款、成本分析、定价、证券管理、现金管理等。
此外,还有设备维修、更新,项目选择、评价,工程优化设计与管理等。
3. 学习管理运筹学必须使用相应的计算机软件,必须注重学以致用的原则。
第二章线性规划的图解法(P10-P26)1. 一些典型的线性规划在管理上的应用合理利用线材问题:如何在保证生产的条件下,下料最少;配料问题:在原料供应量的限制下如何获取最大利润;投资问题:从投资项目中选取方案,使投资回报最大;产品生产计划:合理利用人力、物力、财力等,使获利最大;劳动力安排:用最少的劳动力来满足工作的需要;运输问题:如何制定调运方案,使总运费最小。
2. 线性规划的组成目标函数:max f 或min f ;约束条件:. (subject to) ,满足于;决策变量:用符号来表示可控制的因素。
运筹学实验报告(一)线性规划问题的计算机求解-(1)-CAL-FENGHAI.-(YICAI)-Company One1运筹学实验报告实验课程:运筹学实验日期: 任课教师:王挺第五种方案0 3 0 0第六种方案0 1 1 3第七种方案0 0 2 1设:第i种方案需要的钢管为Xi根(其中i=1,2...6),可得:minz=X1+X2+X3+X4+X5+X6+X7解:model:min= X1+X2+X3+X4+X5+X6+X7;3*X1+2*X2+2*X3+X4>=100;X2+2*X4+3*X5+X6>=150;X3+X6+2*X7>=120;endObjective value: 135.0000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 0.000000 0.2500000X2 0.000000 0.1666667X3 50.00000 0.000000X4 0.000000 0.8333333E-01X5 50.00000 0.000000X6 0.000000 0.1666667X7 35.00000 0.0000004人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
班次时间所需人数班次时间所需人数1 6:00~10:00 60 4 18:00~22:00 502 10:00~14:00 70 5 22:00~2:00 203 14:00~18:00 60 6 2:00~6:00 30设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?5投资计划问题某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。