第3章 线性规划的建模与应用new
- 格式:ppt
- 大小:752.00 KB
- 文档页数:40
线性规划问题的建模与求解思路线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在工程、经济、运筹学等领域具有广泛的应用。
本文将探讨线性规划问题的建模与求解思路,介绍一些常用的方法和技巧。
一、问题建模在进行线性规划问题的建模时,首先需要明确问题的目标和约束条件。
目标通常是最大化或最小化一个线性函数,而约束条件则是一系列线性等式或不等式。
以生产计划为例,假设某公司有两种产品A和B,每单位产品A的利润为10万元,每单位产品B的利润为8万元。
公司希望最大化总利润,同时满足以下约束条件:1. 产品A和B的生产总量不超过1000单位;2. 产品A的生产量不低于200单位;3. 产品B的生产量不低于300单位。
根据以上信息,我们可以进行如下的建模:设产品A的生产量为x,产品B的生产量为y,则目标函数为最大化利润:Maximize Z = 10x + 8y同时,需要满足以下约束条件:x + y ≤ 1000x ≥ 200y ≥ 300二、求解思路一般来说,线性规划问题的求解可以采用图形法、单纯形法、内点法等不同的方法。
下面将介绍其中两种常用的方法:图形法和单纯形法。
1. 图形法图形法适用于二维线性规划问题,通过绘制目标函数和约束条件的图形来求解最优解。
在上述例子中,我们可以将目标函数和约束条件绘制在坐标系中,找到目标函数与约束条件的交点,进而确定最优解。
2. 单纯形法单纯形法适用于高维线性规划问题,通过迭代计算来逐步接近最优解。
该方法的核心思想是从一个可行解开始,通过不断调整变量的取值来提高目标函数的值,直到找到最优解。
单纯形法的具体步骤如下:(1)将线性规划问题转化为标准形式,即将不等式约束转化为等式约束;(2)构建初始单纯形表,并选择一个初始基本可行解;(3)计算单位利润向量,并判断是否达到最优解;(4)选择一个入基变量和出基变量,并进行迭代计算,直到找到最优解。
三、技巧和注意事项在解决线性规划问题时,有一些常用的技巧和注意事项可以帮助我们更高效地求解问题。
线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于各个领域,如经济学、管理学、工程学等。
本文将介绍线性规划的基本概念、模型建立以及应用案例。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式,用于限制决策变量的取值范围。
约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为系数,b为常数。
3. 决策变量:线性规划中的决策变量是需要确定的变量,其取值决定了目标函数的取值。
决策变量通常表示为非负数,即x₁, x₂, ..., xₙ ≥ 0。
三、线性规划模型建立线性规划的模型建立包括确定目标函数、约束条件以及决策变量的取值范围。
下面以一个生产计划问题为例,详细说明线性规划模型的建立过程。
假设某工厂生产两种产品A和B,每天可用的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
产品A每小时需要2人工时,产品B每小时需要3人工时。
工厂每天可用的人工时为20小时。
现在需要确定每天生产的产品数量,以最大化利润。
1. 确定目标函数:由于目标是最大化利润,因此目标函数为z = 100A + 150B,其中A为产品A的数量,B为产品B的数量。
2. 确定约束条件:根据生产时间和人工时的限制,可以得到以下约束条件:- 2A + 3B ≤ 20(人工时限制)- A, B ≥ 0(非负数限制)3. 确定决策变量的取值范围:由于产品数量不能为负数,因此决策变量的取值范围为A, B ≥ 0。
四、线性规划的应用案例线性规划在实际应用中有广泛的应用,下面以物流配送问题为例,介绍线性规划的应用案例。
某物流公司需要将货物从仓库分配到不同的配送中心,以满足客户的需求。
线性规划建模线性规划是一种数学规划方法,用于求解线性约束条件下的最优解。
线性规划的建模包括确定决策变量、目标函数及约束条件。
首先,需要确定决策变量。
决策变量是问题中需要进行决策的变量。
对于线性规划问题,决策变量是连续变量。
例如,假设我们需要确定生产两种产品的数量,可以将产品1的数量设为x1,产品2的数量设为x2。
其次,需要确定目标函数。
目标函数是问题的最终目标,需要进行最大化或最小化的量。
在线性规划中,目标函数是线性函数。
例如,假设我们希望最大化利润,可以将目标函数设为最大化:目标函数: Maximize 5x1 + 4x2。
最后,需要确定约束条件。
约束条件是问题中需要满足的限制条件。
在线性规划中,约束条件可以是线性函数形式。
例如,假设我们有以下约束条件:x1 ≥ 0, x2 ≥ 0,x1 + x2 ≤ 100,2x1 + 3x2 ≤ 200。
将上述决策变量、目标函数和约束条件整合在一起,即可建立线性规划模型。
根据上述例子,线性规划模型可以表示为:决策变量:x1, x2目标函数:Maximize 5x1 + 4x2约束条件:x1 ≥ 0,x2 ≥ 0,x1 + x2 ≤ 100,2x1 + 3x2 ≤ 200。
最后,利用线性规划求解方法,如单纯形法或内点法,对建立的模型进行求解,得到问题的最优解。
总之,线性规划建模是一种将实际问题转化为数学模型的过程。
通过确定决策变量、目标函数和约束条件,可以建立线性规划模型,进而利用数学求解方法得到最优解。
线性规划建模的关键在于正确地把握问题的特点和要求,将实际问题转化为适合线性规划求解的数学模型。
线性规划的应用一、引言线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。
它在各个领域都有广泛的应用,如经济学、工程学、运筹学等。
本文将介绍线性规划的基本概念、模型建立和求解方法,并结合实际案例展示其应用。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
例如,最大化利润或最小化成本。
2. 约束条件:线性规划的解必须满足一系列线性不等式或等式,称为约束条件。
例如,资源限制、技术限制等。
3. 决策变量:线性规划中需要做出决策的变量,称为决策变量。
例如,生产数量、销售数量等。
三、模型建立线性规划的建模过程包括确定决策变量、目标函数和约束条件。
1. 决策变量的确定:根据实际问题确定需要做出决策的变量。
例如,假设某公司需要决定生产产品A和产品B的数量,可以设定决策变量为x和y,分别表示产品A和产品B的生产数量。
2. 目标函数的建立:根据实际问题确定需要最大化或最小化的目标函数。
例如,假设公司的目标是最大化利润,可以建立目标函数为Maximize 3x + 5y,其中3和5分别表示产品A和产品B的单位利润。
3. 约束条件的建立:根据实际问题确定约束条件。
例如,假设公司的资源限制为总生产时间不超过8小时和总材料消耗不超过100kg,可以建立约束条件为:- 2x + 3y ≤ 8(生产时间约束)- x + 2y ≤ 100(材料消耗约束)- x ≥ 0, y ≥ 0(非负约束)四、求解方法线性规划可以使用各种数学方法进行求解,其中最常用的方法是单纯形法。
单纯形法的基本思想是通过不断地移动解去改善目标函数的值,直到找到最优解。
具体步骤如下:1. 初始化:选择一个初始可行解。
2. 检验最优性:计算当前解的目标函数值,判断是否为最优解。
如果是最优解,则结束求解;否则,继续下一步。
3. 选择进入变量:选择一个非基变量作为进入变量,使目标函数值增加最快。
线性规划的建模技巧和求解线性规划是一种数学优化方法,用于确定一个或多个线性方程的最佳解。
它在许多领域有广泛应用,如生产、物流、金融等。
下面将介绍线性规划的建模技巧和求解方法。
一、线性规划的建模技巧:1. 确定决策变量:首先要确定需要决策的变量,这些变量决定了模型的目标函数和约束条件。
变量可以表示限制条件或可供选择的决策。
2. 确定目标函数:目标函数是需要优化的目标,可以是最大化或最小化。
一般情况下,目标函数是由决策变量的线性组合构成的。
3. 确定约束条件:约束条件是限制决策变量的条件,包括等式约束和不等式约束。
约束条件可以是资源的限制、技术要求等。
4. 确定约束集:约束集是所有约束条件的集合,它定义了可行解的范围。
在确定约束集时,需要将每个约束条件转化为决策变量的线性等式或不等式。
5. 确定可行域:可行域是约束集在决策变量空间中的几何图形。
可行域是一个多面体或多面体的集合,其中每个面都由一个或多个约束条件定义。
6. 确定边界条件:边界条件是可行域的边界,在边界上的解是目标函数的极值点。
通过分析边界条件,可以确定是否存在最优解以及在哪个边界上可以找到最优解。
二、线性规划的求解方法:1. 图形法:图形法适用于二维情况,可以将可行域和目标函数的等值线绘制在一个坐标系中,通过观察交点找到最优解。
但是,图形法只适用于简单的问题,对于复杂问题无法使用。
2. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过迭代的方式从可行域的某个顶点开始,逐步向更优解迭代,直到找到最优解。
单纯形法的思想是寻找一个可以改进目标函数值的方向,并且每次改进保证不会违反约束条件。
3. 对偶理论:线性规划问题的对偶问题可以通过原问题的约束条件和目标函数得到。
通过对偶问题的求解,可以得到原问题的最优解、最优解的相应目标值以及松弛变量的价值。
4. 整数规划:如果决策变量是整数变量,那么线性规划问题称为整数规划问题。
整数规划问题的求解通常比线性规划问题要困难得多,因为整数变量会引入离散性。
实验三线性规划的建模与应用
一、实验目的和要求
一个游乐场的职工有7种轮休方式,每人每周连续休息2天。
已知每天所需最少的工作人员如下表所示,职工的日薪为40元,问如何安排轮休方式的职工人数,才能使游乐场的职工周薪总数最少?
二、实验步骤和过程
第一步:加载“规划求解”
第二步:建立表格输入数据
第三步:输入公式k4=F13+G13+H13+I13+J13,k5=D13+G13+H13+I13+J13,k6=D13+E13+H13+I13+J13,k7=D13+E13+F13+I13+J13以此类推。
第四步:使用规划求解工具求解,建立关系
第五步得出结果
三、实验体会和结论
规划求解简单迅速,使用方便,很直观的显示出数据,可以解决很多的问题。
毕业论文(设计)课题名称线性规划模型的求解及应用业数学与应用数学(S)2010级数学2班指导教师________________________________ 学生姓名______________________________隹木期大学数务处word文档可自由复制編辑线性规划模型的求解及应用佳木斯大学理学院数学系2014年6月线性规划是运筹学的一个重要分支,它辅助人们进行科学管理,是国际应用数学、经济、计算机科学界所关注的垂要研究领域.线性规划主要研究有限资源最佳分配问题,即如何对有限的资源进行最佳地调配和最有利地使用,以便最充分发挥资源的效能来获取最佳的经济效益.线性规划运用数学语言描述某些经济活动的过程,形成数学模型,以一定的算法对模型进行计算,为制定最优计划方案提供依据•其解决问题的关键是建立符合实际情况的数学模型,即线性规划模型.在各种经济活动中,常采用线性规划模型进行科学、定量分析, 安排生产组织与计划,实现人力物力资源的最优配置,获得最佳的经济效益.目前,线性规划模型被广泛应用与经济管理、交通运输、工农业生产等领域.本文主要介绍线性规划的两种基本解法即图解法和单纯形法,并讨论了这两种方法的优缺点和在一些实际问题屮的应用.关键词:线性规划:图解法:单纯形法:数学模型:应用AbstractLinear progianmiing is an iinpoilant branch of operations research, which assist people to scientific management is an important area of research iiitemationally applied mathematics, economics, computer science conmiunity^s concerns. The main study of linear programming optimal allocation of limited resomces, namely liow to limited resoiuces optimally deploy and most advantageously used in order to most hilly effective resources to get the best value for money.Linear progianmiing using mathematical language to describe the process of certain economic activities, the fonnation of mathematical models to a certain algorithm to calculate the model toword文档可自由复制編辑provide a basis for the fonnulation of the optimal plan for. The key to solve the problem is to create a mathematical model in line with the actual situation, namely linear progranmiing model. In various economic activities, often using linear progianuning model for scientific, quantitative analysis, organization and planning for production to achieve the optimal allocation of hiunan and material resources, to get the best value for money. At present, the linear progianmiing model is widely used in economic management, tiansportation, industrial and agricultural production and other fields.This paper describes two basic solution that giaphical method for linear programming and the simplex method, and discuss the advantages and disadvantages of both methods and applications in a number of practical problems・Key words:Linear Programming: Graphic method; simplex method; mathematical model;Application摘要........................................................................... Abstract .................................................................................................................................第1章绪论 ....................................................................1.1线性规划的基本概念......................................................1.1.1线性规划简介........................................................1.1.2线性规划由來的时间简史..............................................1.2线性规划的研究目的及意义................................................第2章线性规划问题的数学模型..................................................2.1线性规划模型的建立......................................................2.2线性规划模型的求解方法..................................................2.2.1图解法..............................................................2.2.2单纯形法............................................................ 第3章线性规划在实际问题中的应用..............................................3.1线性规划在企业管理中的应用 ..............................................3.1.1线性规划在企业管理中的应用范围......................................3.1.2如何实现线性规划在企业管理中的应用..................................3.2线性规划在企业生产计划中的应用 ..........................................33线性规划在运输问题中的应用............................................... 结论........................................................................... 參考文献.......................................................................第[章绪论1.1.1线性规划简介线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支, 它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备利新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题•满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素.1.1.2线性规划由来的时间简史法国数学家J. - B. - J.傅里叶和C.瓦莱一普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意.1939年苏联数学家fl.B.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视.1947年美国数学家G. B. Dantzing提出求解线性规划的单纯型法,为这门学科奠定了基础.1947年美国数学家J. von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域, 扩大了它的应用范围和解题能力.1951年美国经济学家T. C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖.50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法.例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析利参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B•丹齐克和P.沃尔夫提出分解算法等.线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究.由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX, OPHEIE, UMPIRE等,可以很方便地求解几「个变量的线性规划问题.1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法.1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法. 用这种方法求解线性规划问题在变屋个数为5000时只要单纯形法所用时间的1/50.现已形成线性规划多项式算法理论.50年代后线性规划的应用范用不断扩人.建立线性规划模型的方法第2章线性规划问题的数学模型2.1线性规划模型的建立线性规划是合理利用、调配资源的一种应用数学的方法•它的基本思路是在满足一定的约束条件下,使预定的目标达到最优•它的研究内容可归纳为两个方面:一是系统的任务资源数量己定,精细安排,用最少的资源去实现这个任务:二是资源数量己定,如何合理利用、调配,使任务完成的最多.前者是求极小,后者是求极大.线性规划的一般定义如下:对于求取一组变量Xj (j=l,2,-,n),使之既满足线性约束条件,又使具有线性特征的目标函数取得极值的一类最优化问题称为线性规划问题.线性规划模型建立需具备以下条件:一是最优目标.问题所要达到的目标能用线性函数來描述,且能够使用极值(最大或最小)来表示.二是约束条件•达到目标的条件是有一定限制的,这些限制可以用决策变量的线性等式或线性不等式來表示.三是选择条件,有多种方案可以供选择,以便从中找出最优方案.线性规划问题的一般数学模型如下:max(或min) Z = c1x l + c2x2 ------- 1- c n x n(1)r a1I x1 + a.2x2 + -+a.B x n< (=,b t+a22x2 4-- + a2a x c < (=,>) h2s.t. / : :: ⑵a:x l+a m2x2+ - + a mn x n 兰(=,>)b maV x:x2 ........... x n > 0(< 0)Xj (j = 1,2,“n) 称为决策变量word文档町“由复制编辑bj(j = 1,2, ...,n) 称为约束右端系数屯(}= 1,2,= 1,2, ...r n) 称为约束系数 其中式(1)为目标函数,式(2)称为约束条件•由于目标函数和约束条件内容和形式上的差别,线性规划问题有多种表达式,为了便 于讨论和制定统一的算法,规定标准形式如下:(1) 标准形式 iaxz = CiXj+C?%+••• + %£a n x i + + ・• • + a in\ =b 】a 21X l • • • + + ・•・ + ** * • • • a 2n X n =■ + 3^X3+ •••+ a nm\ =X )n 0 (j = 1,…,n)(2) £记号简写式nmax z =工 C J X Jj ・i■n E a u x j =b : (i = l ,2,.・.m)[Xj=O (j =1,2,...41)(3) 矩阵形式max z = CXjAX = b(X>O式中c=(C v ...,c n ), X= (xp.— xj 311 a 12 …a lnL 0A= 321 a 22 …a 2n ,b = b, ■ ,0 = 0• • • • • • ••• • • • • • ••• a ml a m2 …a mn b 3 0■ Cj(j = 1,2,…,n)称为1=1标函数系数max z = CXf Pkbn x>o式中C, X, b, 0的含义与矩阵的表达式相同,而Pj = [a ir a 2?-^a mj]0 = 12 …,n)即 A= (p 1,p 2r»>p n )将非标准形式化为标准形式的情况(3种基本情况)(1) 目标函数为求极小值minZ=CA ;则作 Z=-CX,即 maxZ^-CX(2) 右端项小于0只需要将两端同乘(-1),不等号改变方向,然后再将不等式改为等式(3) 约束条件为不等式 若约束条件为“兰”则在不等式左侧增加一个非负松驰变最,使其转化为若约束条件为“X”,则在不等式左侧减去一个非负剩余变量(也称松驰变暈),使其转化 为 “ =” •2.2线性规划模型的求解方法线性规划可以在一定条件下合理安排人力、物力等资源,使经济效果达到最好.一般 来说,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问 题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变星、 约束条件、目标函数是线性规划的三要素.然而图解法不适合解大规模的线性规划的问 题,局限性比较大.但对于只有两个或考三个变量的线性规划问题,可以用图解法求最优 解,也就是作出约束条件的可行域,利用图解的方法求出最优解,其特点是过程简洁、 图形清晰,简单易懂•下面仅做只有两个变量的线性规划问题.只含两个变量的线性规划问题,可以通过在平而上作图的方法求解,步骤如下:(4)向量形式 2. 2.1 解法(1)以变量X】为横坐标轴,X:为纵坐标轴,适当选取单位坐标长度建立平面坐标直角坐标系.由变量的非负性约束性可知,满足该约束条件的解均在第一象限内.(2)图示约束条件,找出可行域(所有约束条件共同构成的图形).(3)画出目标函数等值线,并确定函数增大(或减小)的方向.(4)可行域中使目标函数达到最优的点即为最优解.卜面举出一个实例来说明:例1•某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56假设生产每种产品都需要用两种木料,生产一张圆桌和一个衣柜分别所需木料如下表所示.每生产一张圆桌可获利60元,生产一个衣柜可获利100元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?解:设生产圆束x张,生产衣柜y个,利润总额为n元,则由已知条件得到的线性规划模型为:max z = 60x+ 100y,s.t. 0.18x+ 0.009y <72,0.08x+0.28y < 56,x>0,y>0.图2-1这是二维线性规划,可用图解法解,先在xy坐标平面上作出满足约束条件的平面区域,即可行域S,如上图所示.再作直线l:60x-F100y=0,即l:3x+5y=O,把直线1半移至的位置时,直线经过可行域上点M,且与原点距离最远,此时z=60x+100y取最大值,为了得到M点坐标解方程组(°层+。
线性规划问题的建模与求解线性规划是一种常见的数学优化方法,用于解决一系列约束条件下的最优化问题。
它在工业、经济、管理等领域具有广泛的应用。
本文将介绍线性规划问题的建模过程以及求解方法,并通过实例来说明其应用。
一、线性规划问题的定义线性规划问题可以定义为在一定的约束条件下,寻找一组决策变量的最优解,使得目标函数达到最大或最小值。
其中,目标函数和约束条件均为线性的。
在建模过程中,首先需要明确决策变量、目标函数和约束条件。
决策变量是我们需要确定的决策因素,可以是某个产品的生产数量、某个投资项目的投入金额等。
目标函数是我们希望最大化或最小化的量,可以是利润、收益、成本等。
约束条件是对决策变量的限制条件,可以是资源约束、技术约束等。
二、线性规划问题的建模过程线性规划问题的建模过程一般包括以下几个步骤:1. 确定决策变量:根据实际问题确定需要确定的决策因素,例如某个产品的生产数量、某个投资项目的投入金额等。
2. 建立目标函数:根据问题的要求,确定目标函数的形式和系数。
如果是最大化问题,目标函数一般为各决策变量的系数之和;如果是最小化问题,目标函数一般为各决策变量的系数之差。
3. 确定约束条件:根据问题中的限制条件,建立约束条件的数学表达式。
约束条件一般包括资源约束、技术约束等。
每个约束条件都可以表示为决策变量的线性组合与某个常数之间的关系。
4. 确定决策变量的取值范围:根据实际问题的限制条件,确定决策变量的取值范围。
例如,某个产品的生产数量不能为负数,某个投资项目的投入金额有上限等。
5. 建立数学模型:将上述步骤中确定的决策变量、目标函数和约束条件组合起来,建立线性规划问题的数学模型。
三、线性规划问题的求解方法线性规划问题的求解方法主要有两种:图形法和单纯形法。
1. 图形法:对于二维或三维空间中的线性规划问题,可以使用图形法进行求解。
首先将目标函数和约束条件转化为几何形式,然后在坐标系中画出目标函数的等高线和约束条件的边界线,最后确定最优解所在的交点。