寄生电感计算表格
- 格式:xlsx
- 大小:671.47 KB
- 文档页数:5
导线线径与电流规格表绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导线(铝芯/铜芯)载流量的估算方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南平供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5估算口诀:二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
(看不懂没关系,多数情况只要查上表就行了)。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。
由表5 3可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm’导线,载流量为2.5×9=22.5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
表格为导线在不同温度下的线径与电流规格表。
(请注意:线材规格请依下列表格,方能正常使用)即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。
矩型线圈、螺旋线圈、多层绕组线圈、变压器线圈的电感和 互感计算方法1、截面为矩型的线圈的电感计算方法矩形线圈如图2-36所示,其电感为:£-址 . lab .. lab□ In ------- din —z -----其中:L:矩形线圈的电感[H)乐b :矩形线圈的平均长和寅[m] 尸:线圈导线的半径MXV 崖空导腐率> ^ = 4^1(r 7 [Wm]d —4-扩【说明】该公式的应用条件是:a»r 」b»rQ-2(a + b-d) + ^^[H](2-105)2、截面为单层螺旋型的线圈的电感计算方法图2-37("06)蝮旋线圈如图二歼所示,其电感为:L —-- ------I其中:L:螺旋型线圈的电感[H]l :螺旋型线圈的长度[m]N :螺旋型线圈的匝数S:螺旋型线圈的截面积[m2]卩:螺旋型线圈内部磁芯的导磁率[H/m]k :螺旋型长冈系数(由2R/I决定,表2-1 )【说明】上式用来计算空心线圈的电感,卩=卩0,计算结果比较准确。
当线圈内部有磁芯时,磁芯的导磁率最好选用相对导磁率卩r,ii r=卩/卩0,卩为磁芯的导磁率,即:有磁芯线圈的电感是空心线圈电感的叮倍,―可通过实际测量来决定,只需把有磁芯的线圈和空心线圈分别进行对比测试,即可求得卩r 。
但由于磁芯的导磁率会随电流变化而变化,所以很难决定其准确值。
这个公式是从单3、多层绕组重叠线圈的电感图2・3&多层绕组线圈如囹2-3S所示」其电感为:L =-^0.693+C)]x 10^ [H] (2-107) 其中:L:多层绕组线圈的电感[H]R:线圈的平均半径[m]l :线圈的总长度[m]N :线圈的总匝数t :线圈的厚度[m] k :长冈系数(由2R/I决定,见表2-1 )c :由l/t决定的系数(见表2-2 )【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。
长冈系数k可查阅表2-1,系数c可查阅表2-2。
PCB过孔的寄生电容和电感的计算和使用一、PCB过孔的寄生电容和电感的计算PCB过孔本身存在着寄生电容,假如PCB过孔在铺地层上的阻焊区直径为D2,PCB 过孔焊盘的直径为D1,PCB板的厚度为T,基板材介电常数为ε,则PCB过孔的寄生电容数值近似于:C=1.41εTD1/(D2-D1)PCB过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度尤其在高频电路中影响更为严重。
举例,对于一块厚度为50Mi l的PCB,如果使用的P CB过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出PCB过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF这部分电容引起的上升时间变化量大致为:T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps从这些数值可以看出,尽管单个PC B过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用PCB过孔进行层间的切换,就会用到多个PCB过孔,设计时就要慎重考虑。
实际设计中可以通过增大PCB过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。
PCB过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,PCB 过孔的寄生电感带来的危害往往大于寄生电容的影响。
它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。
我们可以用下面的经验公式来简单地计算一个P CB过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指PC B过孔的电感,h是PCB过孔的长度,d是中心钻孔的直径。
电感电感量Inductance此电路元件的特性,能抑制流经元件之电流的改变。
电感之电感量会受磁芯之材质、磁芯之形状及尺寸、绕线的圈数及线圈的形状所影响。
电感器的电感量通常用微享(μH)来表示。
下列的表格可以用来将电感值的单位换算成微亨。
因此,1 henry (H) = 106μH1 millihenry (mH) = 103μH1 microhenry (μH) = 1 μH1 nanohenry (nH) = 10-3μH直流阻抗DCR (DC Resistance)电感线圈在非交流电下量得之电阻值。
在电感设计中,直流阻抗愈小愈好,其量测单位为欧姆,通常标注其最大值。
饱和电流Saturation Current在电感器中流过、引起电感量下降一特定量的直流偏置电流。
电感量下降的值是从直流电流为零时的电感量开始计算。
通常定义的电感值下降百分比有10% 及20%。
在储存能量的应用中,铁氧体磁芯的电感量下降规定为10% 及粉末磁芯的电感量下降规定为20%。
因此直流偏压电流而致电感值下降的因素与磁芯的磁性有关。
磁心和磁心周围的空间只能存储一定量的磁能。
超出最大的磁通量密度点以后,磁心的导磁率会降低。
因此,电感值会因而下降。
空心电感并不存在磁芯饱和的问题增量电流Incremental Current指流经电感的直流偏压电流,与没有直流偏压电流的电感量相比,这个电流会引起电感量下降5%。
这个电流强度说明电感值在持续增加的直流偏压下将急速的下降。
这个结果适用于铁氧体磁心,但不适用于粉状磁心。
粉状磁芯具有“软性”的饱和特性,意思是指在较高的直流偏压下,其电感量的下降较铁氧磁芯来的缓和。
同时、电感值下降的速率亦和铁芯的形状有关。
额定电流Rated Current允许能通过一电感之连续直流电流强度。
是指电感器处在额定最高环境温度的环境中、电感器温升最高时、可以连续流过的直流电流的大小。
额定电流与一电感藉由低的直流电阻以降低绕组的功耗的能力有关。
导线线径与电流规格表绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导线(铝芯/铜芯)载流量的估算方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南平供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5估算口诀:二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
(看不懂没关系,多数情况只要查上表就行了)。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。
由表5 3可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm’导线,载流量为2.5×9=22.5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
表格为导线在不同温度下的线径与电流规格表。
(请注意:线材规格请依下列表格,方能正常使用)即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。
电容寄生参数及引线对插入损耗的影响摘要:电容是电路中最常见的器件之一,其主要作用有滤波、旁路、去耦、储能等。
本文从插入损耗的角度入手,通过实测数据分析了寄生参数,引线长短、电容容值、数量,等因素对滤波效果的影响。
关键词:插入损耗寄生参数滤波一、引言无源滤波电路一般是由电容、电感、电阻等无源器件组成的滤波网络,其滤波效果主要取决于器件参数,电路拓扑,接地效果及与源、负载之间的阻抗匹配等因素。
其中器件参数是基础,而电容是滤波电路中的灵魂,其较之电感、电阻有更灵活、更优异的参数调整空间。
二、插入损耗的定义插入损耗是衡量滤波电路最重要的性能指标,它决定滤波电路性能的好坏。
插入损耗的计算公式如下:(dB)式中,,Uin是某频率的干扰信号在滤波电路输入端的电压,Uout是干扰信号在滤波电路输出端的电压。
插入损耗用分贝(dB)表示,分贝值越大,说明抑制当前频率噪声干扰的能力越强。
三、寄生参数对插入损耗的影响理想的电容是没有寄生参数的,随频率的增大,插入损耗是呈线性增长的。
但实际电容因结构、引线的影响,都存在寄生参数,其插入损耗会在线性增长的过程中达到一个最高点,然后逐渐回落,这个最高点称为器件的自谐振频率,该谐振点的频率为:其中L为电容的等效寄生电感(ESL),C为电容容值。
理想电容与实际电容的插入损耗曲线对比如图1所示。
图1 理想器件与实际器件插入损耗曲线对比因电容种类繁多,这里我们对最常用的陶瓷贴片电容做一个测试对比,部分测试数据如图2所示,测试仪器为RS公司的四通道矢量网络分析仪ZNB4,测试源阻抗和负载阻抗都是50Ω。
图2 陶瓷贴片电容插入损耗测试对比从测试结果我们统计并计算出各容值的贴片电容的fs和ESL如表1所示。
从表中我们可以看出,贴片电容的ESL一般在10nH以下,封装越小,ESL越小。
表1 贴片电容寄生参数对比电容容值 C自谐振频率 fs(MHz)寄生电感预估 ESL(nH)备注10pF748 4.53 47pF2707.40四、引线对插入损耗的影响电容的引线相当于给电容引入一个外部的ESL,引线的长短、粗细对其滤波性能有相当大的影响,这里我们选取了一个1210封装、3.3uF的陶瓷贴片电容进行对比测试,测试数据如图3所示。
导线线径与电流规格表绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导线(铝芯/铜芯)载流量的估算方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南帄供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系导线截面(帄方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5估算口诀:二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
(看不懂没关系,多数情况只要查上表就行了)。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。
由表5 3可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2〃5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2〃5mm’导线,载流量为2〃5×9=22〃5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3〃5倍,即35×3〃5=122〃5(A)。
从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0〃5。
表格为导线在不同温度下的线径与电流规格表。
(请注意:线材规格请依下列表格,方能正常使用)即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2〃5倍,依次类推。
PCB过孔的寄生电容和电感的计算和使用一、PCB过孔的寄生电容和电感的计算PCB过孔本身存在着寄生电容,假如PCB过孔在铺地层上的阻焊区直径为D2,PCB过孔焊盘的直径为D1,PCB板的厚度为T,基板材介电常数为ε,则PCB过孔的寄生电容数值近似于:C=1.41εTD1/(D2-D1)PCB过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度尤其在高频电路中影响更为严重。
举例,对于一块厚度为50Mil 的PCB,如果使用的PCB过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出PCB过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF这部分电容引起的上升时间变化量大致为:T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps从这些数值可以看出,尽管单个PCB过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用PCB过孔进行层间的切换,就会用到多个PCB过孔,设计时就要慎重考虑。
实际设计中可以通过增大PCB过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。
PCB过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,PCB过孔的寄生电感带来的危害往往大于寄生电容的影响。
它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。
我们可以用下面的经验公式来简单地计算一个PCB过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指PCB过孔的电感,h是PCB过孔的长度,d是中心钻孔的直径。
从式中可以看出,PCB过孔的直径对电感的影响较小,而对电感影响最大的是PCB 过孔的长度。
仍然采用上面的例子,可以计算出PCB过孔的电感为:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。