Buck电路电感计算表
- 格式:xls
- 大小:22.00 KB
- 文档页数:1
dcdc buck电路的计算DC-DC Buck电路是一种常见的电压转换器,用于将高电压转换为低电压,广泛应用于各种电子设备中。
本文将详细介绍如何计算DC-DC Buck电路的关键参数,并提供实用计算方法。
一、DC-DC Buck电路简介DC-DC Buck电路是一种基于开关管、电感、电容等元件的电压转换器。
在工作过程中,通过控制开关管的导通与截止,实现输入电压与输出电压之间的能量传递。
Buck电路具有结构简单、转换效率高等优点。
二、计算DC-DC Buck电路的关键参数1.电感(L)电感的大小影响电路的输出电压波动和电流纹波。
选择电感时,需根据负载电流和开关频率来确定。
电感计算公式为:L = Vout * fsw / (2 * π * Iout)其中,Vout为输出电压,fsw为开关频率,Iout为负载电流。
2.电容(C)电容的大小影响电路的输出电压波动和电流纹波。
选择电容时,需根据负载电流和开关频率来确定。
电容计算公式为:C = Vout * fsw / (2 * π * Iout)其中,Vout为输出电压,fsw为开关频率,Iout为负载电流。
3.开关管导通时间(ton)开关管导通时间影响电路的转换效率。
理想情况下,导通时间等于半个周期,计算公式为:ton = 1 / (2 * fsw)其中,fsw为开关频率。
4.开关管截止时间(toff)开关管截止时间影响电路的输出电压波动和电流纹波。
理想情况下,截止时间等于半个周期,计算公式为:toff = 1 / (2 * fsw)其中,fsw为开关频率。
三、详细步骤及公式推导1.确定负载电流Iout和开关频率fsw。
2.根据公式计算电感L和电容C。
3.计算开关管导通时间ton和截止时间toff。
4.根据实际需求,调整元件参数,以满足电路性能要求。
四、实例分析与计算假设我们需要设计一个输出电压为5V,负载电流为1A,开关频率为100kHz的DC-DC Buck电路。
Vin-min(V)Vin-max(V)工作频率F(Hz)输出电压Vo(V) 6616030000048
以上为根据电流纹波系数计算BUCK电路电感量L(uH)输出电流Io(A)磁通密度Bm(T)磁芯有效截面积Ae(mm~2)
34 6.50.2589.7
以上为根据电感量和磁芯截面积计算最电感量L(uH)磁芯有效截面积Ae(mm~2)匝数Nmin气隙大小lg(mm) 16919.18240.082105835
以上根据电感量、匝数、有效截面积计算输入电压(V)单相占空比D开关频率F(Hz)磁通密度Bm(T) 480.51500000.11
以上为推挽、桥式变压器原边匝数输入电压(V)单相占空比D开关频率F(Hz)磁通密度ΔB(T) 480.53000000.25
以上为正激变压器原边参数计算
输出电流Io(A)纹波系数K输出电感量L(uH)
6.50.534.46153846 CK电路电感量
最小匝数Nmin
9.855072464
计算最小匝数
积计算气隙大小
磁芯有效截面积Ae(mm~2)原边匝数
89.78.10783419
边匝数计算
磁芯有效截面积Ae(mm~2)原边匝数
89.7 3.56744705
数计算。
Buck converter design降压电路(也叫buck电路)是值输出电压小于输入电压,控制IC通过调整占空比来实现电压的转换,其表达式为Vout=Vin*D。
ST L7987是一款非同步开关管内置的IC。
现在根据IC的DATASHEET分析BUCK电感的设计。
1,典型电路图2,设计输入条件Vin22V:=Vin_min16V:=Vin_max28V:=Vout12V:=Iout3A:=Fsw500KHz:=Vfb0.8V:=Iss5106-A⋅:=3,计算感量IL Iout3A=:=ΔI0.1IL⋅0.3A=:=关于电感电流变化系数的选择,与很多因数有关。
系数越大,电感体积越小,但是纹波电流大,需要大容量的滤波电容器。
这里计算选择了0.1,仅供参考。
L_actual22μH:=4,开关管电流波形,续流二极管电流波形从两个器件的波形图可以看出BUCK电路的工作过程,开关管导通的时候,电感电流上升,电感储存能量,续流二极管处于关闭状态,无电流。
开关管关闭后,电感电流下降,电感释放能量,续流二极管处于导通状态,且电流减小。
5,电感设计电感在一个周期中有储存能量和释放能量的过程,磁芯磁路中需要高磁阻部分来担任这个作用。
常用的几种电感结构有:工字/棒形磁芯(开磁路);气隙铁氧体;金属磁粉芯;气隙非晶磁芯a)选择铁氧体磁芯AP 法选择磁芯Aw=N*Irms/J/Ku Ae=L*Ipeak/N/Bm Ap=L*Ipeak*Irms/Ku/J/BmEQ18Ae 30102-⋅cm2:=Le 2.17cm :=Ve 668103-⋅cm 3:=ur 1800:=选择3*0.25mm 扁线可以满足要求计算磁芯气隙计算损耗ID 7.2mm :=ρ 2.33108-⨯Ωm⋅:=L_cu 3.14ID W +()⋅N_actual ⋅ 1.05⋅0.336m=:=P_cu Irms 2R_cu ⋅0.094W=:=Ptotal P_fe P_cu +0.094W =:=计算温升L_core 18mm :=W_core 9.7mm :=H_core 6.3mm:=As 2L_core W_core ⋅L_core H_core ⋅+W_core H_core ⋅+()⋅ 6.982104-⨯m 2=:=ΔT 2956.9820.7-⋅0.0940.85⋅10.144=:=b)选择金属磁粉芯Bm_powder 0.5T:=D_choose 1.0mm:=初选磁芯KS065125A -根据计算软件得到设计值如下:L031.75μH:=L_3A 24.76μH :=P_core 0.1W:=P_wire 0.16W :=金属磁粉芯的设计有软件可以帮助,相关计算公式供应商也可以提供,包括损耗计算公式,电感下降比例计算,温升等各种。
BUCK电路电感选择和计算电感参数当导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与产生此磁通的电流成正比。
当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。
根据法拉弟电磁感应定律来分析,电感则是电流通过线圈产生的磁通量储存在铁心中存储能量(Φ=LI),当通过线圈的电流愈大时磁通量也相对愈大,即代表储存的能量越大。
如图1 中,开关导通时间段,电感L内的电流逐渐增加,当导通结束后,进入截止时间段,这时候由于L内的电流达到最大值,电感中的电流不能突变,所以,继续有电流流过,当截止时间结束后,电感中的电流达到最小值,重新开始新的周期。
电感就是通过这种在周期中的导通时间,将能量储存在磁场内,并在断开时将所储存的能量提供给负载来工作。
图1.电感在DC-DC Buck 电路中的应用,工作在连续电流模式下。
电感两端的电压可以突变但电流不会突变。
由于电感中变化磁场会对周边产生电磁辐射,对周边敏感组件产生干扰,因此屏蔽是首先需要考虑的,屏蔽的电感最主要就对外辐射少,但是尺寸比较大,价格也贵。
非屏蔽的电感则可以做的很小,电流也可以做的很大,价格也便宜。
如果设计中问题辐射是关键因素,屏蔽电感还是首选。
当电流流过时,电感的温度会上升,交流纹波(AC ripple)会导致磁芯损耗,而直流电流会导致感应系数下降。
稳态状况下直流电流Irms 引起电感温度上升20-40 摄氏度,这也是电感功耗的主要参考。
另外,也有将Irms 归类成输出电流或开关模块的平均电流。
功耗有两部分组成,已是由Irms 部分计算的直流损耗P=I2R和AC纹波电流引起的磁芯损耗。
电感选择示例buck 转换电路为例说明滤波电感的设计方法。
这是常用的降压调节电路,以提供稳定和高效的输出电压。
在变换电路中,设有LC 滤波电路,滤波电感中的电流含有一个直流成分和一个周期性变化的脉动成分。
详细分析BUCK电源的参数计算
瞬态响应
小时候喜欢看赵忠祥的动物世界,有这样一幅紧张又刺激的画面一直留存在脑海里,草原上一群小鹿正在休憩着,一只豹子慢慢靠近,然后突然发力扑过去,受惊的小鹿立刻发足狂奔,反应速度快的可以逃脱,反应速度慢的就成为了豹子的大餐,这里我们先记着“反应速度”这个词。
我们在使用电脑时,当电脑处于休眠状态时按下任意一个唤醒键,电脑要能够瞬间Warm up起来,准备迎接主人的各种操作,这个过程越快越好,快到人们几乎没有感觉,这时候内部主要电源的电流会突然拉升,相应的输出电压会先Collapse然后重新建立平衡回到原点,看图1。
这里我们记住“环路带宽”这个词,环路带宽越大,电压回到原点的过程就越快。
图1 瞬态响应
那么这跟上面豹子和小鹿有什么关系呢?前面小鹿的“反应速度”和后面电脑的“环路带宽”是一个概念。
图2是一张二者的类比图,电源系统必须要能够从负载的突变中快速恢复正常,否则电脑就会象上面那只可怜的小鹿一样挂了。
你知道吗?此时电脑内部的电源可遭罪了,因为此时系统的功耗会猛一下窜到很高,低功耗(电流)的平衡被打破,需要重新调整到高功耗的平衡。
图2 电脑和小鹿的类比
当电脑唤醒或者睡眠的瞬间,板子上的DC-DC BUCK电源输出端的负载电流会发生突变,导致输出的电压产生短暂的晃动,在经过快速调整后恢复到正常电压,这种过程我们称之为电源的瞬态响应,在调整过程中需要满足三个方面的设计要求:
1. 电压调整–输出电压的晃动不能超出芯片的工作范围;
2. 环路带宽–输出电压恢复到正常电压的时间要尽量快;。
buckboost电路参数计算
为了计算buck-boost电路的参数,我们需要以下几个参数:
1. 输入电压(Vin):输入电压是电路的主要参数之一,表示电路供电的电压大小。
2. 输出电压(Vout):输出电压是电路的另一个重要参数,表示电路输出的电压大小。
3. 电流(I):电流是流经电路的电子数量,通常以安培(A)为单位。
4. 开关频率(f):开关频率是指电路中开关元件(如MOSFET)切换的频率,通常以赫兹(Hz)为单位。
5. 工作周期(D):工作周期是指切换管导通时间的百分比,可以通过开关频率和切换时间来计算。
根据这些参数,可以使用以下公式计算buck-boost电路的一些重要参数:
1. 电感(L):电感是电路中存储能量的元件,可以通过以下公式计算:
L = (Vin - Vout) * (1 - D) / (2 * f * ΔI)
其中,ΔI是电感电流峰值和电流平均值之差。
2. 电容(C):电容是电路中存储能量的元件,可以通过以下公式计算:
C = (Vin - Vout) * (1 - D) / (8 * f * ΔV)
其中,ΔV是电容电压峰值和电压平均值之差。
3. 开关元件(如MOSFET)的额定电流和电压:这些参数可以根据开关元件的数据手册或规格来确定,以确保开关元件在工作条件下能够承受相应的电流和电压。
请注意,以上公式仅适用于理想情况下的计算,实际应用中还需要考虑一些非理想因素,如电感和电容元件的内阻、开关元件的导通电阻、温度等。
因此,在实际应用中,需要根据具体情况进行参数的精确计算和调整。
Buck变换器别名叫降压变换器,串联开关稳压电源,作用是把输入高电压转换成人们需要的低压。
不要市电是AC220V,整流滤波后是310V的直流,大多电子产品是低压电路,一般是5V、12V、24V、36V、48V等,这些低压的电子设备不能直接应用输入AC整流后的直流电压,必须用一个转换器转换成所能应用的低电压。
当然能把高压转化成低压的转换器有很多种,Buck只是其中的一种,他的优点是效率高,体积小,不电感放电时间为Tm,其中:dt为导通时间Ton,最大占空比····················公式1最小占空比····················公式2在临界模式里开关管开通时间·············公式3开关管关断时间··············公式4又因为··············公式5根据占空比的公式输入电压变高的时候D变小,所以Ton变小,一个周期里面电感的平均值电流Io是不变的,假设电感峰值电流不变,那么电感流过电流与时间形成的三角形面积=Io×T,周期T是固定,Ton变小,如果峰值电流不变也就是△I也不会变,输出电压固定Tm也不变,T不变,这样就会导致Io变小,与前面要求的Io不变相违背,要想Io 不变,只有峰值电变大。