8.4分式的乘除(1)
- 格式:doc
- 大小:150.00 KB
- 文档页数:4
初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。
(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。
(二)能力训练要求1.类比分数乘除法的运算法则。
探索分式乘除法的运算法则。
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。
3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。
(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养学生的创新意识和应用数学的意识。
教学重点让学生掌握分式乘除法的法则及其应用。
教学难点分子分母是多项式的分式的乘除法的运算。
教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。
教学过程Ⅰ。
创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。
[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。
即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。
Ⅱ。
讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
八年级上册分式的加减乘除计算题一、分式的乘除法计算题(10题)1. 计算:(x)/(y)·(y)/(x)- 解析:分式乘法法则为(a)/(b)·(c)/(d)=(ac)/(bd),这里(x)/(y)·(y)/(x)=(x× y)/(y×x)=1。
2. 计算:(2a)/(3b)·frac{9b^2}{8a^2}- 解析:根据分式乘法法则,(2a)/(3b)·frac{9b^2}{8a^2}=frac{2a×9b^2}{3b×8a^2}=frac{18ab^2}{24a^2b}=(3b)/(4a)。
3. 计算:frac{x^2-1}{x^2+2x + 1}÷(x - 1)/(x+1)- 解析:- 先将分子分母因式分解,x^2-1=(x + 1)(x - 1),x^2+2x + 1=(x + 1)^2。
- 然后根据分式除法法则(a)/(b)÷(c)/(d)=(a)/(b)·(d)/(c),原式可化为((x + 1)(x - 1))/((x + 1)^2)·(x+1)/(x - 1)=1。
4. 计算:frac{4x^2-4xy+y^2}{2x - y}÷(4x^2-y^2)- 解析:- 先对分子4x^2-4xy + y^2=(2x - y)^2,分母4x^2-y^2=(2x + y)(2x - y)进行因式分解。
- 根据除法法则,原式=frac{(2x - y)^2}{2x - y}·(1)/((2x + y)(2x - y))=(1)/(2x + y)。
5. 计算:frac{a^2-4}{a^2+4a+4}·(2a + 4)/(a - 2)- 解析:- 对分子分母因式分解,a^2-4=(a + 2)(a - 2),a^2+4a + 4=(a + 2)^2,2a+4 = 2(a + 2)。
苏科版数学八年级下册10.4《分式的乘除》教学设计3一. 教材分析《苏科版数学八年级下册10.4《分式的乘除》》是学生在学习了分式的概念、分式的加减、分式的乘除等知识后,进一步深入研究分式运算的一个章节。
本节课的主要内容有分式的乘法、分式的除法以及混合运算。
通过本节课的学习,使学生能够掌握分式乘除的运算方法,提高学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念,以及分式的加减运算。
但学生在进行分式的乘除运算时,往往会因为忽视了分母的重要性,导致运算错误。
因此,在教学过程中,需要引导学生理解分式乘除运算的实质,加强对分母的重视。
三. 教学目标1.理解分式乘除运算的实质,掌握分式乘除的运算方法。
2.能够正确进行分式的混合运算,解决实际问题。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.教学重点:分式乘除的运算方法。
2.教学难点:理解分式乘除运算的实质,正确进行混合运算。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作详细的课件,便于学生直观地理解分式的乘除运算。
2.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行分式的乘除运算。
例如:已知a、b、c是正数,且a+b+c=1,求(a+b)(b+c)(c+a)的值。
2.呈现(10分钟)讲解分式乘除运算的实质,引导学生理解分母在运算中的重要性。
通过示例,演示分式乘除的运算方法。
3.操练(10分钟)学生分组讨论,根据所学的分式乘除方法,解决导入中提出的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一组练习题,让学生独立完成,检验学生对分式乘除运算的掌握程度。
教师选取部分学生的作业进行点评,指出错误,并解释原因。
5.拓展(10分钟)引导学生思考分式乘除运算在实际问题中的应用,例如:在商业、工程等领域中的应用。
新课程背景下基础教育课堂教学方式研究之……导学案A16.2.1分式的乘除 第一课时主备人:陆相慧 审核人: 创作时间:2011年6月 10、11、12页1.使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.2 通过类比的方法,经历探索分式的乘除运算法则的过程,理解运算法则,并能结合具体情境说明其合理性.1.你能完成下列运算吗?___,5432___,9275,___5432=÷=⨯=⨯___9275=÷2.请写出分数的乘除法法则乘法法则:____________________________________◆探究任务一: 问题:(1)类比上面的分数乘除法运算,猜一猜_____=÷=⨯cd a b c d b a 与同伴交流。
(2)类比分数的乘除法法则,你能说出分式的乘除法法则吗?乘法法则:分式乘分式,用____________作为积的分子,_____________作为积的分母。
即B A .D C = .除法法则:分式除以分式,把_____________________________后,再与____________相乘。
即BA ÷DC =______ 其中(B ≠0、D ≠0)◆探究任务二:(对照P11例1)计算:(1)291643ab ba ∙(2)y x axy 28512÷ (3)xyxy 32)3(2÷-解:(1)原式=____________ (2)原式=____________ (3)原式=________________=_____________ =________________ =________________=________________ =________________步骤:① 把分式的除法变成分式的乘法;②求积的分式,并确定积的符号;③约分;◆ 探究任务三:(对照P11例2)计算: (1)2232251033ba b a abb a -∙- (2)xyx y x yxy x yx 2222422222++÷++-步骤:① 除法转化为乘法,并确定积的符号;② 把各分式中的分子或分母里的多项式分解因式; ③ 约分得到积的分式;例3:“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分, “丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克。
8.4分式的乘除(1)
学习目标:
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程
一、情境引入:
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
(1)b ac 34·3229ac b = (2)b ac 34 32
29ac
b = 二、探究学习:
(1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘.除运算法则是合理的.正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:
(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积
的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被
除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a n
b n
三、典型例题:
例1、计算:1. b
a a 2284-.6312-a a
b 2。
(
c b a 4+)2 例2、计算、1.x y 62÷231x 2.2
244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.
四、反馈练习:
(1) xy
z y x z 5423
2÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622
+--a a a (4) 2222)
1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?
(2)你认为买大西瓜合算还是买小西瓜合算?
七、课堂小结:
1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
【课后作业】
班级 姓名 学号
1、 填空
(1)=÷y
x xy 242 (2)=-⋅-x y y x y x 22 (3)=-3)32(x (4) =⋅32
42)23(16xy y x (5) b a a 23÷-= (6)=++⨯++-2
112422a a a a a (7)若代数式
1324
x x x x ++÷++有意义,则x 的取值范围是__________. 2、选择 (1)下列各式计算正确的是 ( ) A.222a ab b a b b a -+=--; B.22
32()
x xy y x y x y ++=++ C.2
3546x x y y ⎛⎫= ⎪⎝⎭; D.y x y x -=+--11 (2)下列各式的计算过程及结果都正确的是 ( )
A .y x x y x x y 5
335315=⋅=÷ B .22148148y y x xy y x xy =⋅=÷
C .
ab xy b y a x y b a x 22222=⋅=÷ D .x y x y x y x x y x y x xy x y x +=-⋅-+=-÷-+)()
(12 (3)当2005=x ,1949=y 时,代数式2
222442y x x y y xy x y x +-∙+--的值为( ) A.49 B.-49 C.3954 D.-3954
(4)计算3222
⎪⎪⎭⎫ ⎝⎛-b a n 与2
333⎪⎪⎭⎫ ⎝⎛-b a n 的结果 ( ) A.相等 B.互为倒数 C.互为相反数 D.以上都不对
(5)若x 等于它的倒数,则()()
22321962+-÷+++x x x x x 的值是 ( ) A.-3 B.-2 C.-1 D.0
3、计算
(1)46910523-⋅-a ab b a a (2)22
2)()(b a b a -÷-
(3)32
2
4)3()12(y x y x -÷- (4)24
222x xy x y x xy x y x --⋅+-
(5)96234222++-÷+-x x x x x x (6)25
1025)5(22
+--⋅-a a a a
(7)133********+-÷+++-a a a a a a (8)
4、中考链接(选作题) 已知ab a +b =13 ,bc b +c =14 ,ac a +c =15 ,求代数式abc ab +bc +ac
的值。
3
222.x y z
⎛⎫ ⎪-⎝⎭。