8.4分式的乘除(1)
- 格式:doc
- 大小:150.00 KB
- 文档页数:4
初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。
(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。
(二)能力训练要求1.类比分数乘除法的运算法则。
探索分式乘除法的运算法则。
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。
3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。
(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养学生的创新意识和应用数学的意识。
教学重点让学生掌握分式乘除法的法则及其应用。
教学难点分子分母是多项式的分式的乘除法的运算。
教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。
教学过程Ⅰ。
创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。
[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。
即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。
Ⅱ。
讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
八年级上册分式的加减乘除计算题一、分式的乘除法计算题(10题)1. 计算:(x)/(y)·(y)/(x)- 解析:分式乘法法则为(a)/(b)·(c)/(d)=(ac)/(bd),这里(x)/(y)·(y)/(x)=(x× y)/(y×x)=1。
2. 计算:(2a)/(3b)·frac{9b^2}{8a^2}- 解析:根据分式乘法法则,(2a)/(3b)·frac{9b^2}{8a^2}=frac{2a×9b^2}{3b×8a^2}=frac{18ab^2}{24a^2b}=(3b)/(4a)。
3. 计算:frac{x^2-1}{x^2+2x + 1}÷(x - 1)/(x+1)- 解析:- 先将分子分母因式分解,x^2-1=(x + 1)(x - 1),x^2+2x + 1=(x + 1)^2。
- 然后根据分式除法法则(a)/(b)÷(c)/(d)=(a)/(b)·(d)/(c),原式可化为((x + 1)(x - 1))/((x + 1)^2)·(x+1)/(x - 1)=1。
4. 计算:frac{4x^2-4xy+y^2}{2x - y}÷(4x^2-y^2)- 解析:- 先对分子4x^2-4xy + y^2=(2x - y)^2,分母4x^2-y^2=(2x + y)(2x - y)进行因式分解。
- 根据除法法则,原式=frac{(2x - y)^2}{2x - y}·(1)/((2x + y)(2x - y))=(1)/(2x + y)。
5. 计算:frac{a^2-4}{a^2+4a+4}·(2a + 4)/(a - 2)- 解析:- 对分子分母因式分解,a^2-4=(a + 2)(a - 2),a^2+4a + 4=(a + 2)^2,2a+4 = 2(a + 2)。
苏科版数学八年级下册10.4《分式的乘除》教学设计3一. 教材分析《苏科版数学八年级下册10.4《分式的乘除》》是学生在学习了分式的概念、分式的加减、分式的乘除等知识后,进一步深入研究分式运算的一个章节。
本节课的主要内容有分式的乘法、分式的除法以及混合运算。
通过本节课的学习,使学生能够掌握分式乘除的运算方法,提高学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念,以及分式的加减运算。
但学生在进行分式的乘除运算时,往往会因为忽视了分母的重要性,导致运算错误。
因此,在教学过程中,需要引导学生理解分式乘除运算的实质,加强对分母的重视。
三. 教学目标1.理解分式乘除运算的实质,掌握分式乘除的运算方法。
2.能够正确进行分式的混合运算,解决实际问题。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.教学重点:分式乘除的运算方法。
2.教学难点:理解分式乘除运算的实质,正确进行混合运算。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作详细的课件,便于学生直观地理解分式的乘除运算。
2.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行分式的乘除运算。
例如:已知a、b、c是正数,且a+b+c=1,求(a+b)(b+c)(c+a)的值。
2.呈现(10分钟)讲解分式乘除运算的实质,引导学生理解分母在运算中的重要性。
通过示例,演示分式乘除的运算方法。
3.操练(10分钟)学生分组讨论,根据所学的分式乘除方法,解决导入中提出的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一组练习题,让学生独立完成,检验学生对分式乘除运算的掌握程度。
教师选取部分学生的作业进行点评,指出错误,并解释原因。
5.拓展(10分钟)引导学生思考分式乘除运算在实际问题中的应用,例如:在商业、工程等领域中的应用。
新课程背景下基础教育课堂教学方式研究之……导学案A16.2.1分式的乘除 第一课时主备人:陆相慧 审核人: 创作时间:2011年6月 10、11、12页1.使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.2 通过类比的方法,经历探索分式的乘除运算法则的过程,理解运算法则,并能结合具体情境说明其合理性.1.你能完成下列运算吗?___,5432___,9275,___5432=÷=⨯=⨯___9275=÷2.请写出分数的乘除法法则乘法法则:____________________________________◆探究任务一: 问题:(1)类比上面的分数乘除法运算,猜一猜_____=÷=⨯cd a b c d b a 与同伴交流。
(2)类比分数的乘除法法则,你能说出分式的乘除法法则吗?乘法法则:分式乘分式,用____________作为积的分子,_____________作为积的分母。
即B A .D C = .除法法则:分式除以分式,把_____________________________后,再与____________相乘。
即BA ÷DC =______ 其中(B ≠0、D ≠0)◆探究任务二:(对照P11例1)计算:(1)291643ab ba ∙(2)y x axy 28512÷ (3)xyxy 32)3(2÷-解:(1)原式=____________ (2)原式=____________ (3)原式=________________=_____________ =________________ =________________=________________ =________________步骤:① 把分式的除法变成分式的乘法;②求积的分式,并确定积的符号;③约分;◆ 探究任务三:(对照P11例2)计算: (1)2232251033ba b a abb a -∙- (2)xyx y x yxy x yx 2222422222++÷++-步骤:① 除法转化为乘法,并确定积的符号;② 把各分式中的分子或分母里的多项式分解因式; ③ 约分得到积的分式;例3:“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分, “丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克。
考点卡片1.分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是AB的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.(5)分式是一种表达形式,如x+1x+2是分式,如果形式都不是AB的形式,那就不能算是分式了,如:(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,但如果用负指数次幂表示的某些代数式如(a+b)﹣2,y﹣1,则为分式,因为y﹣1=1y仅是一种数学上的规定,而非一种运算形式.2.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.3.分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.4.分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.5.约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.6.分式的乘除法(1)分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(3)分式的乘方法则:把分子、分母分别乘方.(4)分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.(5)规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.7.分式的加减法(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:说明:①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.8.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.9.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.10.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a 为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.11.分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.12.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.13.分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.14.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.15.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.。
第02讲分式的乘除法(6类热点题型讲练)
1.掌握分式的乘除运算法则;
2.能够进行分子、分母为多项式的分式乘除法运算.
知识点01分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a c
b d b d
⋅⋅
=⋅.知识点02分式的除法
除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:
a c a d a d
b d b
c b c
⋅÷=⋅=⋅.知识点03分式的乘方
乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((n
n n a a n b b
=为正整数,0)b ≠.
题型01分式的乘法运算
【变式训练】
题型02分式的除法运算
【变式训练】
题型03分式乘除混合运算
【变式训练】
题型04分式的乘方运算
【变式训练】
题型05含乘方的分式乘除混合运算
【变式训练】
题型06分式乘除混合运算中化简求值
【变式训练】
则第4次运算的结果4y=.三、解答题。
分式的乘除法(精选7篇)分式的乘除法篇1一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇2一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇3一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇4第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.第 1 2 页分式的乘除法篇5第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇6一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇7各位评委:午安!今日我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。
《分式的乘除》教学反思(通用5篇)《分式的乘除》教学反思1在上节课介绍了分式的乘除运算法则的基础上介绍了分式的混合运算以及整式和分式的混合运算。
并通过思考栏目中的问题,根据乘方的意义和分式的乘法法则,归纳出分式的乘方法则。
学生有了分式的乘除运算法则做为基础,很容易探究出并掌握住乘除混合运算的计算方法。
有乘方的意义和分式的乘法法则做基础,学生很容易探究出分式的乘方运算法则。
本节课各个环节我紧紧围绕学习目标展开,让学生在每个环节学完后都要进行反思、反悟,感觉效果较好分式的乘除以及乘方混合运算,是《分式》一章中的重要内容,在考试中常以计算题的面貌出现,在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,一批学生做好题目,再让一批学生上去批改,如果错的,直接让他把正确的做在旁边,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来。
教学中我发现分式的运算错的较多。
分解因式的熟练程度成了这里的障碍。
我知道。
分解因式的好坏直接影响分式的有关学习。
总之,通过对上课方式的尝试,我从学生身上学到了很多东西。
也促使我更加对课堂进行研究。
《分式的乘除》教学反思2本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。
只是需注意的是,分式乘除运算的结果要化为最简分式。
在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。
学生反应较好,能基本上完整地讲出分式的乘除法法则。
在分式运算的中,学生主要出现以下问题:1、分式的乘法,如:运算方法有两种:一种是先乘后约分,另一种是先约分再乘,特别是多项式的时候更明显一些,学生不能很好的选择恰当的方法进行计算,从而使计算变得复杂,导致计算错误,计算结果要求必须为最简分式。
2、分式的加减法,有些学生总是在通分的时候忘记给分子乘代数式;再有就是遇到减法,而且后面分式的分子是多项式的时候,总是会出现符号上的错误(忘记变号),使得后面的计算全部错误。
代数运算练习题分式的加减乘除代数运算练习题:分式的加减乘除分式是代数学中的一种形式,由分子和分母组成,分子与分母都是多项式。
在代数运算中,我们常常需要对分式进行加减乘除操作。
本文将介绍分式的加减乘除运算,并提供一些相关的练习题。
一、分式的加法对于两个分式的加法,我们需要满足分母相同的条件。
具体步骤如下:1. 确保两个分式的分母相同,如果分母不同,需要进行通分操作。
例题:将分式$\frac{3}{4}$和$\frac{2}{5}$相加。
解答:由于两个分式的分母不同,我们需要先找到它们的最小公倍数来进行通分。
因为4和5的最小公倍数为20,所以我们可以将两个分式的分母都改写为20。
$\frac{3}{4}+\frac{2}{5}=\frac{3\times5}{4\times5}+\frac{2\times4}{ 5\times4}=\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$所以,$\frac{3}{4}+\frac{2}{5}=\frac{23}{20}$。
二、分式的减法和分式的加法类似,分式的减法也需要满足分母相同的条件。
具体步骤如下:1. 确保两个分式的分母相同,如果分母不同,需要进行通分操作。
例题:将分式$\frac{5}{8}$和$\frac{2}{3}$相减。
解答:由于两个分式的分母不同,我们需要先找到它们的最小公倍数来进行通分。
因为8和3的最小公倍数为24,所以我们可以将两个分式的分母都改写为24。
$\frac{5}{8}-\frac{2}{3}=\frac{5\times3}{8\times3}-\frac{2\times8}{3\times8}=\frac{15}{24}-\frac{16}{24}=-\frac{1}{24}$所以,$\frac{5}{8}-\frac{2}{3}=-\frac{1}{24}$。
三、分式的乘法分式的乘法是将两个分式的分子相乘,分母相乘。
8.4分式的乘除(1)
学习目标:
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程
一、情境引入:
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
(1)b ac 34·3229ac b = (2)b ac 34 32
29ac
b = 二、探究学习:
(1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘.除运算法则是合理的.正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:
(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积
的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被
除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a n
b n
三、典型例题:
例1、计算:1. b
a a 2284-.6312-a a
b 2。
(
c b a 4+)2 例2、计算、1.x y 62÷231x 2.2
244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.
四、反馈练习:
(1) xy
z y x z 5423
2÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622
+--a a a (4) 2222)
1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?
(2)你认为买大西瓜合算还是买小西瓜合算?
七、课堂小结:
1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
【课后作业】
班级 姓名 学号
1、 填空
(1)=÷y
x xy 242 (2)=-⋅-x y y x y x 22 (3)=-3)32(x (4) =⋅32
42)23(16xy y x (5) b a a 23÷-= (6)=++⨯++-2
112422a a a a a (7)若代数式
1324
x x x x ++÷++有意义,则x 的取值范围是__________. 2、选择 (1)下列各式计算正确的是 ( ) A.222a ab b a b b a -+=--; B.22
32()
x xy y x y x y ++=++ C.2
3546x x y y ⎛⎫= ⎪⎝⎭; D.y x y x -=+--11 (2)下列各式的计算过程及结果都正确的是 ( )
A .y x x y x x y 5
335315=⋅=÷ B .22148148y y x xy y x xy =⋅=÷
C .
ab xy b y a x y b a x 22222=⋅=÷ D .x y x y x y x x y x y x xy x y x +=-⋅-+=-÷-+)()
(12 (3)当2005=x ,1949=y 时,代数式2
222442y x x y y xy x y x +-∙+--的值为( ) A.49 B.-49 C.3954 D.-3954
(4)计算3222
⎪⎪⎭⎫ ⎝⎛-b a n 与2
333⎪⎪⎭⎫ ⎝⎛-b a n 的结果 ( ) A.相等 B.互为倒数 C.互为相反数 D.以上都不对
(5)若x 等于它的倒数,则()()
22321962+-÷+++x x x x x 的值是 ( ) A.-3 B.-2 C.-1 D.0
3、计算
(1)46910523-⋅-a ab b a a (2)22
2)()(b a b a -÷-
(3)32
2
4)3()12(y x y x -÷- (4)24
222x xy x y x xy x y x --⋅+-
(5)96234222++-÷+-x x x x x x (6)25
1025)5(22
+--⋅-a a a a
(7)133********+-÷+++-a a a a a a (8)
4、中考链接(选作题) 已知ab a +b =13 ,bc b +c =14 ,ac a +c =15 ,求代数式abc ab +bc +ac
的值。
3
222.x y z
⎛⎫ ⎪-⎝⎭。