分式乘除1)
- 格式:doc
- 大小:251.00 KB
- 文档页数:5
初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。
(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
15.2.1《分式的乘除1》【课标内容】能进行简单的分式乘除运算。
【教材分析】本节是第十五章第二节第一课时的内容,是初中数学的重要内容之一。
这是在学习了分式的基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。
因此,我认为,本节课起着承前启后的作用。
【学情分析】针对我班学生,大部分基础相对较差,学习起来困难比较大,所以,课堂内容的设置相对小一些,由最简单的题目,一点点的上梯度,注重基础知识的讲解和练习,以照顾到所有的学生。
【教学目标】1.理解分式乘除法的法则.2.会进行分式乘除运算.【教学重点】会用分式乘除的法则进行运算。
【教学难点】分子、分母是多项式的乘除法运算【教学方法】五步教学法、复习引入法【教具准备】【课时安排】1课时【教学过程】一、复习旧知 预习新学阅读教材P 135~137,完成预习内容.1.问题1和问题2中的v ab ·m n ,a m ÷b n怎么计算? 2.复习回顾:(1)23×45=2×43×5=815. (2)57×29=5×27×9=1063. (3)23÷45=23×54=2×53×4=1012=56. (4)57÷29=57×92=5×97×2=4514. 【设计意图】 给出几个分数的乘除运算回顾分数乘除运算法则,如果把数字换成字母让同学们想一下该怎样运算。
分数的乘除运算法则:1.两个分数相乘,把________相乘的________作为________,把________相乘的积作为________;2.两个分数相除,把除数的分子、分母________后,再与被除数________.3.类比分数的乘除运算法则,总结出分式的乘除运算法则:(1)乘法法则:分式乘分式,用分子的积作为积的________,分母的积作为积的________;(2)除法法则:分式除以分式,把除式的分子、分母________后,与被除式相乘.用式子表达:a b ·c d =a·c b·da b ÷c d =a b ·d c =a·d b·c【设计意图】 从学生已有的数学经验出发,建立新旧知识之间的联系,类比分数的乘除法法则,可以很容易的总结出分式的乘除法法则。
分式的乘除法(一)教学设计一、教学目标1. 理解分式的乘法和除法的概念,掌握分式的乘法和除法的计算方法;2. 学会将含有分式的复杂表达式化简成最简分式;3. 能够灵活运用分式的乘法和除法解决实际问题。
二、教学内容1. 分式的乘法;2. 分式的除法;3. 含有分式的表达式的化简。
三、教学重点和难点1. 教学重点:掌握分式乘法和除法的计算方法;2. 教学难点:学会将含有分式的复杂表达式化简成最简分式。
四、教学方法和学时安排1. 教学方法:讲授与练相结合的方法;2. 学时安排:本单元共计6学时,其中3学时进行讲授,3学时进行练。
五、教学步骤第一步:导入(1学时)通过解决实际问题的方式,引入学生们对分式乘除法的兴趣。
第二步:讲授分式乘法(1学时)1. 先引入分式乘法的概念和性质;2. 讲授分式乘法的计算方法;3. 通过讲解实例,锻炼学生的分式乘法计算能力。
第三步:练分式乘法(1学时)1. 提供练材料,引导学生独立完成分式乘法计算;2. 在练中指导学生正确的计算方法,及时纠正错误。
第四步:讲授分式除法(1学时)1. 先引入分式除法的概念和性质;2. 讲授分式除法的计算方法;3. 通过讲解实例,锻炼学生的分式除法计算能力。
第五步:练分式除法(1学时)1. 提供练材料,引导学生独立完成分式除法计算;2. 在练中指导学生正确的计算方法,及时纠正错误。
第六步:讲授含有分式的表达式的化简(1学时)1. 先引入含有分式的表达式的化简的概念和方法;2. 讲授化简方法;3. 通过讲解实例,锻炼学生的化简能力。
第七步:练含有分式的表达式的化简(1学时)1. 提供练材料,引导学生独立完成复杂分式表达式的化简;2. 在练中指导学生正确的计算方法,及时纠正错误。
六、教学评估通过作业、小测验等方式,对学生的掌握情况进行评估。
七、教学反思1. 对教学步骤进行细化,增加课堂互动环节;2. 加强实际问题应用,提高学生的学习兴趣和学习效果。
分式的乘除(一)学教目标 1.理解并掌握分式的乘除法则,运用法则进行分式乘除运算;2.能应用分式的乘除法法则进行乘除混合运算。
学教重点:正确运用分式的基本性质约分学教难点:掌握分子分母是多项式的分式的乘除法混合运算学教过程:一、温故知新:分数的乘法法则、分数的除法法则你能用类比的方法的出分式的乘除法法则吗?分式的乘法法则:______________分式的除法法则:________________________________ 用式子表示为:即a b ×c d = a b ÷c d =a b ×dc = 这里字母a ,b ,c ,d 都是整数,但a ,c ,d 不为二、自学指导:1、计算:{分式乘法运算,进行约分化简,其结果通常要化成最简分式或整式}(1)y x 34·32x y (2)22-+a a ·a a 212+ (3)2226934x x x x x +-+⋅--2 计算:(分式除法运算,先把除法变乘法)(1)3xy 2÷x y 26 (2)x x y x y y x x +÷-222 (3)4412+--a a a ÷4122--a a例1计算:(把书中13页的例4整理在下面)对应练习.计算(先把除法变乘法,把分子、分母分解因式约分,然后从左往右依次计算)三、课堂小测 1.计算: (1)22442bc a a b -⋅ (2)⎪⎪⎭⎫ ⎝⎛-÷x y y x 346342(3)y x 12-÷21y x + (5)(a 2-a )÷1-a a (6)y x 12-÷21yx +2.代数式3234x x x x ++÷--有意义的x 的值是( ) A .3x ≠且2x -≠ B .3x ≠且4x ≠C .3x ≠且3x -≠D .2x -≠且3x ≠且4x ≠3.甲队在n 天内挖水渠a 米,乙队在m 天内挖水渠b 米,如果两队同时挖水渠,要挖x 米,需要多少天才能完成?(用代数式表示)___________________________. 4.若将分式xx x +22化简得1+x x ,则x 应满足的条件是( ) A. x 〉0 B. x<0 C.x 0≠ D. x 1-≠5.若m 等于它的倒数,则分式22444222-+÷-++m m m m m m 的值为 6.计算(1) 2221211a a a a a a --÷+++ (2).2224369a a a a a --÷+++(3) 222210522yx ab b a y x -⋅+ (4) )4(3121622m m m m +÷--四.能力提升:1.先化简后求值:,)(5)1)(5(22a a aa a a +÷-+- 其中31-=a2.先化简,再求值:112+÷+-x x x x x 其中X=1+2 分式的乘除(二)学教目标:1.能应用分式的乘除法法则进行乘除混合运算。
第17章 分式 (第3课时)姓 名:学习课题:分式的乘除法学习目标:1、类比分数乘除法的运算法则,探索分式乘除法的运算法则;2、会进行分式的乘除法的运算学习重点:分式的乘除。
学习难点:分子、分母是多项式的分式乘除。
学习过程:一、准备练习1、计算 (1)6275⨯= (2)=⨯10965 (3)53_____910÷= (4)42______93÷= 2、简述分数的乘除法则:3、阅读教材,明白分式的乘除法法则,分式乘方的法则,想一想计算时应注意哪些问题?二、自我尝试1、计算: (1)ca ab ⋅ (2)b a b a 232÷ (3)22⎪⎭⎫ ⎝⎛-x y三、要点突破例1计算:(1)xb ay by x a 2222⋅ (2)222222x b yz a z b xy a ÷例2计算:493222--⋅+-x x x x例3计算:(1)3)(m n (2)k mn )((k 是正整数)小结:1、若分式的分子分母是多项式的,能进行因式分解的应先分解因式,再进行计算;2、运算结果如不是最简分式时,一定要进行约分,将结果化为最简分式或整式。
四、自我检测1、计算:(1)a b b a 32232⋅ (2)2226103x y x y ÷ (3)ba x xb a 422489154⋅ (4)2233b b a a ⎛⎫÷- ⎪⎝⎭(5)2221x x x x x +⋅- (6)1)(2-÷-a a a a (7)yx xy xy y x 234322+⋅-2、上海到北京的航线全程s 千米,飞行时间需a 小时;铁路全长为航线长的m 倍,乘车时间需b 小时.飞机的速度是火车速度的 倍。
(用含a 、b 、s 、m 的分式表示)3、周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的 倍。
16.2.1 分式的乘除(一)学习目标:1. 使学生理解并掌握分式的乘除法则,运用法则进行运算.2. 经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性. 学习过程:一. 情景创设,课题引入:观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯, .279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cd a b c d b a 与同伴交流。
二. 导入新课:根据上述运算,在小组内说出分数的乘除法则.类比分数的乘除法法则,你能说出分式的乘除饭法则吗?类似于分数,分式有:乘法法则:分式乘分式,用分子的积作为积的_______,分母的积作为积的________. 除法法则:分式除以分式,把除式的分子、分母____________后,与被除式_______. 用式子表示为:a cb d⋅=_______________________________ a c b d÷=_______________________________. 例1 计算:(1)3432x y y x⋅ (2)3222524ab a b c cd -÷ 解:(1)3432x y y x ⋅=346xy x y =223x(2)3222524ab a b c cd-÷=______________________________________________.例2 计算:(1)222441214a a a a a a -+-⋅-+- (2)2211497m m m÷-- 解:(1)222441214a a a a a a -+-⋅-+- (2)2211497m m m ÷-- =22(2)(1)a a -⋅-________________ =_________________________ =__________________. =_______________________. 巩固练习:(1)231649abb a ⋅ (2)21285xyx y a ÷(3)22(3)3y xy x -÷(4)x y x y x y x y +-⋅-+ (5)2322332510a b a b ab a b -⋅-(6)2222242222x y x y x xy y x xy -+÷+++三. 拓展应用:若2005x =,2006y =,求2244()x y x y x y ++⋅-的值.。
分式的乘除法教案
富源县第六中学 游艳芬 课题 分式的乘除法
教学目标
1.分式乘除法的运算法则,
2.会进行分式的乘除法的运算. 补充:
教学重点
、难点
会进行分式的乘除法的运算.
补充:
教学方法
教学过程
●教学过程
Ⅰ.创设情境,引入新课
[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?探索、交流——观察下列算式:
32×54=5342⨯⨯,75×92=9
725⨯⨯, 32÷54=32×45=4352⨯⨯,75÷92=75×29=2
795⨯⨯. 猜一猜a b ×c d =? a b ÷c
d =?与同伴交流. [生]观察上面运算,可知:
两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.
即a b ×c d =ac
bd ; a b ÷c d =a b ×d c =ad
bc . 这里字母a ,b ,c ,d 都是整数,但a ,c ,d 不为零.
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.
Ⅱ.讲授新课
1.分式的乘除法法则
[师生共析]分式的乘除法法则与分数的乘除法法则类似:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
2.例题讲解
例1]计算:
(1)y x 34·32x y ;(2)22-+a a ·a
a 212+. 分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.
解:(1)y x 34·32x y =3
234x y y x ⋅⋅ =23222x xy xy ⋅⋅=2
32x ; (2)22-+a a ·a
a 212+ =)2()2(2+⋅⋅-+a a a a =a
a 212-. 出示投影片(§3.2 C )
[例2]计算:
(1)3xy 2
÷x y 26;(2)4412+--a a a ÷4122--a a 分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.
解:(1)3xy 2
÷x y 26=3xy 2·26y x =2263y x xy ⋅=2
1x 2;
(2)4412+--a a a ÷4
122--a a =4414+--a a a ×1
422--a a =)
1)(44()4)(1(222-+---a a a a a =)
1)(1()2()2)(2)(1(2+---+-a a a a a a =
)1)(2(2+-+a a a 3.做一做 通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V=3
4πR 3(其中R 为球的半径),那么 (1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积比是多少?
(3)买大西瓜合算还是买小西瓜合算?
[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.
[生]我们不妨设西瓜的半径为R ,根据题意,可得:
(1)整个西瓜的体积为V 1=
34πR 3; 西瓜瓤的体积为V 2=3
4π(R -d )3. (2)西瓜瓤与整个西瓜的体积比为:
12V V =3
33
4)(34R d R ππ-=33)(R d R - =(R d R -)3=(1-R
d )3. (3)我认为买大西瓜合算.
由12V V =(1-R d )3可知,R 越大,即西瓜越大,R d 的值越小,(1-R d )的值越大,(1-R
d )3也越大,则
12V V 的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算. Ⅲ.随堂练习
1.计算:(1)b a ·2a b ;(2)(a 2-a )÷1
-a a ;(3)y x 12-÷21y x + 2.化简:
(1)362--+x x x ÷x
x x --+632; (2)(ab -b 2
)÷b a b a +-2
2 Ⅳ.课时小结
[师]同学们这节课有何收获呢?
[生]我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.我们以后对于分式的学习是否也类似于分数,加以推广便可.
[师]很好!其实,数学历史的发展就是不断地将原有的知识加以推广和扩展.
[生]今天我们学习了一种新的运算,能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.
Ⅴ.课后作业
习题16.2 1题.2题
补充:
课后反思。