分式的乘除(1)
- 格式:ppt
- 大小:234.00 KB
- 文档页数:17
初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。
(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清第 周 星期 第 节 本学期学案累计: 6 课时 姓名:________课题:16.1.1分式的乘除(第1课时)学习目标 我的目标 我实现理解分式乘除法的法则,会进行分式乘除运算.学习过程 我的学习 我作主导学活动1知识回顾做一做:约分:1.2255x x 2.ba abc ab 22369+ 3.361222-+x x导学活动2知识引入填空: 1.=⨯21534 ; 2.=÷21534 。
类比归纳: 1.d c b a ⋅= ; 2.d c b a ÷= 。
类比分数的乘法法则得出分式的乘法法则:_________________________________________________________________。
分式的除法法则:_________________________________________________________________。
上述法则用式子表示为: 。
导学活动3:知识转化例1: 计算:⑴3234x y y x ⋅ ⑵ cd b a cab 4522223-÷总结步骤:⑴ ; ⑵ ; ⑶ 。
练习:计算(1) 291643a b b a ⋅ (2) ⎪⎪⎭⎫ ⎝⎛-÷x y xy 3232徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!例2:计算:⑴411244222--⋅+-+-a a a a a a ⑵m m m 7149122-÷-总结步骤:⑴ ;⑵ ;⑶ ;⑷ ;练习:计算:⑴2232251033b a b a ab b a -⋅- ⑵x xx x x 124422÷-+-学习评价 我的评价 我自信当堂检测(限时:5分钟 )我自信 我进取1、计算:(1) y x a xy 28512÷ (2) xyx y x y xy x y x 2222422222++÷++-2.化简求值: x xyx y xy x 12222÷+++ 其中2=x ,1-=y自我小结:1、分式的乘法法则和除法法则用式子表示为:2、分式的乘除运算的步骤:(1)除法转化为乘法;(2)因式分解;(3)运用乘法法则计算;(4)约分为最简分式自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P22)习题16.2 第1(1)(3)、2(3)(4)题。
教学内容:9.3分式的乘除法(1约分)一、教学目标:(一)知识目标:1、能说出分式约分的意义、依据、关键;2、能说出最简分式的意义。
(二)水平目标:1、使学生掌握约分的方法,2、使学生会熟练地将一个分式实行约分。
(三)情感目标:1、创设情境,通过类比、猜想、归纳,培养数学的学习兴趣。
2、通过培养学生合作学习意识,培养学生互助精神,增强集体荣誉感。
(四)过程与思想:通过与分数的约分作比较,体会数、式通性,渗透"类比"的思想方法.二、教学重点、难点和关键重点:分式约分的方法.难点:分式约分时分式的分子或分母中的因式的符号变化.关键:准确找出分子、分母中的公因式。
三、教学方法:1、教法:引导分析、类比探索,讨论式2、学法:自主、合作、探究式学习四、教学准备:投影仪五、课时安排:1课时六、教学过程:(一)【创设情境,激发兴趣】(投影显示)数学小笑话:富家子弟大阿宝,父母出门远去了,交给厨师来看好。
三餐都把馒头做,“一天三餐各两个?”阿宝哭丧说“不够”。
“一天给你做六个”,阿宝一听就说“够”。
各位同学谁知道,阿宝为何是傻冒?(数学知识来回答,看谁能够解奥妙?请学生写出一个数学式子来说明,同学间可相互讨论。
学生发表观点,教师最后点评)给出等式1:问:什么是分数的约分?约分的依据是什么?约分的目的是什么?(答:把一个分数分子、分母中的公约数约去叫做约分.分数约分的依据是:分数的基本性质.约分的目的:把一个分数化为最简分数(或整数)).给出等式2:问:这个“约分”彻底吗?那你知道约分的关键是什么?(确定分子、分母的最大公约数)(二)【通过类比,引入新课】我们前面刚学习了分式,通过前面学习,同学们想一想,分式在很多方面与学过的什么概念类似?(让学生讨论回答,并指出哪些有类似地方?)(1.基本性质,2.变号法则,3、分母不能为零,……)既然分式和分数有那么多的地方类似,那分式能约分吗?如果能,又怎样约分呢?是不是和分数的约分也类似呢?下面我们共同来探讨这些问题。
16.2.1分式的乘除(第1课时)【三维目标】1、知识目标:1)理解并掌握分式的乘除法法则2)运用法则进行运算,能解决一些与分式有关的实际问题。
2、能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3、情感目标:教学中让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验。
【教学重点难点】重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算【教学课时】 2课时【教学过程】一、创设问题情境,引入新课问 题:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?答:大拖拉机的工作效率是小拖拉机的⎪⎭⎫ ⎝⎛÷n b m a 倍引 入:从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们这节课要学习的内容二、类比联想,探究新知问题1:分数的乘除(1)24248353515⨯⨯==⨯ (2)2725251035373721⨯÷=⨯==⨯(3) 24248353515x y x y xy⨯⨯==⨯ (4)2725251035373721y y y x y x x x ⨯÷=⨯==⨯ 问题2:类比分数的乘除法则猜想分式的乘除法则 乘法法则 除法法则分 数 两个分数相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分数相除,把除式的分子分母颠倒位置后,再与被除式相乘分 式两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘 符号表示 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc三、例题分析,应用新知例1 计算(1)3234xy y x ∙ (2)mm m 7149122-÷- 解: 2333264234)1(xy x xy x y y x ==∙ m m m m m m m m m mm m +-=+---=-∙-=-÷-7)7)(7()7()7(49171491)2(2222 例2 回顾开课时的问题并解决四、随堂测试,培养能力yx y x y x y x xy xy y x a xy ab b a +-∙-+÷-÷∙)4(32)3)(3(8512)2(916431222)( 五、课堂小结,知识归纳(1)分式的乘法法则和除法法则;(2)分式或分母是多项式的分式乘除法的解题步骤: ①把各分式中分子或分母里的多项式分解因式; ②应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)六、作业课后习题1、2。
考点卡片1.分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是AB的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.(5)分式是一种表达形式,如x+1x+2是分式,如果形式都不是AB的形式,那就不能算是分式了,如:(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,但如果用负指数次幂表示的某些代数式如(a+b)﹣2,y﹣1,则为分式,因为y﹣1=1y仅是一种数学上的规定,而非一种运算形式.2.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.3.分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.4.分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.5.约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.6.分式的乘除法(1)分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(3)分式的乘方法则:把分子、分母分别乘方.(4)分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.(5)规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.7.分式的加减法(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:说明:①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.8.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.9.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.10.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a 为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.11.分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.12.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.13.分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.14.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.15.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.。
分式的乘除法则分式乘除的解题步骤
分式乘除法则:
1、分式的乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2、分式的除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
分式乘除的解题步骤:
分式乘法:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算分子与分子的积;
(3)计算分母与分母的积;
(4)把积中的分子,分母进行约分,化成最简分式或整式。
在解题时,这些步骤是连贯的。
分式除法:
要注意两个变化:
一是运算符号的变化,由原来的除法运算变成乘法运算;
二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
同学们也可以这样来理解这条法则:
两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。
基本步骤:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算被除式的分子与除式的分母的积,作为商的分子;
(3)计算被除式的分母与除式的分子的积,,作为商的分母;
(4)把商中的分子,分母进行约分,化成最简分式或整式。
此法,有点十字相乘的思想。
就像比例的计算,内项之积为分子,外项之积为分母。
课堂解决方案教学详案15.2.1分式的乘除(第1课时)【设计说明】本节课从生活中的问题引入,让学生感受到学习分式乘除运算是生产和生活的实际需要,从而激发学生的学习兴趣。
由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受。
利用表格给出分式的乘除法法则更利于学生的对比和理解;例题采取学生自主运用新知识代替单纯的教师讲授,这是教学方法的一大尝试。
本节课采取把自主权交给学生,遵循“教师为主导,学生为主体”原则。
体现了自主探索,合作学习的新理念,在实际问题解决的过程中培养了学生分析问题和解决问题的能力。
【教学目标】1、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
2、经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深从特殊到一般的数学思想认识。
3、教学中渗透类比转化的思想,培养学生主动探究,合作交流的能力,使学生在学知识的同时感受探索的乐趣和成功的体验。
【教学重点难点】重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算。
【课前准备】课件、多媒体【教学过程】(-)导入新课一、提出问题,引入课题(出示多媒体)活动1:问题1 :一个水平放置的长方体容器器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的时,水面的高度为多少?问题2:大拖拉机m天耕地ahm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?师生活动:学生根据题意,分别列出问题1、问题2所求的数量关系式为:问题 1:求得容积的高:问题2:大拖拉机的工作效率是小拖拉机的倍教师引导学生观察分析以上两式的特点得出它们分别是分式的乘法和分式的除法。
从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们本节课要学习的内容。
.教师板书课题。
(二)探究新知活动2 :类比联想,探究新知计算下式:类比分数的乘除法则猜想分式的乘除法则本环节的任务:让学生从分数的乘除法法则类比探究得出分式的乘除法法则。