分式的乘除(1)
- 格式:ppt
- 大小:234.00 KB
- 文档页数:17
初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。
(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清第 周 星期 第 节 本学期学案累计: 6 课时 姓名:________课题:16.1.1分式的乘除(第1课时)学习目标 我的目标 我实现理解分式乘除法的法则,会进行分式乘除运算.学习过程 我的学习 我作主导学活动1知识回顾做一做:约分:1.2255x x 2.ba abc ab 22369+ 3.361222-+x x导学活动2知识引入填空: 1.=⨯21534 ; 2.=÷21534 。
类比归纳: 1.d c b a ⋅= ; 2.d c b a ÷= 。
类比分数的乘法法则得出分式的乘法法则:_________________________________________________________________。
分式的除法法则:_________________________________________________________________。
上述法则用式子表示为: 。
导学活动3:知识转化例1: 计算:⑴3234x y y x ⋅ ⑵ cd b a cab 4522223-÷总结步骤:⑴ ; ⑵ ; ⑶ 。
练习:计算(1) 291643a b b a ⋅ (2) ⎪⎪⎭⎫ ⎝⎛-÷x y xy 3232徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!例2:计算:⑴411244222--⋅+-+-a a a a a a ⑵m m m 7149122-÷-总结步骤:⑴ ;⑵ ;⑶ ;⑷ ;练习:计算:⑴2232251033b a b a ab b a -⋅- ⑵x xx x x 124422÷-+-学习评价 我的评价 我自信当堂检测(限时:5分钟 )我自信 我进取1、计算:(1) y x a xy 28512÷ (2) xyx y x y xy x y x 2222422222++÷++-2.化简求值: x xyx y xy x 12222÷+++ 其中2=x ,1-=y自我小结:1、分式的乘法法则和除法法则用式子表示为:2、分式的乘除运算的步骤:(1)除法转化为乘法;(2)因式分解;(3)运用乘法法则计算;(4)约分为最简分式自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P22)习题16.2 第1(1)(3)、2(3)(4)题。
教学内容:9.3分式的乘除法(1约分)一、教学目标:(一)知识目标:1、能说出分式约分的意义、依据、关键;2、能说出最简分式的意义。
(二)水平目标:1、使学生掌握约分的方法,2、使学生会熟练地将一个分式实行约分。
(三)情感目标:1、创设情境,通过类比、猜想、归纳,培养数学的学习兴趣。
2、通过培养学生合作学习意识,培养学生互助精神,增强集体荣誉感。
(四)过程与思想:通过与分数的约分作比较,体会数、式通性,渗透"类比"的思想方法.二、教学重点、难点和关键重点:分式约分的方法.难点:分式约分时分式的分子或分母中的因式的符号变化.关键:准确找出分子、分母中的公因式。
三、教学方法:1、教法:引导分析、类比探索,讨论式2、学法:自主、合作、探究式学习四、教学准备:投影仪五、课时安排:1课时六、教学过程:(一)【创设情境,激发兴趣】(投影显示)数学小笑话:富家子弟大阿宝,父母出门远去了,交给厨师来看好。
三餐都把馒头做,“一天三餐各两个?”阿宝哭丧说“不够”。
“一天给你做六个”,阿宝一听就说“够”。
各位同学谁知道,阿宝为何是傻冒?(数学知识来回答,看谁能够解奥妙?请学生写出一个数学式子来说明,同学间可相互讨论。
学生发表观点,教师最后点评)给出等式1:问:什么是分数的约分?约分的依据是什么?约分的目的是什么?(答:把一个分数分子、分母中的公约数约去叫做约分.分数约分的依据是:分数的基本性质.约分的目的:把一个分数化为最简分数(或整数)).给出等式2:问:这个“约分”彻底吗?那你知道约分的关键是什么?(确定分子、分母的最大公约数)(二)【通过类比,引入新课】我们前面刚学习了分式,通过前面学习,同学们想一想,分式在很多方面与学过的什么概念类似?(让学生讨论回答,并指出哪些有类似地方?)(1.基本性质,2.变号法则,3、分母不能为零,……)既然分式和分数有那么多的地方类似,那分式能约分吗?如果能,又怎样约分呢?是不是和分数的约分也类似呢?下面我们共同来探讨这些问题。
16.2.1分式的乘除(第1课时)【三维目标】1、知识目标:1)理解并掌握分式的乘除法法则2)运用法则进行运算,能解决一些与分式有关的实际问题。
2、能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3、情感目标:教学中让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验。
【教学重点难点】重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算【教学课时】 2课时【教学过程】一、创设问题情境,引入新课问 题:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?答:大拖拉机的工作效率是小拖拉机的⎪⎭⎫ ⎝⎛÷n b m a 倍引 入:从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们这节课要学习的内容二、类比联想,探究新知问题1:分数的乘除(1)24248353515⨯⨯==⨯ (2)2725251035373721⨯÷=⨯==⨯(3) 24248353515x y x y xy⨯⨯==⨯ (4)2725251035373721y y y x y x x x ⨯÷=⨯==⨯ 问题2:类比分数的乘除法则猜想分式的乘除法则 乘法法则 除法法则分 数 两个分数相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分数相除,把除式的分子分母颠倒位置后,再与被除式相乘分 式两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘 符号表示 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc三、例题分析,应用新知例1 计算(1)3234xy y x ∙ (2)mm m 7149122-÷- 解: 2333264234)1(xy x xy x y y x ==∙ m m m m m m m m m mm m +-=+---=-∙-=-÷-7)7)(7()7()7(49171491)2(2222 例2 回顾开课时的问题并解决四、随堂测试,培养能力yx y x y x y x xy xy y x a xy ab b a +-∙-+÷-÷∙)4(32)3)(3(8512)2(916431222)( 五、课堂小结,知识归纳(1)分式的乘法法则和除法法则;(2)分式或分母是多项式的分式乘除法的解题步骤: ①把各分式中分子或分母里的多项式分解因式; ②应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)六、作业课后习题1、2。