电气设备雷击分析
- 格式:docx
- 大小:13.32 KB
- 文档页数:3
35kV输电线路雷击跳闸分析及预防措施摘要:近几年来,因雷电而引发的输电线路掉落以及跳闸问题频频出现,不仅大大影响了用电设备运行的安全性,同时也在很大程度上对人们的日常工作生活造成了不良影响。
根据相关资料显示,全国各地每年都会发生多起因雷击造成的线路掉落和跳闸问题。
前几年,这一现象主要集中于山区,近些年则表现出了向平原地区转移的发展趋势。
可以说,雷击已成为影响输变电线路运行安全性和稳定性的主要因素。
关键词:35kV;输电线路;雷击跳闸;预防措施1 35kV输电线路运行的现状及雷击跳闸的类型1.1 35kV输电线路运行的现状35kV输电线路是电力系统中非常重要的组成部分,从目前情况来看,35kV输电线路运行过程中还存在如下几方面较为薄弱的环节:很大一部分35kV输电线路运行的时间过长,线路存在严重老化的问题,有些输电线路运行时间达到10年以上,甚至有的运行了30年以上,非常不利于线路运行的安全性和稳定性;某些输电线路没有进行避雷线的架设,缺少避雷线的屏蔽作用,这就造成了杆塔和线路全都暴露在雷电的打击范围内;一般情况下35kV 输电线路都只装设3~4片的绝缘子,这就造成线路的抗雷击能力比较低,不管是哪种雷击方式(主要有反击雷、感应雷以及绕击雷等等)都非常容易造成跳闸问题;对于输电线路来说,绝大部分都是布设在相对偏远的地区,例如山顶、半山坡以及丘陵地区相对比较突出的点,这些位置都非常容易遭到雷电的打击,从而引发跳闸事故。
1.2雷击跳闸的类型1.2.1反击类跳闸其主要特点为:故障点的接地电阻不符合标准要求,故障点主要是一基多相或者多基多相,在发生跳闸故障时在故障点会出现比较大的雷电流,一般情况下故障相是水平排列的中相或者垂直排列的中、下相。
1.2.2绕击类跳闸其主要特点为:输电线路架设有架空避雷线,故障点的接地电阻符合标准要求,故障点属于单基单相或者相邻两基同相,在发生跳闸故障时在故障点会出现比较小的雷电流,故障点发生的位置大都是在山顶边坡等容易绕击的区域,故障相大都是水平排列的边相或者垂直排列的上相。
XXX电厂雷击事件报告X月XX日凌晨4时17分,XXX电站遭受一次强雷击,导致电厂开关站主变辅助系统、开关站LCU、公用系统LCU等多处设备损坏,事后对此次雷击事故,具体如下:一、公用LCU1、故障现象公用系统LCU主辅电源直流部分无指示;电源模块指示异常,有电源指示但无工作指示;CPU模块无指示,通讯模块异常无通讯数据;中断量模块插件端子条联接器有明显电弧烧灼痕迹,中断量模块7、8接口有明显烧毁痕迹,模块损坏;通讯管理机电源输入正常,但装置无显示;模拟量模块前池栅前水位有输入无输出,端口故障;第二槽主板其他模块指示正常,但3套开出模块无工作指示;35KV变电站断路器直流220V操作电源空开跳闸;2、生产影响公用系统LCU瘫痪,全厂公用油、水、气辅助设备、厂用电系统、水力监测系统以及电能量测量系统不能自动采集且上送至上位机系统,中控室主控系统无数据实时检测和无法进行远方控制。
3、损坏设备清单4、抢修实施情况4.1 LCU直流电源系统无输出,拆机检查判断为主板故障,交流系统工作正常,正常情况下可满足装置工作用电,但无备用电源,待备件到厂后返厂维修;2、拆除烧毁的中断量模块以及插件端子后,CPU、电源、通讯模块恢复正常工作,原因为中断量模块端子击穿后有短路现象,引起电源模块保护断电;3、水位测量系统是经过水位测量检测装置将液位变送器信号采集后再经4~20mA模拟量送入公用LCU模拟量采集模块中,测量输入信号正常,但CPU 模块未能采集到信号,更换模拟量模块仍无反应,判定原模拟量模块被击穿后,浪涌至机箱总线,引起主板故障,为保证运行人员监视前池水位和正确调度水库,经报厂部同意将前池水位信号由公用LCU改接至2FLCU模拟量接口上送,上位机能实时监测前池水位。
5、雷击设备损坏原因分析二次侧回路分析:从受损设备外观分析,雷电流通过中断量模块采集的XX、XX开关分合信号回路引入,因电流强度较大,击穿模块21至24号端子后经模块回路分别再次击穿PLC主板及LCU装置直流电源回路中断量模块电源端子 ,反击浪涌分别在PLC主板和LCU装置电源系统直流熔断保险处能量释放完毕;经检查公用系统至35KV变电站XX、XX开关信号回路,PLC的DC24V 正电源通过电缆全程埋地与35KV变电站XX、XX开关信号端子箱相连,电缆屏蔽层接地情况为两端接地,雷击电流为35KV一次侧或10KV一次侧引入经XX、XX开关操作机构产生感应电流直接通过信号回路经中断量模块放电;一次侧受雷击部位分析:首先全厂所有计算机监控系统LCU装置主辅电源进行过清查,将LCU系统设备电源和I/O电源进行区分,中断量和普通开入信号模块设备自身具有光电隔离功能,本次雷击同时击穿LCU系统主辅电源系统和模块隔离说明浪涌电流较强;其次信号回路全程埋地形式无受雷击影响的可能性,在雷雨天气时易受雷击的部位主要有以下几点:5.2.1 35KV线路全程均有避雷线覆盖并于今年4月进行过线路接地电阻检测,数据如下:线路避雷线以及站内接地电阻为欧,接地电阻比较主厂房欧的接地偏大近10倍,为独立接地系统,公用LCU至35KV开关站信号电缆屏蔽层采用两端接地,当变电站侧有接地等电位抬升时易通过电缆屏蔽层向厂房接地系统放电;5.2.2 10KVXX线设计施工时只考虑了XXX生活区至泵站夸江段的线路避雷,而生活区至35KV变电站线路采用单杆架设,未设计线路避雷措施,只分别在线路两侧安装10KV氧化锌避雷器,当受到直接雷击时,一次线路开关即XX、XX开关易对二次辅助接点产生感应电流并通过信号回路对厂内监控系统产生冲击;5.2.3 35KV变电站站内避雷针遭受雷击后使站内接地系统等电位瞬时抬高并通过信号回路向厂区接地系统放电;6、预防和控制技术措施分别在35KV变电站和公用系统LCU中断、模拟前池水位采集信号采集回路装二次信号避雷器,并清查其他设备有无雷同情况;针对35KV及10KV线路运行时远方操作较少的情况,正常运行时将公用LCU 至35变电站XX、XX开关信号开出回路空开置于常开位置,避免再次遭受雷击时通过开出回路对厂内设备造成冲击;将公用LCU至35KV开关站所有信号回路电缆采用单侧接地方式暨将开关站侧屏蔽接地拆除,避免因两侧接地电阻不一致而产生向厂区泄流的可能性;组织研究进一步降低35KV变电站接地系统电阻的技术方案,拟减少雷击时泄流的时间;请设计单位对10KV王百线生活区段线路避雷措施进行重新设计,防止线路出现直接受雷击的可能性;二、开关站部分设备受损分析1、故障现象1#主变油泵及风机控制开关跳闸,人工合闸失败;251计量红相表信号回路空开跳闸;开关站LCU模拟量和温度量模块显示通道故障;1#主变第一组4#风机电机线圈短路,3#油泵电源进线A项击穿; 2#主变油温测温电阻、变送装置故障无信号输出;220KVXXX线路避雷器计数器数值无变化,表明线路未有泄流现象,本次雷击为升压站内避雷针受雷击通过接地网泄流;2、生产影响中控室不能监视2#主变油温变化情况,需靠人工到现场进行红外测量,准确度较差,不能实施掌握主变工作情况;1#主变强迫油循环系统不能投运已及时抢修完成 ,因该主变为扩大单元接线方式,两台机组发电时主变温度较高,影响设备安全运行;3、损坏设备清单4、抢修实施情况1#主变3号油泵电源接线A项被击穿,经现场测量短路及绝缘未见异常,将击穿部位处理后油泵恢复正常运行,同时主变辅助控制屏散热系统可投入自动运行;1#主变第一组风机4#风机电机相间绝缘监测不合格,表明电机内部线圈有短路现象,经送修后恢复正常运行;2#主变油温测温系统装置以及开关站温度量模块需待备件进行替换;5、雷击设备损坏原因分析:本次雷击为升压站内避雷针受雷击泄流,因本年度5月25日对升压站接地网电阻及避雷针接地电阻进行测量均符合设计要求:避雷针放电时对站内设备产生感应电流,如遇设备接地不良会产生感应浪涌电压,在设备绝缘薄弱处产生击穿现象;检查温度控制线箱未进行等电位接地,升压站遭受雷击时在主变测温装置回路上感应浪涌电压,致使主变冷却器控制系统温度变送器和测温装置同时损坏;1#主变3#油泵接头处电源接线有松动情况,雷击电位抬高时产生发热击穿现象;6、预防及控制技术措施主变信号回路:分别在中控室主变辅助控制屏柜及开关站LCU和现地端子箱内的模拟量和温度量信号回路加装装防浪涌模块,拟保证雷击时测量装置和监控模块不受损坏;对站内所有电气设备电源接线进行排查,对松动部位进行紧固;对主变端子箱进行等电位接地;XXX电厂设备管理部。
配电线路受雷击原因及对策分析摘要:电力能源是社会发展中至关重要的一项能源,并且随着社会经济的快速发展,人们的用电需求在不断增加,促进了我国电力行业迅速发展。
电力系统是由多个部分组成的,配电线路是其中的关键部分,只有保证配电线路不出现故障,才可以确保电力系统有效运行。
由于配电线路较长,可能会遭受雷电等袭击,在实际运行过程中常常会出现问题,导致配电线路产生相应的故障。
所以,电力企业需要做好配电线路的检修及防雷工作,确保能为人们不间断地输送电能。
关键词:配电线路;雷击原因;对策分析1配电线路雷击危害雷电是一种常见的自然现象,对于电力系统的危害较大。
作为大自然中的大气放电现象,雷电是由雷云引起的。
雷云一雷云放电、雷云内部放电以及雷云一大地放电是产生雷电主要三种途径。
其中,虽然发生概率最高的是雷云一雷云放电,但危害最大,对配电线路的安全产生巨大威胁的是雷云一大地放电,因此当今对于雷电课题,众多学者的关注放在了云地放电上。
对于电力系统的线路和设备来说,雷电的主要危害为是其将会产生能量巨大的大气过电压,由雷云会对架空线路放电或对架空线路附近地面放电引发,其巨大的能量将会击穿杆塔的绝缘子并对其他电气设备造成不同程度的损害。
雷电产生的过电压按照落雷点与线路的距离,可分为直击雷过电压和感应雷过电压。
二者作用机理业有较大不同。
其中,直击雷过电压对于架空线路的危害较为严重,特别是对于较高电压等级的配电网来说。
但是众多的资料显示,虽然直击雷过电压值比较高,但是其发生的概率相对于感应雷比较低。
加之当今社会的迅速发展,建筑物比较高大以及绿化数目的增多,这也在一定程度上又进一步降低了线路遭受直击雷的概率。
与之相对,在雷击灾害中,感应雷过电压出现的概率相较于直击雷较高。
根据我国电力系统雷击灾害的统计显示,感应雷造成的雷击事故约为直击雷4倍。
2配电线路发生雷击现象的主要原因分析(1)缺少避雷装置。
根据调查发现,发生雷击现象的配电线路,大部分是因为没有安装防雷装置。
一、概述随着我国现代化建设的不断提高,各类先进的电子设备广泛地运用到了各电压等级的变电站内。
但是一方面由于电子设备内部结构高度集成化,从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。
据统计,雷电对电子设备的损坏占设备损坏因素的比例高达26%,例如变电站线路落雷,造成主控地与设备之间的电位差而损坏大量的保护设备;变电站的微波塔落雷,由于感应过电压而造成大量的通讯、远动设备损坏,我们应当对雷电的危害性引起高度重视,加强防雷意识,做好变电站预防工作,将雷害损失降到最低限度。
二、几种主要的雷击方式2.1雷的直击和绕击雷云单体浮在大地上空,其所带电荷拖着地表相反电荷犹如一个影子随风移动。
如果途经变电站的避雷针或地表其他突出物,地电荷会导致突出物顶端电场畸变集中。
闪电开展之前先是雷云底部的始发先导按间歇分级跃进方式向地表发展,当距地面50~100m时,由避雷针等地表电场畸变集中的地方产生垂直向上的迎面先导。
两者相接,进入直击或绕击的主放电阶段。
通常当地面上突出物的高度为h,雷云正下方的平均电场强度大于和等于580h-0.7 kV/m 时,则该突出物将容易受到直击雷。
原因是高为h的避雷针可影响雷云单体向下的始发先导发展方向的半径,用公式表述为:R=16.3h0.61m。
该式还表明,地表安装独立避雷针后,将会在其附近出现大量的散击,甚至对避雷针进行直击,对受避雷针保护范围内的物体进行绕击。
一次雷击主放电一般为几万安培到十几万安培,释放的能量相当大,瞬间所产生的强大电流、灼热的高温、猛烈的冲击波、剧变的静电场和强烈的电磁辐射等物理效应给人们的生产生活带来多种危害,如引起火灾和大爆炸,金属导体连接部分断裂破损,建筑物倒塌,电气设备损坏等等。
2.2雷击反击直击雷电流通过地表突出物的电阻入地散流。
假如地电阻为10Ω,一个30kA的雷电流将会使地网电位上升至300kV。
输电线路雷击故障的防护措施分析首先,针对输电线路雷击故障,引入防雷装置是必不可少的。
防雷装置主要由闪络器、接地装置和避雷针等组成。
闪络器能够将浮电位释放到大地上,防止雷电通过设备或线路流入地方电劢。
接地装置能够使系统设备、金属构架、设备房等与地之间导通,形成一个良好的大地接点,从而使雷电通过大地排除。
避雷针则分散雷电的能量,减少雷击的概率。
通过引入这些防雷装置,可以有效地减少雷击故障的发生,提高输电线路设备的安全性。
其次,应加强对输电线路设备的维护和检测工作。
定期进行设备的检查和维护,发现设备存在的潜在故障问题,并及时处理,是预防雷击故障的重要措施之一、通过使用红外热成像仪等设备,对线路设备进行定期的热成像检测,可以发现设备存在的潜在故障问题,如接触不良、绝缘老化等,及时进行维修和更换,减少雷击故障的发生。
此外,合理的线路布置和线路设计也是预防雷击故障的重要因素。
合理的线路布置可以减少雷电对输电线路的冲击程度,降低雷击故障的概率。
另外,合理的线路设计也可以减少雷电对设备和系统的影响,从而提高电力系统的稳定性。
例如,合理的避雷子站布置可以使雷电不易击中设备,减少雷击故障的发生。
此外,对于重要的输电线路,还可以采取无线遥测监测系统进行实时监测。
该系统可以通过无线电信号将线路的状态信息传送到监测中心,及时发现恶劣天气下可能导致雷击故障的情况,采取相应的应对措施,防止事故的发生。
最后,加强人员培训和安全教育也是预防雷击故障的重要环节。
员工应具备基本的防雷知识,了解防雷装置的工作原理和使用方法,掌握事故应急处理的方法,并定期进行相关的培训与演练,提高员工的应急处理能力。
此外,还需要加强对操作人员的安全教育,提高他们的安全意识和责任意识,防止因人为操作不当导致的雷击事故。
综上所述,输电线路雷击故障的防护措施主要包括引入防雷装置、加强设备维护和检测、合理的线路布置和设计、无线遥测监测系统以及加强人员培训和安全教育等。
探析 10kV 配电线路雷击事故产生原因及防雷措施摘要:在供电工作中,10kV配电线路的安全稳定运行,与社会生产和人民生活用电关系密切,因此,电力工作者需要确保10kV配电线路处于良好运行,这也是各级供电部门的工作重点。
在实际工作中,10kV配电网的安全稳定运行,常因雷击事故的发生,给供电的稳定性与安全性带来不利影响,也严重影响生产与生活的正常用电。
为此,需要重视对10kV配电线路发生雷击事故的原因进行认真分析与总结,才能及时发现配电网运行过程中发生的雷击隐患,及时采取相应的安全措施,防止雷击事故发生,更好的保障配电线路的运行安全,为人们生产、生活提供良好的用电服务。
关键词:10kV配电线路;雷击事故;原因;防雷措施引言对10kV配电线路来说,雷击带来的危害极其严重,会导致电源开关跳闸、绝缘子串炸裂,进而引发一系列的接地故障。
当配电线路受到雷击时,极有可能因为接地线上的高电压,导致塔杆上的间隙被击穿。
除此之外,当导线被雷电击中时,会导致绝缘闪络并引发相间短路,这种短路会造成金属器具烧断,从而引发故障。
1雷击对架空配电线路的危害雷电是一种伴有闪电和雷鸣并释放巨大能量的自然现象,闪电平均电流可达数万安,电压可达亿伏。
雷电具有很强的破坏性,其对架空配电线路的危害主要有以下三点。
(1)造成线路绝缘子闪络,雷击可能导致绝缘子损坏,引起单相接地及相间短路,使得线路导线、金具、接地引下线受损。
(2)造成供电系统跳闸或线路输供电中断。
(3)形成过电压,以行波的形式向变电站传输,对变电站运行设备绝缘造成损害。
2配电线路遭受雷击的原因2.1绝缘子存在质量问题绝缘子是10kV配电线路中常用的电气部件,是一种特殊的绝缘部件,在架空输电线路中起到重要作用。
如果绝缘子自身质量存在问题,极易在雷击发生时,因过电压而导致绝缘子被击穿或沿表面闪络,导致配电线路出现接地故障和短路故障,影响配电网正常运行。
2.2配电线路的地理位置不利于防雷地理环境也会对避雷器的效果带来影响。
配电变压器雷击及预防配电变压器是电力系统中的重要设备,负责将高压输电线路输送的电能变换为适合用户使用的低压电能。
然而,配电变压器在工作过程中容易受到雷击的影响,导致设备损坏甚至引发事故。
为了保障电力供应的稳定性,预防配电变压器雷击是非常重要的。
本文将从雷击的原因分析、雷击对配电变压器的影响和预防雷击的措施等方面进行阐述。
雷击是自然界中常见的现象,它是由大气中的正负电荷不均引起的。
在雷电活动过程中,闪电会释放极高的电能,如果直接击中配电变压器,会对设备产生严重的破坏作用。
此外,雷电还会引发感应电流、电磁冲击等现象,对变压器正常运行产生不利影响。
因此,预防雷击对配电变压器的影响具有重要意义。
首先,雷击对配电变压器的影响主要体现在以下几个方面:1. 损坏设备:雷电的强大能量会直接冲击到配电变压器上,造成绝缘破损、设备内部结构变形或燃烧等现象,严重情况下可能导致设备报废。
2. 引发电弧和火灾:雷击会引发强电弧,给周围环境带来高温和火源,如果未及时处理,可能引发火灾。
3. 传导电压冲击:雷电经过地线传导到地面时,会产生传导电压冲击现象,使变压器主绕组和绝缘体受到较大电压冲击,进而破坏绝缘系统。
为了预防雷击对配电变压器的影响,我们可以采取以下措施:1. 合理选择变压器的安装位置:在选址时,要选择地势较低、较为开阔没有高建筑物、树木等物体过多的地方,并保持周围的电气设备和金属结构物与变压器有一定距离。
2. 安装避雷装置:在配电变压器上安装合适的避雷装置,例如避雷针、避雷器等,能够将雷电引导到地下,降低雷击的可能性。
3. 提高绝缘等级:在变压器的设计和制造过程中,加强对绝缘材料和结构的选择和改进,提高绝缘等级,增强其抗雷击能力。
4. 增加接地电阻:通过增加变压器的接地电阻,降低雷电进入设备的可能性,减少雷击损害。
5. 定期检测和维护:定期对配电变压器进行绝缘电阻测试、避雷器检查和设备清洁等工作,发现问题及时处理,确保设备的正常运行。
打雷烧坏电器的原理打雷是一种天气现象,在大气运动过程中会产生巨大的静电场,当这些静电积聚到一定程度时,就会发生放电现象,也就是我们常说的闪电。
当闪电发生时,其强大的电流和电压可能会对电气设备造成损坏。
1.静电放电:打雷是大气中静电积累释放的情况之一、雷云在形成的过程中,大量的水蒸汽和冰晶云粒子之间会发生摩擦,从而使得其中的电荷分离。
冰晶云粒子带负电,而水蒸汽带正电。
正负电荷的积聚会导致雷云发生静电放电,形成一道电流通道,这就是我们看到的闪电。
由于闪电放电时产生的电流非常强大,达到数十千安甚至更高,而且放电过程非常短暂,只有几百分之一秒。
这样的强大电流瞬间通过电器设备,可能会引发设备内部的短路或过电流。
2.感应电压:当闪电发生时,经过长导线或电缆的电流会产生感应电压。
这是由于电流通过导线或电缆时,会在周围产生一个磁场。
当闪电靠近导线或电缆时,由于闪电放电产生的磁场强度极大,会引起导线或电缆中的感应电流。
这样的感应电流也会通过电器设备,可能引发设备内部的短路或过电压。
3.电磁辐射:雷电产生的电磁辐射也可能对电器设备产生负面影响。
雷电是一种强烈的电磁波源,有很高的频率和能量。
当雷电电流通过大地时,会产生地电磁场,进而产生电磁辐射。
这些电磁辐射会通过电器设备的电源线或其他金属部件,导致设备内部电子元件的过电压或过电流,从而损坏设备。
综上所述,打雷烧坏电器的原理主要是由于雷电产生的强大电流和电压,以及其产生的感应电压和电磁辐射。
这些因素都可能对电器设备产生不可预测的损坏。
为了避免这种情况发生,我们可以采取一些预防措施,例如安装避雷装置,使用防雷插座,或者在打雷时及时拔掉电器设备的电源,防止雷电的电流和电压传入设备内部。
此外,还可通过正确接地电器设备,减轻雷电对设备的影响。
110kV输电线路雷击故障原因分析及防范措施电力系统中输电线路遭受雷击的现象越来越多,雷击成为引起线路跳闸故障的主要原因之一,严重影响到输电线路的运行安全。
本文针对一起110kV输电线路雷击故障后进行了详细分析,并对雷击故障做了详细的理论计算,最后结合运行实践经验提出了针对性预防措施,为电力运行单位提高输电线路运行可靠性和防雷管理工作提供了借鉴与指导。
标签:输电线路;雷击跳闸;原因分析;防雷措施一、引言浙江桐庐电网35千伏及以上输电线路多分布在山顶或山脊,山势陡峭,线路所经地区起伏变化较大,气象条件十分复杂。
虽然该地区全线都架设双避雷线保护,但由于输电线路距离长、跨度大、高杆塔较多,极易遭受雷击。
近几年的故障跳闸统计资料表明,雷击引起的高压输电线路跳闸次數占总跳闸次数的93%,因此雷击已成为当前输电线路故障跳闸的主要原因,不仅影响线路、设备的正常运行,而且极大地影响了日常的生产、生活。
同时输电线路故障跳闸直接影响功率的输送,也对电网的安全、稳定运行构成了严重威胁,采取有针对性的防范措施,尽最大可能降低输电线路跳闸率,是线路运行单位追求的目标,也是构建“坚强智能电网”的前提和根本。
二、具体故障描述2012年8月5日20:21时,桐庐电网发生了乔方1052线A相故障,距离Ⅱ段,零序Ⅱ段保护动作,重合成功,乔林变测距29.2km(约73#塔左右);根据该局SCADA系统历史事项显示,在这个时间点乔方1052线RTUSOE保护信号8个。
浙江省雷电定位系统线路雷电查询结果显示,8月5日20:20-20:21乔方1052线附近共计落雷点4个,数据如下:表1 浙江省雷电定位系统线路雷电查询结果序号时间经度纬度电流(kA)回击站数最近距离(m)最近杆塔1 20:20:08.958 119:31:11 29:55:54 -13.5 0 14 322.4 72~742 20:20:08.492 119:31:7 29:55:56 -13.8 0 14 250.8 72~743 20:20:08.933 119:31:7 29:55:58 -14.9 0 14 202.0 72~744 20:20:14.098 119:26:56 29:56:14 22.8 1 18 545.1 95,96经现场查找,发现乔方1052线73#塔A相瓷瓶串1片瓷瓶(上至下第2片)雷击破碎,4片瓷瓶有雷击痕迹,导线上有不同程度的雷击痕迹。
2024年配电变压器雷击及预防引言:配电变压器作为电力系统中的重要设备,承担着将输送到变电站的高压电能降低到用户所需的低压电能的功能。
然而,由于其在运行过程中处于露天环境中,容易受到雷击的影响,从而导致压变故障和停电事故的发生。
因此,对于配电变压器雷击和预防问题的研究具有重要的理论和实际意义。
一、配电变压器雷击原因分析1.1 气象因素雷电是一种自然现象,其产生与大气的电荷分布、电势差和空间结构有关。
当大气电荷分布不均匀时,会形成局部电荷积聚区,从而产生雷击。
而各地的气象条件不同,对雷电的发生也会有影响。
1.2 变压器结构和位置配电变压器通常是处于露天环境中的,其结构和位置会对雷电的影响造成一定的影响。
例如,在长杆式变压器中,杆塔及其附近的构筑物是雷击的容易目标。
而在箱式变压器中,箱体本身还具有一定的防雷功能。
二、配电变压器雷击后果分析2.1 压变损坏雷电的高电流通过配电变压器,会引起其内部设备的损坏,如绕组短路、线圈烧毁等,造成压变的无法工作。
2.2 系统停电配电变压器的故障会导致电力系统的局部或整体停电。
一旦发生停电,用户的日常生活和工业生产都会受到影响,给社会带来很大的损失。
三、配电变压器雷击预防措施3.1 防雷装置在配电变压器周围设置合适的避雷设施,例如接闪器、耐雷线等,能够引导雷电流从地面引流,减小雷击对变压器的影响。
3.2 地理位置选择选择合适的地理位置来安装配电变压器也是预防雷击的重要因素。
避免安装在雷电活跃区域或者高度地带,尽量选择平坦地区。
3.3 变压器外壳设计设计并制造适合的变压器外壳,使其能够防止雷电直接打击变压器设备。
例如,一些箱式变压器在外壳上设有防雷针,能够吸收和分散雷击带来的电荷。
3.4 维护保养定期对配电变压器进行检查和维护保养,及时更换老化和损坏的部件,确保其正常运行状态。
特别是对于外壳和避雷装置的检查,要保证其完好无损。
四、配电变压器雷击事故处理4.1 维修处理一旦发生雷击事故,及时采取维修措施,更换受损的部件,并进行系统的检修,确保变压器能够正常运行。
10kV配电线路雷击事故产生原因及防雷措施内蒙古呼和浩特市010010摘要:10kV配电线路是配电网的重要组成部分,为提升电网供电的安全性,本文对10kV配电线路雷击事故产生的原因进行了简要分析后,重点阐述了其主要防雷措施,其中涵盖了降低接地电阻、提升绝缘防雷以及增强防雷设施的维护力度等,仅供业内人士参考。
关键词:10kV配电线路;雷击事故;防雷引言:近年来,雷击事故频频发生,给10kV配电线路的平稳运行造成了严重的影响,为确保10kV配电线路可以良好运行,供电局及有关人员应对雷击事故产生的原因展开系统的分析,并制定出与之相对应的防雷策略,以此保障10kV配电线路的运行状态,提升安全性能。
一、10kV配电线路雷击事故产生的原因(一)防雷措施不完善10kV配电线路在遭受雷击时可能会出现运行故障、设备损坏等不良情况,当前其无法抵御雷击的主要原因就在于防雷措施不够完善。
有关供电局在制定防雷措施时,未能结合10kV配电线路的具体情况,制定出有效的防雷方案。
当10kV配电线路在较为空旷的区域时,就极易在雨季受到直接性的雷击,同时,当其位于高层建筑的周边时,也可能在雷雨季受到间接性的雷击。
在这两种特殊的环境下,供电局若未制定出合理的防雷措施,安装科学防雷装置,就会使10kV配电线路遭受严重的雷击,从而造成难以挽回的损失。
(二)绝缘子质量不合格绝缘子作为10kV配电线路中重要的电气部件,对架空输电线路的安稳运行具有十分重要的作用,因此,绝缘子的质量问题直接影响着10kV配电线路的防雷效果。
一旦绝缘子存在严重的质量问题,那么在产生雷击时,过电压就会将其击穿,进而导致10kV配电线路出现运行故障,给配电网的平稳运行造成阻碍。
(三)接地装置损坏接地装置是10kV配电线路的基础配电设施,其主要作用就是在发生雷击时,对雷电流进行引流,将雷电的最大电流引到大地,在发生雷击事故时,电气装置会将雷电流以最快的速度输送至大地,最大程度上降低雷击对线路的损坏。
科技凰捌翻龇弱电设备雷击过电压危害分析张新德(浚县供电有限责任公司,河南浚县456250)脯要】弱电设备一般都放置在室内,它们承受瞬间过电压的能力非常低,极易受到过电压和雷电电磁脉冲等外界干扰,遭受到雷电直接袭击的可船挫不大。
但雷击形成的冲击过电压过电流,都有可能与弱电设备相连的电源线、信号传输线、接地线等通过各种接口。
以传导、辐射、耦合等形式侵入弱电系统和弱电设各缱成弱电设备毁坏、系统瘫痪或酿威严重事故。
因此,雷击对于弱电设备的危害集中体现在雷击过电压方面。
汝j键词】雷击;弱电设备;雷电过电压2007年8月25日中午12点左右,浚县遭受强雷电风雨侵袭,最大降雨量130.6毫米、最大风速5秒米。
电力线路跳闸37条次,其中l O kV工3线路动作”次并重合成功,配变、避雷器、绝缘子等设施也遭到了损坏。
这次强雷电天气还导致供电公司的弱电设备也不同程度的遭到损坏:办公楼内计算机主板8台;信息中,b的网卡2块、终端服务器1台、交换机用户板1块;调度中心的交换机主控机1台、监视器1台、录音设备的电源1台、语音板2块、硬盘2块、烟雾探测器1只:计量中心的24袁位单相电能表标准装置4台电脑主机串口:变电站内的锶栅保护测频板2块、网关1块等等被损坏。
近年来,通信、监控、调度、信息、计算机网络等系统大量应用了集成电路、C PU单元等电子弱电设备,它们承受瞬间过电压的能力非常低,极易受到过电压和雷电电磁脉冲等外界干扰,从而产生误动或损坏,影响系统的正常运行,甚至造成重大损失。
弱电设备一般都放置在室内,遭受到雷电直接袭击的可能性不大,但雷击避雷针、建筑物、大地、架空线或空中雷云放电时直接形成的,或由静电感应、电磁感应形成的冲击过电压过电流,都有可能与相连的电源线、信号线、接地线等通过各种接口,以传导、辐射、耦合等形式侵入弱电系统和弱电设备造成弱电设备毁坏、系统瘫痪或酿成严重事故。
1雷击分类雷电是~种自然现象,实测表明:对地放电的雷云绝大多数带有负电荷,在雷云电场的作用下,大地被感应出与雷云极性相反的电荷,就象一个巨大的电容器,其问的电场强度平均小于1kV/m,但雷云个别的电荷密度可能很大,当雷云附近—部分的电场强度超过大气的绝缘强度时,就使空气游离,放电由此开始。
雷击配电变压器事故分析及防雷措施摘要:现阶段我国大多数变压器的防雷保护措施都相对简单,因此导致变压器故障因素中雷击是一个十分重要的因素。
对雷击配电变压器事故进行有效的预防能够最大限度降低雷电对配电变压器的损害,为配电变压器运行稳定性做出充分的保障。
本文就雷击配电变压器事故分析及防雷措施做出探究,以望参考。
关键词:雷击;配电变压器;事故分析;防雷措施1 雷击对配电变压器的主要危害在日常生活中,有两种常见的雷击现象,第一种为直击雷,这种现象主要是因为带电雷云与地面上某个地点之间瞬间出现的过猛放电现象。
第二种为感应雷,由于受到静电感应的影响,带电云层导致地面上某个地区带有异种电荷,当直接雷现象发生之后,带电云层迅速消失,但是地面上一些区域会因为散流电阻较大而形成高压电在局部汇聚的现象。
雷电不仅会产生电,同时还会产生较大的电磁效应、机械效应以及热效应等等。
所谓的电磁效应就是在雷电发生过放电现象之后,雷击中的部位周围会产生相应的电磁感应。
电磁感应过电压通常较大,甚至可以产生高达几十万伏的电压导致电器设备瞬间被击穿,遭受电击的电气设备可能会出现火灾甚至在严重的情况下会发生爆炸的情况,烧毁配电变压器。
机械效应就是指在雷云对地面进行放电的过程中,相应而来会发生严重的雷电机械效应,很有可能会击毁配电网络塔杆以及配电变压器。
雷电的热感应就是在发生雷电现象的过程中,导体中会有电流经过导致导体温度升高,雷电的热效应是我们日常生活中常见雷电断股现象的主要原因。
对于电力系统而言,其中最为重要的电力设备就是配电变压器,配电变压器受到雷击事故将会导致严重的故障,甚至导致整个电力网络瘫痪。
因此只有充分做好配电变压器的防雷保护工作才能够充分避免配电变压器设备遭受雷的破坏。
2 配电变压器防雷措施2.1 配电变压器安装位置的优化针对以上内容进行分析可知,通常情况下配电变压器被雷电击中的位置是存在一定共性的,因此在进行配电变压器安装过程中应当充分保障配电变压器安装位置得到优化。
雷击浪涌试验报告雷击浪涌试验是一种常见的电气设备测试方法,旨在评估设备在雷击或浪涌电压作用下的性能表现。
在这种试验中,设备会受到特定强度的雷击或浪涌电压,以检测其对于这些突发电压的耐受能力。
本报告将详细探讨雷击浪涌试验的背景、目的、过程以及测试结果分析。
背景随着现代社会的电气设备越来越普及和重要,对于设备的可靠性和稳定性要求也越来越高。
雷击和浪涌电压是常见的电气干扰源,可能对设备造成损坏甚至故障。
因此,进行雷击浪涌试验成为了保证设备质量和安全性的重要手段。
目的雷击浪涌试验的主要目的是评估设备在雷击或浪涌电压作用下的耐受能力,验证设备是否能正常工作并保持稳定。
通过该试验,可以检测设备的绝缘性能、抗干扰能力以及电气性能,为设备的改进和优化提供参考依据。
过程在进行雷击浪涌试验时,首先需要确定试验的参数,包括雷击或浪涌电压的强度、频率以及持续时间。
然后将设备连接到特定的试验设备上,施加相应的电压进行测试。
通过监测设备在测试过程中的电压波形、电流波形以及设备的工作状态,可以评估设备的性能表现。
测试结果分析根据测试结果分析,可以得出设备在雷击或浪涌电压下的性能表现。
如果设备在测试过程中能正常工作并保持稳定,表明设备具有较好的抗干扰能力和耐受能力。
反之,如果设备出现异常现象或损坏,可能需要对设备进行进一步的改进和优化,以提高其可靠性和稳定性。
总结通过雷击浪涌试验,可以全面评估设备在雷击或浪涌电压下的性能表现,为设备的改进和优化提供重要参考依据。
在今后的电气设备设计和生产中,应重视雷击浪涌试验的重要性,不断提高设备的抗干扰能力和耐受能力,确保设备的可靠性和安全性。
愿本报告对相关领域的研究和实践工作提供一定的参考和指导。
电气设备雷击分析
摘要:雷电严重威胁着配电设备的安全,轻则配电设备失灵,重则配电设备烧坏,甚至导致人员伤亡。
因此,需要加强重视防雷措施,在工程设计阶段就应该认真考虑配电系统的防雷,按照等电位的原则,根据实际情况,做好符合要求的共用接地网,避免雷击的危害。
关键词:雷击危害等电位接地网
1.概述
对雷电的危害大家众所周知,如森林、油气挥发场所等的火灾大部分为雷击所致。
近几年来我厂仪表、计算机等电子设备屡被雷击,造成很大的经济损失。
雷电严重威胁着配电设备的安全,轻则配电设备失灵,重则配电设备烧坏,甚至导致人员伤亡。
因此加强对雷电的认识,做好相应的防雷措施不容忽视。
目前的防雷措施局限性普遍存在,不能做到完全有效地防止雷电的破坏,人们对复杂的雷电机理将进一步研究,努力将雷击造成的损害降低。
2.雷击的危害
当雷击现象发生时,建筑物的外部防雷装置确实能有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。
但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导入大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。
处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。
3.电气设备的防雷措施
建筑物本身的防雷性能至关重要,按照国家强制性标准GB50054-95,对设备与建筑物的防雷接地应采用等电位连接,建筑物本身和其内外各种导电物用导体焊接起来。
现代建筑物防雷主要由顶部接闪器、网状避雷带、建筑物的梁、柱、楼板和四周墙体内的主钢筋作引下线,利用地下钢筋混凝土基础作为接地体。
为了防止直击雷,保护室外所有设备,可根据实际情况,安装不定数量的避雷针。
加装避雷器保护室外配电设备,做统一接地网,保证该接地网与所有设备的接地引下线体焊接。
室内各种柜外皮、金属屏与底座槽钢连接,槽钢与电缆沟道内的电缆支架用镀锌扁钢焊接,与室外接地网形成一个完整的大接地网,成为一个整体。
从人身和设备安全以及抗干扰的角度来说,保护地的可靠接地非常重要,一般情况下保护地和设备的信号地在其内部连接在一起,设备采用共用接地系统。
实行等电位连接可以彻底消除雷电引起的毁坏性的电位差,将金属管道、信号线、电源线通过过压保护器进行连接,内层保护区的界面处依此进行局部等电位连接,最终与等电位连接母排相连。
4.仪表设备的防雷措施
仪表设备防雷接地是很重要的。
按照石油化工仪表接地规范SH-T3081-2003,仪表电缆槽、仪表电缆保护管应在进入控制室处、雷电涌保护器均与电气专业的防雷电感应的接地排相连。
仪表及控制系统工作接地的各接地干线应分别接到工作接地汇总板,再由工作接地汇总板经两根单独的工作接地干线接到总接地板。
接地电阻小于4Ω。
屏蔽是减少雷击电磁波干扰的有效措施。
首先可以利用建筑物进行自然屏蔽,在建造建筑物时,将建筑物结构中的自然金属构件连接在一起,初级屏蔽侵入的雷击电磁脉冲,降低内部配电设备的屏蔽要求。
而精密的配电设备,则应采用连续金属层封
闭,全面截断雷电电磁脉冲波入侵的通道,并置于专门的屏蔽室内。
5.结束语
随着电子技术的发展,数字控制技术被广泛运用于配电设备中,电路的微电子技术成份逐年增加,耐受雷击及其电磁效应的能力却降低了,抗雷击的防护标准逐步提高,必须构建合理高效的分流、屏蔽机制、拦截平台、接地信号等科技技术措施来加以保护,在现实生产生活中应得到足够的重视。
为了防止雷电对配电设备的侵害,保证配电设备的安全运行,有必要有选择性的采取适当的防雷击保护措施。
在工程设计阶段就应该认真考虑配电系统的防雷,按照等电位的原则,根据实际情况,做好符合要求的共用接地网,避免雷击的危害。