电磁兼容培训-雷击浪涌案例分析
- 格式:pptx
- 大小:1.89 MB
- 文档页数:47
6个实例详解雷击超高浪涌电压抑制电路技术与设计方法一、实例1:上图是一个可抗击较强雷电浪涌脉冲电压的电原理图,图中:G1、G2为气体放电管,主要用于对高压共模浪涌脉冲抑制,对高压差模浪涌脉冲也同样具有抑制能力;VR为压敏电阻,主要用于对高压差模浪涌脉冲抑制。
经过G1、G2和VR抑制后,共模和差模浪涌脉冲的幅度和能量均大幅度降低。
G1、G2的击穿电压可选1000Vp~3000Vp,VR的压敏电压一般取工频电压最大值的1.7倍。
G1、G2击穿后会产生后续电流,一定要加保险丝以防后续电流过大使线路短路。
二、实例2:增加了两个压敏电阻VR1、VR2和一个放电管G3,主要目的是加强对共模浪涌电压的抑制,由于压敏电阻有漏电流,而一般电子产品都对漏电流要求很严格(小于0.7mAp),所以图中加了一个放电管G3,使平时电路对地的漏电流等于0。
G3的击穿电压要远小于G1、G2的击穿电压,采用G3对漏电隔离后,压敏电阻VR1或VR2的击穿电压可相应选得比较低,VR1、VR2对差模浪涌电压也有很强的抑制作用。
三、实例3:G1是一个三端放电管,它相当于把两个二端放电管安装在一个壳体中,用它可以代替上面两个实例中的G1、G2放电管。
除了二端、三端放电管之外,放电管还有四端、五端的,各放电管的用途也不完全相同。
四、实例4:增加了两个压敏电阻(VR1、VR2),主要目的是为了隔断G1击穿后产生的后续电流,以防后续电流过大使输入电路短路,但由于VR1、VR2的最大峰值电流一般只有G1的几十分之一,所以,本实例对超高浪涌电压的抑制能力相对实例3要的抑制能力差很多。
五、实例5:直接在PCB板上制作避雷装置。
在PCB板上直接制作放电避雷装置,可以代替防雷放电管,可以抑制数万伏共模或差模浪涌电压冲击,避雷装置电极之间距离一般要求比较严格,输入电压为AC110V时,电极之间距离可选4.5mm,输入电压为AC220V时,可选6mm;避雷装置的中间电极一定要接到三端电源线与PCB板连接的端口上。
华北电力大学科技学院电磁兼容实验报告班级:电信13K2姓名:张钦潘学号:131903020231电磁兼容浪涌(冲击)抗扰度试验一:实验内容1:浪涌的试验内容:雷电瞬变过电压引起的单极性浪涌雷电具有以下几个特点:冲击电流非常大,其电流高达几万至几十万安培。
持续时间短,一般雷击分为3个阶段,即先导放电、主放电和余光放电,整个过程一般不会超过60µs。
雷电流变化梯度大,有的可达10KA/µs。
冲击电压高,强大的电流产生交变磁场,其感应电压可高达上亿伏。
2:浪涌的目的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
3:试验设备高压源U;充电电阻Re;储能电容Cc;脉冲持续时间形成电阻Rs;阻抗匹配电阻Rm;上升时间形成电感Lr。
二:试验1:标准波形图:a)浪涌电压波形如下图所示:b)浪涌电流波形如下图所示:a:原理图开路电压原理图短路电流原理图b:结果图形1)开路电压波形5us时的波形:10us时的波形:100us时的波形:波前时间:T1=1.67*T=1.5*(1+30%)us半峰值时间:T2=45*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
2)短路电流波形15us时的电流波形:30us时的电流波形:100us时的电流波形:波前时间:T1=1.25*T=8.7*(1+20%)us半峰值时间:T2=17*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
3)开路电压峰值与短路电流峰值的关系由开路电压波形图和短路电流波形图可知,电压峰值约为9.3KV,短路电流为0.45KA,对比标准的开路电压峰值与短路电流峰值的关系可知,基本符合标准的要求。
三:浪涌的防护二极管模型的反串电压为10V浪涌的防护采用一个二极管并联在输入回路中的方式,二极管模型的电压为1KV,原理图与仿真波形图如下图所示:开路电压原理图:100ns时的原理图100ns时的波形图30ns时的波形图短路电流原理图:分析:根据所仿真出来的波形与上面做的仿真波形对比参照可知,做完防护后的开路电压变成155V左右,短路电流变为18A左右,效果还是可以的。
,.雷击浪涌试验细则1 试验环境布置考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。
LSG背面板接地线参考接地板图1 浪涌试验环境布置1.1 EUT电源端的试验配置EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。
各项试验中包括线-线与线-地两种方式。
示意图分别见图2-图5。
,.图2 交流线(三相)上电容耦合的试验配置,线-线图3交流线(三相)上电容耦合的试验配置,线-地耦合网络,.图4 交/直流上电容耦合的配置,线-线图5 交/直流上电容耦合的配置,线-地注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。
1.2 EUT非屏蔽互联线的试验配置,.图6 非屏蔽互连线的试验配置,电容耦合方式注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。
需使用40欧姆的电阻,以保护EUT 受试设备。
1.3 EUT 屏蔽通信线的试验配置图7 屏蔽线的试验配置,直接施加根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直,.接施加在屏蔽线上。
如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。
2 CPS 试验方法2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验(1)试验判据标准中无明确要求,参照试验判据表1,给出试验结果。
(2)施加干扰电压水平主回路电源线的试验水平为线-地4kV ,线-线2kV 。
脉冲在正负两个极性进行,相角为0°、90°。
在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。
(3)受试设备接线方式KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。
图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。
下面是一个典型的规格: (1.2uS / 50uS)–没有误动作: 4 kV / 12 Ω共模, 2kV/ 2 Ω差模–可以交流重启(关机,短时间不工作): 6kV / 12 Ω共模, 4kV / 2Ω差模–更高雷击电压时,不能出现安规问题●雷击有两种模式:差模雷击和共模雷击●雷击的峰值电压是规定的,在kV级别●输入阻抗也是规定的,或者有时规定输入短路电流–例如:6 kV / 12 Ω= 500A●连续的雷击脉冲和重置时间又非常短造成损害比较大:–一个非常短的重置时间如:15s 或1分钟, 使其很难通过测试,原因为压敏电和其他的部分没时间把温度降下来!差模雷击差模雷击是高电压加在L和N线之间.电流从L线流入从N线流出共模雷击(1)当开关在接右位置,电压加在L线和大地线上(雷击发生器上显示“L1/PE”).当开关在接左位置,电压加在N线和大地线上(雷击发生器上显示“L2/PE”).上面两个实际上是在电源产品上产生共模和差模电流电流。
共模雷击(2)当雷击发生器设定为“L1, L2 / PE”, 开关同时接到两线上。
这是唯一真的共模雷击测试设定。
如果客户简单说共模雷击指的就这个设定.系统只有两线输入,输出有悬空(不接大地), 共模雷击是没有意义的! (很容易通过测试, 只要输出真的悬空)雷击会产生什么损坏?差模雷击产生高的差模电流能导致输入大电容的电压升高,而损坏输入大电解电容和开关管的漏极。
共模雷击会产生非常高的共模电压,共模电压能造成电弧放电。
电弧放电发生会产生一个非常高的高频的电流。
如果没有电弧放电发生,电流比较小,只有寄生电容Cparasitic * dv/dt.当发生一个电弧放电,会得到一个非常高的峰值高频电流,高频电流产生噪声能耦合进入低压电路导致误动作。
雷击的损坏:–非常高的共模电压能导致跨接在初级和次级间的Y电容损坏。
–非常高的差模电压导致输入回路产生过高的电压和过大的电流,损坏输入端的元器件(保险丝,输入整流桥,X电容,压敏电阻,开关管)。
雷电浪涌防护器培训资料第一部分:雷电浪涌的危害雷电是一种自然现象,它产生的能量极大,能够造成严重的危害。
雷电对设备和设施的影响主要表现在以下几个方面:1. 烧毁设备:雷电的高能量会导致设备的烧毁,使得设备无法正常工作。
2. 数据丢失:雷电对数据存储设备也会造成损坏,导致重要数据丢失。
3. 安全隐患:雷电的冲击可能会引发火灾等安全隐患。
为了有效减少雷电对设备和设施的危害,需要使用雷电浪涌防护器进行防护。
接下来我们将详细介绍雷电浪涌防护器的功能和使用方法。
第二部分:雷电浪涌防护器的功能雷电浪涌防护器是一种电子设备,主要用于抵御雷电产生的浪涌电压,保护设备和设施不受雷电的影响。
雷电浪涌防护器的功能主要包括以下几个方面:1. 吸收浪涌电压:雷电浪涌防护器能够迅速吸收雷电产生的浪涌电压,避免其传导到设备和设施上。
2. 分流浪涌电流:当雷电产生浪涌电流时,雷电浪涌防护器能够将其分流到地线或其他安全通道上,避免浪涌电流对设备造成损害。
3. 快速响应:雷电浪涌防护器能够在很短的时间内响应雷电产生的浪涌电压和浪涌电流,有效保护设备和设施。
综上所述,雷电浪涌防护器的功能主要是在雷电产生浪涌电压和浪涌电流时,迅速吸收和分流,保护设备和设施不受损害。
第三部分:雷电浪涌防护器的使用方法雷电浪涌防护器的使用方法主要包括以下几个步骤:1. 安装位置选择:雷电浪涌防护器应该安装在设备和设施的电源输入端,以最大限度地降低雷电浪涌对设备和设施的影响。
2. 接地保护:雷电浪涌防护器必须接地使用,确保浪涌电压和浪涌电流能够迅速传导到地线上,避免对设备造成危害。
3. 定期检查:雷电浪涌防护器应该定期进行检查和维护,确保其正常工作。
4. 经常测试:在雷电季节或频繁雷电的环境中,应该经常对雷电浪涌防护器进行测试,确保其能够有效工作。
通过正确的安装和使用方法,雷电浪涌防护器能够有效防护设备和设施不受雷电的影响。
结语雷电浪涌防护器是一种非常重要的设备,它能够有效防护设备和设施不受雷电的危害。
6个实例电路,详解雷击浪涌的防护1、电子设备雷击浪涌抗扰度试验标准电子设备雷击浪涌抗扰度试验的国家标准为GB/T17626.5(等同于国际标准IEC61000-4-5 )。
标准主要是模拟间接雷击产生的各种情况:(1)雷电击中外部线路,有大量电流流入外部线路或接地电阻,因而产生的干扰电压。
(2)间接雷击(如云层间或云层内的雷击)在外部线路上感应出电压和电流。
(3)雷电击中线路邻近物体,在其周围建立的强大电磁场,在外部线路上感应出电压。
(4)雷电击中邻近地面,地电流通过公共接地系统时所引进的干扰。
标准除了模拟雷击外,还模拟变电所等场合,因开关动作而引进的干扰(开关切换时引起电压瞬变),如:(1)主电源系统切换时产生的干扰(如电容器组的切换)。
(2)同一电网,在靠近设备附近的一些较小开关跳动时的干扰。
(3)切换伴有谐振线路的晶闸管设备。
(4)各种系统性的故障,如设备接地网络或接地系统间的短路和飞弧故障。
标准描述了两种不同的波形发生器:一种是雷击在电源线上感应生产的波形;另一种是在通信线路上感应产生的波形。
这两种线路都属于空架线,但线路的阻抗各不相同:在电源线上感应产生的浪涌波形比较窄一些(50uS),前沿要陡一些(1.2uS);而在通信线上感应产生的浪涌波形比较宽一些,但前沿要缓一些。
后面我们主要以雷击在电源线上感应生产的波形来对电路进行分析,同时也对通信线路的防雷技术进行简单介绍。
2、模拟雷击浪涌脉冲生成电路的工作原理上图是模拟雷电击到配电设备时,在输电线路中感应产生的浪涌电压,或雷电落地后雷电流通过公共地电阻产生的反击高压的脉冲产生电路。
4kV时的单脉冲能量为100焦耳。
图中Cs是储能电容(大约为10uF,相当于雷云电容);Us为高压电源;Rc为充电电阻;Rs为脉冲持续时间形成电阻(放电曲线形成电阻);Rm为阻抗匹配电阻Ls为电流上升形成电感。
雷击浪涌抗扰度试验对不同产品有不同的参数要求,上图中的参数可根据产品标准要求不同,稍有改动。
电磁兼容EMC测试:雷电浪涌测试方法介绍雷击测试可以在单冲程,多冲程和多冲程测试中完成。
外部飞机系统通常需要直接雷电测试。
内部和外部的大多数飞机电子设备都需要间接闪电测试。
间接闪电模拟通过电路和电缆传输的二次电流和电压,该测试也称为浪涌抗扰度测试。
浪涌测验试验办法:浪涌的原因是电力系统的开关瞬态和雷电瞬态;而浪涌抗扰度试验意图是树立一个一起的基准,以点评电气和电子设备在遭受浪涌(冲击)时的功能。
依据规范IEC61000-4-5浪涌冲击抗扰度试验一般要求,雷击浪涌发生器模仿1.2/50us电压波形,8/20us电流波形和组合波(电压波形:10/700us,电流波形:5/320us),经过耦合网络,将波形耦合至被测电路中,已达到试验意图。
硕凯电子EMC试验室正可以为客户供给各种组合波形的浪涌测验方案。
浪涌测验试验等级:试验等级依据电压严格程度分为1,2,3,4和X级,其间X及为敞开级,每一级对应的电压强度如表一。
严格等级运用规模则取决于环境(遭受浪涌可能性的环境)及装置条件,大体依照以下条件分类:1级:较好维护的环境,如工厂或电站的控制室。
2级:有必定维护的环境,如无强搅扰的工厂。
3级:一般的电磁打扰环境,对设备未规定特别装置要求,如一般装置的电缆网络,工业性的作业场所和变电所。
4级:受严重打扰的环境,如民用架空线,未加维护的高压变电所。
X级:特别级,由用户和制造商洽谈后断定。
具体产品选用哪一级,一般由产品规范定。
雷击浪涌测验试验的注意事项:1.运用示波器时,好加上阻隔变压器供电,避免雷击浪涌反冲击电压对示波器电源试验,雷击浪涌反冲一般在设置的8%。
2.保证雷击浪涌发生器接地牢靠。
3.差分探头的供电电源好是选用阻隔变压器供电,扫除外界对测验东西的搅扰。
4.EUT电源好选用阻隔变压器供电,或许选用漏保较大的空气开关。
5.试验室操作安满是首要方位,(雷击浪涌具有高电压大电流试验,具有必定的危险性)在测验时尽量不要触摸到接线方位,当雷击浪涌发生器触发放电时就不要触碰任何衔接线路,呈现紧急情况直接把急停按钮按下,仪器主动卸掉高压电压。