四年级数学烙饼问题
- 格式:doc
- 大小:41.00 KB
- 文档页数:5
四年级上册数学广角问题一、烙饼问题(3题)1. 一只平底锅每次只能烙2张饼,两面都要烙,每面需2分钟,妈妈要烙3张饼,至少需要几分钟?- 解析:先把第一张饼和第二张饼放在锅中,当第一面熟后,把第一张饼挑出来把第二张饼翻过来的同时入第三张饼,当第二张饼熟后挑出来把第三张饼翻过来烙第二面的同时把第一张饼放进锅内烙第二面,这样总共用时2×3 = 6分钟。
2. 用一只平底锅烙饼,每次能同时烙两张饼。
如果烙一张饼需要4分钟(假定正、反面各需2分钟),烙9张饼至少需要多少分钟?- 解析:因为每次能烙2张饼,9张饼可以分成4组,还剩1张饼。
前4组每组2张饼,共8张饼,每组需要4分钟,共4×4 = 16分钟。
最后剩下的1张饼还需要4分钟,所以总共需要16 + 4=20分钟。
3. 一口锅每次最多能煎3个蛋,每个蛋煎第一面需要2分钟,煎第二面只需要1分钟。
煎4个蛋最少需要多少分钟?- 解析:首先煎第1、2、3个蛋的第一面,需要2分钟;然后煎第1个蛋的第二面和第4个蛋的第一面,需要2分钟;最后煎第2、3、4个蛋的第二面,需要1分钟。
总共2 + 2+1=5分钟。
二、沏茶问题(3题)1. 小明给客人烧水沏茶。
洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟,拿茶叶需要2分钟。
为了使客人早点喝上茶,按照最合理的安排,多少分钟后就能沏茶了?- 解析:最合理的安排是,先洗水壶用1分钟,然后烧开水用15分钟,在烧开水的同时洗茶壶、洗茶杯、拿茶叶,总共需要1+15 = 16分钟就能沏茶。
2. 妈妈让小明给客人烧水沏茶。
洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。
小明估算了一下,完成这些工作要20分钟。
为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?- 解析:首先洗开水壶1分钟,然后烧开水15分钟,在烧开水的同时洗茶壶、洗茶杯、拿茶叶,总共1 + 15=16分钟就能沏茶。
四年级上册烙饼问题的计算公式一、烙饼问题计算公式及原理。
1. 公式。
- 当饼的数量为双数时,所需时间 = 烙一面的时间×饼的数量。
- 当饼的数量为单数时,所需时间=烙一面的时间×(饼的数量 + 1)。
2. 原理。
- 以每次能烙2张饼为例,每张饼有2面。
如果饼的数量是双数,正好每次都能充分利用锅的容量,2张2张地烙。
- 如果饼的数量是单数,先2张2张地烙,最后剩下3张饼时,采用交替烙的方法最节省时间。
比如有3张饼A、B、C,先烙A和B的正面,再烙A的反面和C的正面,最后烙B和C的反面,总共用3次就可以烙好3张饼,相当于在单数个饼的基础上多烙了一次(3张饼按2张饼的效率烙需要烙3次,而双数张饼2张2张烙,次数就是饼的数量的一半)。
二、20道练习题及解析。
1. 一口锅每次最多能烙2张饼,每张饼要烙2面,每面需要3分钟。
烙4张饼需要多少分钟?- 解析:因为4是双数,根据公式,所需时间 = 烙一面的时间×饼的数量。
这里烙一面的时间是3分钟,饼的数量是4张,所以所需时间 = 3×4 = 12分钟。
2. 一口锅每次最多能烙2张饼,每张饼要烙2面,每面需要2分钟。
烙6张饼需要多少分钟?- 解析:6是双数,所需时间 = 烙一面的时间×饼的数量。
烙一面时间为2分钟,饼的数量是6张,所以所需时间 = 2×6 = 12分钟。
要多少分钟?- 解析:8是双数,所需时间 = 烙一面的时间×饼的数量。
烙一面时间为4分钟,饼的数量是8张,所以所需时间 = 4×8 = 32分钟。
4. 一口锅每次最多能烙2张饼,每张饼要烙2面,每面需要3分钟。
烙10张饼需要多少分钟?- 解析:10是双数,所需时间 = 烙一面的时间×饼的数量。
烙一面时间为3分钟,饼的数量是10张,所以所需时间 = 3×10 = 30分钟。
5. 一口锅每次最多能烙2张饼,每张饼要烙2面,每面需要2分钟。
四年级数学上册《烙饼问题》教学设计优秀13篇烙饼问题教案篇一教学目标:1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
本课时教学内容:人教版义务教育课标实验教材(四上)112—113的例1教学重点:体会优化思想。
教学难点:探究解决问题的最优方案。
教具准备:多媒体课件、三张圆纸片。
教学时间:一课时教学过程:一、谈话开始,营造轻松的学习氛围同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?二、情境引入,学习新知那么我们来看看小丽家厨房里的数学问题。
(课件出示例1图)小丽妈妈正在为全家人做自己的拿手绝活——烙饼。
(板书课题:烙饼问题)1、师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。
教师提问:“妈妈烙一张饼最少需要几分钟?”“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?”“要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”2、学生操作,探究烙3张饼的方法。
让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。
(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。
)教师参与到小组活动中。
3、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。
(学生上黑板动手烙,边烙边说)让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。
题
一、锅里最多放两张饼
1.一个平底锅每次最多烙两张饼,每面烙3分钟,那么烙3张饼至少需要多少分钟?
(解题思路:烙饼最短时间=烙每面的时间×烙饼张数)
在最多放两张饼情况下,烙饼张数=烙饼次数(一张饼除外)
3×3=9(分钟)
2.一个平底锅每次最多烙两张饼,每张烙4分钟,那么烙7张饼至少需要多少分钟?
(解题思路:烙饼最短时间=烙每面的时间×烙饼张数)
(烙每面的时间=烙每张的时间÷2)
二、锅里每次最多放大于2张饼
小兰用平底锅烙大饼,锅内同时最多能放3张大饼,每面各需烙2分钟。
烙35张饼最快需要多长时间?
【1】解题思路:
①先算一共烙几面。
②再算一共烙几次。
③最后算总时间。
【2】公式:
一共烙几面=饼的张数×每张要烙的面数
一共烙几次=一共烙几面÷每锅可烙的数量(不能整除时+1)
总时间=一共烙几次×烙每面的时间(总时间为每面时间的倍数)【3】解题步骤:
解法一:
35×2÷3×2≈46.67分≈48分钟(为什么不是47?因为48才是时间2的倍数)
解法二:
先算一共烙多少锅?一定要整数。
35×2÷3≈23.3≈24(锅)(不能整除时+1)
再算一共要多少分钟?
24×2=48(分钟)。
烙饼问题公式及练习
1.烙饼问题公式:
总时间=饼数×2÷每锅的可烙的数量×烙每面的时间
当时间算出来不为整数时,采用进一法取近似数。
如饼数为4,每一锅的只数为3时,根据公式,4×2÷3×1约=3分
2.深层意义:
烙饼问题只是一种数学思考的方法。
其实这种合理安排时间的问题,就是“优化问题”,也是被数学家华罗庚称作“运筹安排”的问题。
烙饼问题练习
1. 平底锅中,每次最多只能放2张饼,1张饼要烙2面,烙熟每个面需要2分钟,烙熟1张饼要_____分钟,烙熟2张饼最少要_____分钟,烙熟3张饼最少要_____分钟,烙熟4张饼最少要_____分钟.
查看答案
2. 王师傅用平底锅煎鱼,一次只能煎两条,每条鱼要煎两面,一面2分钟.如果煎3条鱼,最少需要_____分钟,煎4条鱼最少要_____分钟.
查看答案
3. 车子去加油,2个加油站,A车要7分钟,B车要8分钟,C车要9分钟,D车要4分钟,E车要2分钟,F车要5分钟,求最少加油和等候时间是_____分钟.。
题目使用次数:334971.烙一张饼要分钟(正反面各分钟),一只锅每次只能烙张饼,烙好张饼至少要( )分钟。
A.B.C.题目使用次数:288872.给小黑板两面刷油漆,刷一面要分钟,但必须等分钟油漆干后,才能刷另一面。
刷完块这样的小黑板至少要( )分钟。
A.B.C.题目使用次数:53533.一种锅每次只能烙张饼,两面都要烙,每面要分钟,烙张饼至少要( )分钟。
A.B.C.题目使用次数:42834.一个锅一次可以煎两张饼,煎一面需要分钟,两面都要煎,煎张饼最少要用( )。
A.分钟B.分钟C.分钟题目使用次数:37845.烙饼锅每次只能烙两张饼,两面都要烙,每面需分钟,妈妈烙张饼,至少需( )分钟。
A.B.C.D.题目使用次数:26566.一个平底锅每次最多能同时煎个鸡蛋,鸡蛋的两面都要煎,每面需要分钟,煎完个鸡蛋至少需要( )分钟。
4227142128210620248423515183045202430271214615229A.B.C.D.题目使用次数:26477.在烤盘上烤面包时,第一面要烤分钟,第二面要烤分钟,且一次只能烤两片。
妈妈要烤片面包,至少需要( )分钟。
A.B.C.题目使用次数:3668.一平底锅最多只能烙张饼,两面都要烙,每面分钟,烙张饼最少要( )分。
A.B.C.题目使用次数:42879.一个锅一次最多能同时烙个饼,正反两面各需要烙分钟,烙熟个饼至少需要分钟;烙熟个饼最少需要分钟。
题目使用次数:421310.一个锅每次只能放两片面包,每烤一面需分钟。
小红早点要吃片面包,至少要等分钟。
题目使用次数:414011.三位同学一起到学校图书室还书,甲还完书要分钟,乙还完书要分钟,丙还完书要分钟.三人等候的时间总和最少是分钟。
题目使用次数:194312.每次只能烙两张饼,两面都要烙,每面分钟。
烙3张饼至少要分钟;烙张饼至少要分钟。
题目使用次数:1888918273621334523318912235102342824。
四年级数学上册《烙饼问题》教学设计【精选13篇】烙饼问题教学设计篇一教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。
教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。
这部分知识对学生来说,比较抽象,难以理解。
但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。
教学目标:1、学生在经历烙饼的具体过程中学会如何合理安排最省时间,从而体会做事情要进行合理的安排。
2、让学生尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。
3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。
教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。
教学难点:寻找合理、快捷的烙饼方案。
教学过程:一、预设情景,走进生活。
师:同学们,吃过鸡蛋吗?煮熟一个鸡蛋大约用5分钟,煮熟6个鸡蛋大约用多长时间?(30分钟)师:你是怎么煮的?请你说一说。
(煮1个需要5分钟,煮6个需要30分钟。
)师:你是一个一个煮的,这是一种方法。
还有没有跟他不同的煮法?生:只需要5分钟。
师:请你说说怎样煮只需要5分钟?生:煮1个需要5分钟,6个一起煮也只需要5分钟。
师:这样煮行吗?(征求全班同学的意见——生齐:行!)?师:当能6个一起煮时,只需要5分钟,这是一种好方法,不但节省了时间,还节省了能源。
师:孩子们,人们在日常生活和实际工作中,为了节省时间和能源,经常要用到最优策略。
今天这节课我们要研究的是烙饼问题。
二、围绕主题,探索新知。
1、课件出示烙饼情境(先出示112页主题图的条件部分):师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?生:每次只能烙2张饼;两面都要烙;每面3分钟。
四年级数学烙饼问题解题技巧
烙饼问题是一个经典的数学问题,通常涉及到如何在最短的时间内烙出一定数量的饼。
假设每次只能烙一张饼的一面,烙熟一面需要 t 分钟,烙熟一张饼需要 2t 分钟。
如果一次可以烙两张饼的一面,烙熟一张饼需要 t 分钟。
假设烙 n 张饼,每次烙两张饼的一面,那么需要烙 n/2 次(因为每次烙两张饼的一面)。
每次烙两张饼的一面需要 t 分钟,所以烙 n 张饼需要t × (n/2) 分钟。
如果每次只能烙一张饼的一面,烙熟一张饼需要 2t 分钟,所以烙 n 张饼需要2t × n 分钟。
现在我们可以通过计算来找出最短的时间。
如果每次烙两张饼的一面,最短需要 0 分钟。
人教版四年级数学上册第八单元
第2节《烙饼问题》课后练习题(附答案)
1.校文印室需要复印32张资料,正反面都要复印。
如果一次最多放4张,那么你认为至少要复印多少次?
2.妈妈用一只小平底锅煎鸡蛋饼,每次最多能煎2个,如果煎1个鸡蛋饼需要2分钟(正、反面各1分钟),那么煎9个鸡蛋饼至少需要多少分钟?
3.牛排馆烤1块牛排需要6分钟(正、反两面各3分钟),如果一块铁板上最多只能烤3块,那么烤15块牛排至少需要多少时间?
4.爸爸用一只小平底锅煎鸡蛋饼,每次最多能煎5个,如果煎1个鸡蛋饼需要6分钟(正、反面各3分钟),那么煎30个鸡蛋饼至少需要多少分钟?
5.牛排馆烤1块牛排需要6分钟(正、反两面各3分钟),如果一块铁板上最多只能烤4块,那么烤20块牛排至少需要多少分钟?
参考答案
1.32×2÷4=16(次)
答:至少要复印16次。
2.9×2÷2×1=9(分)
答:煎9个鸡蛋饼至少需要9分钟。
3.15×2÷3×3=30(分)
答:烤15块牛排至少需要30分钟。
4.30×2÷5×3=36(分)
答:煎30个鸡蛋饼至少需要36分钟。
5.20×2÷4×3=30(分)
答:烤20块牛排至少需要30分钟。
四年级数学《烙饼问题》教学设计四年级数学《烙饼问题》教学设计(通用9篇)作为一名为他人授业解惑的教育工作者,就难以避免地要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
那要怎么写好教学设计呢?下面是店铺精心整理的四年级数学《烙饼问题》教学设计,欢迎阅读,希望大家能够喜欢。
四年级数学《烙饼问题》教学设计篇1教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。
教学目标:1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。
2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题,初步培养学生的应用意识和解决实际问题的能力。
4、使学生逐渐养成合理安排时间的良好习惯。
教学重点:寻找合理、快捷的烙饼方案。
教学难点:初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。
教具准备:课件、三张圆片一、创设情景导入新课。
课件多媒体出示图片:鸡蛋。
师:孩子们,请看,这是——鸡蛋。
煮熟一个鸡蛋大约用5分钟的时间,煮熟5个鸡蛋大约用多长时?(学生作答)师:孩子们,在我们的生活中有很多事情都要讲究策略,今天我们就用数学的眼光来研究烙饼的策略。
(板书课题)二、自主探索,探究烙法(一):解读信息,理解烙饼规则课件出示情境:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?(生答)师:每次只能烙两张饼是什么意思?两面都要烙呢?(生答)(二)观察法,探究两张饼的最优烙法1、明确烙一张饼的时间。
师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)为什么是6分钟?(生答)师:为了交流方便,老师用流程图把刚才这位同学说的烙饼过程记录下来。
板书:一张:正反①②③3 3 6分2、研究2张饼的最优方案师:想一想:如果烙两张饼,怎么烙?有几种可能?生:12分钟师:你是怎么烙的?(生答,师板书)板书:两张:①正①反②正②反3 3 3 3 12分师:还有不同意见吗?生:6分钟。
《烙饼问题》教学设计《烙饼问题》教学设计(精选6篇)作为一名专为他人授业解惑的人民教师,可能需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。
教学设计要怎么写呢?下面是小编为大家整理的《烙饼问题》教学设计,仅供参考,欢迎大家阅读。
《烙饼问题》教学设计篇1教学目标:1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。
2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。
3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。
教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。
教学难点:寻找合理、快捷的烙饼方案。
教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。
这部分知识对学生来说,比较抽象,难以理解。
但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。
教学过程:一、预设情景,走进生活。
师:同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?生1:25分钟。
一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。
生2:只需要5分钟,把5个鸡蛋一起放进锅里。
师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。
生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?——板书:烙饼问题(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效)二、围绕主题,探索新知。
人教版数学四年级上册烙饼问题教案与反思(推荐3篇)〖人教版数学四年级上册烙饼问题教案与反思第【1】篇〗教学目标1.理解“烙饼问题”数学模型,掌握不同张数“烙饼”最优化方案的基本规律,能解释生活中的相关现象、能进行相关的简单实际应用。
2.通过观察、操作、比较、讨论等数学学习过程,引导学生认识到解决问题策略的多样性,渗透解决问题最优方案的意识。
发展思维的灵活性。
3.通过探究活动,让学生体验探索和合作的乐趣,充分感受数学与生活的密切联系,培养学生合理安排时间的良好习惯。
教学重难点教学重点:能利用探究“烙饼问题”的规律解决简单的实际问题。
教学难点:在探索“烙饼问题”的过程中,形成解决较复杂问题的数学研究方法,体会优化的数学思想。
教学准备课件、记录表、饼模型。
教学过程准备课前互动:有一个字总是被人们念错,猜猜是哪个字?(错)同一天出生的两个小孩,长得一模一样,是一个妈妈生的,不是双胞胎,请问咋回事?(三胞胎)设计意图:舒缓紧张气氛,活跃现场氛围,帮助学生思维“热身”。
一、谈话导入,激发兴趣。
1.出示自家厨房情境,交流吴老师做饭的兴趣爱好。
2.煮一个鸡蛋需要5分钟,煮3个鸡蛋需要多长时间?3.烙两张饼需要6分钟,烙一张饼需要几分钟?设计意图:老师进行自我开放,让学生了解生活中的老师,拉进师生距离。
从最简单的优化案例谈起,给全体学生思考的时空,为探究课堂中的问题打基础。
通过逆向思维问题的直接对比,初步引发冲突,激发学生学习欲望。
二、自主探索,合作交流。
(一)解读信息,理解烙饼规则1.学生自主阅读,发现关键的数学信息。
每次只能烙两张饼,两面都要烙,每面要3分钟。
2.深入解读数学信息。
(1)每次只能烙两张饼是什么意思?(2)两面都要烙呢?设计意图:发现并提出问题是数学学习的根本。
引导学生能把生活中的数学问题抽象成数学问题来解决,这是培养学生应用意识的重要意义之一。
(二)依次探究2张饼、1张饼、4张、6张、8张……张饼的最优烙法1.研究2张饼的最优烙法。
数学广角——烙饼问题
教学内容:
教科书第112页到第113页例1
教学目标:
1、初步掌握优化思想
2、能够用优化思想解决生活中的问题。
3、感受数学的魅力。
教学重点及难点:
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼烙法。
学具准备:圆形纸片
教学过程:
一、引入。
师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。
(板书课题:烙饼问题)师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!
二、新授。
1、师:比方说这里有口锅,每次可以烙两张饼。
(边说边拿圆形纸片演示)一张饼的一面3分钟能烙熟,那一张饼多长时间能烙熟?生:6分钟
师:为什么?
生:因为一张饼一面是3分钟,两面就是6分钟
师:如果我想烙两张饼呢?需要多少时间?刚刚一张饼用了6分钟,所以两张饼应该会用12分钟,我说的对吗?
生:(提出疑问)不对,应该是6分钟。
师:为什么是6分钟呢?
生:因为里面两张饼都同时在烙。
烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。
师:同意吗?很好。
锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。
(注意强调同时,讲解的时候注意解释。
)2、突破难点。
师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?生:先烙两张,再烙一张,一共需要12分钟。
师:你们都的这样烙的吗?那还有没有更好的方法呢?
(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。
小组汇报:
师:谁想上来给大家汇报一下你们组讨论的结果。
生:汇报讨论结果。
师在表格内板书
师:谁听明白了?
(生再讲一遍)。
此时教师用纸片往黑板上贴每次的情况。
师:大家觉得这种方法怎么样?
生:比上种方法节约时间,比较快。
师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。
)
师:那这样才能不浪费时间呢?
生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。
)
师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。
三、拓展提高。
师:刚才我们研究了2张饼,3张饼的烙法。
如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。
(生小组研究)
生:把4看成2+2 把6看成2+2
(及时的表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知识来解决)
师:你听明白了吗?她是把4张饼、6张饼,都两张两张的烙,如果是8张、10 张饼呢?你想象一下,怎样烙?
聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?
生:双数
你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?
生:可以用烙两张饼的方法,两张两张的烙
板书:双数张饼:两张两张的烙
师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。
把5张饼烙两张,再把那3张按刚才的好办法烙。
把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。
师:谁能概括的说一说你发现的规律
生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。
师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。
四、师生交流,思维升华。
师:通过这节课的学习,你知道了什么?
师:其实,数学来源于我们的生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。
相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。
只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学。