乙醛的性质和应用
- 格式:ppt
- 大小:860.50 KB
- 文档页数:87
醛的性质和应用教案(第一学时)高二年级化学科组周海清【教学目标】知识与技能:1.使学生了解乙醛的分子结构和物理性质及用途.2.使学生掌握乙醛与氢气的加成反应和乙醛的氧化反应。
3.掌握醛基的实验室检验方法。
过程与方法:1.培养学生观察分析能力以及理论联系实际的能力。
2.通过物质的结构、性质、用途三者之间的关系,提高形成规律性认识的能力。
情感态度与价值观:充分利用多媒体辅助教学演示实验,让学生积极参与课堂活动,设疑解疑,探求实验现象的本质,做到师生默契配合,情理交融,使学生始终处于积极探求知识的过程中,达到最佳的学习心理状态。
【教学重点与难点】教学重点:乙醛的加成反应和乙醛的氧化反应。
教学难点:乙醛的氧化反应以及银镜反应方程式的书写。
【教学准备】学生的学习准备:a、能在反应中较好地辨别物质的变化,识别物质所具有的氧化性、还原性。
b、充分掌握同分异构体概念并能熟练应用。
c、能简单地理解核磁共振谱图并用以判断有机物的结构。
d、回顾化学2专题3《有机化合物的获得与应用》第二单元《食品中的有机化学》中的乙醇氧化成乙醛,乙醛进一步氧化生成乙酸的内容,进一步完善醛的有关知识。
教师的教学准备:本课情景问题的设置,课件的制作,突出重点细化难点教学用具的设计和准备:镜子、保温杯内胆、乙醛样品、银镜反应和斐林反应实验用品、溴水、乙醛分子的比例模型和球棍模型。
【教学反思】本节教学通过科学探究,尊重学生掌握知识的自然规律,突出学生的主体地位,力求学生全面发展,提高学生的科学文化素养。
通过本节课教学,让学生知道什么是乙醛以及乙醛的一些性质。
在整节课中,利用开放性的实验设计方案,增强学生的主体活动,充分调动了师生的互动交流与沟通,引导学生参与探索、发现、讨论、交流、评价的学习活动中,培养学生从实验事实中归纳、概括出化学概念和规律的能力。
对学生发表的各种意见要给予充分的肯定,以便进一步激励学生学习的积极性和主动性。
本节课的课堂秩序比传统的教学方式难以控制,时间安排上存在不确定性;学生获取知识比较分散、参差不齐,必须通过教师的导向、点评、规范来帮助学生构建知识;对于如何更好地让学生进行实验探究这方面还不够理想,我将在今后的教学中不断探索,争取更大的突破。
乙醛二乙缩醛制备方法1.引言1.1 概述概述部分的内容可以介绍乙醛二乙缩醛的制备方法以及其在化工领域的重要性。
可以参考以下内容进行撰写:概述乙醛二乙缩醛(Acetaldehyde diethyl acetal)是一种有机化合物,它在化工领域具有重要的应用价值。
乙醛二乙缩醛广泛用于溶剂、稀释剂、添加剂、反应中间体等方面,其独特的化学性质赋予了它广泛的应用领域。
因此,制备乙醛二乙缩醛的方法备受研究者的关注。
乙醛二乙缩醛的制备方法可以通过多种途径实现,其中最常用的是在酸性条件下进行的缩醛反应。
该反应通常以乙醛和乙醇为原料,通过引入一种酸性催化剂促进反应的进行。
这种制备方法具有反应条件温和、产率较高等优点,因此在工业生产中广泛应用。
对于乙醛二乙缩醛的制备方法,目前已经有一些研究成果和工业化生产方案。
然而,现有的乙醛二乙缩醛制备方法还存在一些问题和不足之处,如反应条件较为繁琐、产率有限、废弃物处理困难等。
因此,研究人员一直致力于寻找更高效、环保、经济的乙醛二乙缩醛制备方法。
本文将就乙醛二乙缩醛的性质与应用进行探讨,重点分析现有的制备方法及其优缺点,并在此基础上提出了一种改进的乙醛二乙缩醛制备方法。
希望通过本文的研究,可以为乙醛二乙缩醛的制备方法提供新的思路和方法,进一步提高生产效率,降低生产成本,推动乙醛二乙缩醛在化工领域的应用。
1.2文章结构1.2 文章结构本文将按照以下结构进行叙述。
首先,引言部分将概述乙醛二乙缩醛制备方法的背景和重要性,并明确文章的目的。
接着,在正文部分,将介绍乙醛和二乙缩醛的性质与应用,分析其在化工、医药等领域的重要性和潜在应用。
随后,重点讨论乙醛二乙缩醛制备方法,包括目前已有的方法以及其优缺点的分析。
最后,通过结论部分总结并强调乙醛二乙缩醛制备方法的重要性,并对现有方法的优化和未来研究方向进行展望。
通过以上结构,本文将全面分析乙醛二乙缩醛制备方法的现状和发展趋势,为相关领域的科研和工程实践提供参考,推动乙醛二乙缩醛的有效制备和应用的进一步发展。
醛类(甲醛、乙醛)化学性质一、甲醛、乙醛一、乙醛、醛类分子组成及结构式乙醛的分子组成C2H4O,结构式官能团试探:1)乙醛的结构简式可否写成CH3CHO 。
2)醛类的通式:CnH2nO (饱和一元醛) R─CHO(结构通式)1·分子结构2、乙醛物理性质:无色、有刺激性气味的液体,密度比水小,能与水、乙醇、乙醚、氯仿等互溶,沸点:℃,易挥发,易燃3·化学性质—CHO是乙醛的官能团,对乙醛的化学性质起着决定性的作用。
分析:醛基的结构,初步得出乙醛可能具有的化学性质——氧化性和还原性。
介绍氧化(加氧去氢)和还原(加氢去氧)的概念。
(1)加成反映:CH3CHO+H2CH3CH2OH(2)氧化反映:【6-7】银镜反映【6-8】与新制的Cu(OH)2反映①银镜反映—查验醛基Ag+ + NH3·H2O = AgOH↓ + NH4+AgOH + 2NH3·H2O = Ag (NH3)2OH + 2H2O氢氧化二氨合银②与新制的Cu(OH)2反映—查验醛基写出以下反映方程式:①CH3CH2CHO 与 H2反映②RCHO 与银氨溶液反映像如此由烃基和醛基组成的化合物叫醛。
二、醛类1·概念: R-CHO2·=饱和一元醛通式:CNH2N=1-CHO或CNH2NO3·甲醛(又名蚁醛):无色、刺激性气味、气体、易溶于水,水溶液又叫福尔马林,用于制酚醛树脂和杀毒、防腐①乙醛的化学性质加成反映——还原氧化反映——氧化②银镜反映的应用查验醛基并测定醛基的个数(-CHO~2Ag),制镜或水瓶胆(用含醛基的葡萄糖)三、醛、酮与水及醇的加成教学目标:把握羰基化合物与水、醇进行亲核加成反映的规律及对反映活性阻碍因素把握酸催化下生成缩醛的反映机理教学重点:缩醛、缩酮的生成及在有机合成中的应用教学内容:醛、酮的羰基是个极性的不饱和基团,它的碳原子是高度缺电子的,亲核试剂与之发生的亲核加成反映是醛、酮化合物的重要化学特性。
第五课时醛、酯的重要性质与拓展【考纲要求】1.掌握酯的化学性质和同分异构体。
2.掌握银镜反应的原理和醛的其它化学性质及应用。
教与学方案【自学反馈1.乙醛的结构结构式:官能团:2.乙醛的物理性质3.乙醛的化学性质(1)加成反应(碳氧双键上的加成)(2)氧化反应(a) 催化氧化(b)银镜反应【规律】(C)与新制的氢氧化铜反应【规律】【拓展】(d)乙醛被溴水、酸性KMnO4溶液氧化,故使它们褪色。
4.酯的化学性质——水解反应酸性条件:碱性条件:5.同分异构现象一元饱和羧酸与一元饱和醇形成的酯与同碳原子数的羧酸互为同分异构体。
【拓展】写出分子式为C4H8O2的属于酸和酯的同分异构体的结构简式,并分别命名。
6.甲酸酯甲酸酯的通式为:HCOOR,其分子中既有基又有基,所以既表现酯的通性——水解,又能发生醛基的氧化反应(银镜反应、与新制的Cu(OH)2 悬浊液反应)。
【规律】甲酸、甲酸酯、甲酸盐中均含—CHO ,所以都具有醛的通性(加 氢、氧化)。
7.合成酯的方法和途径 (1)链状小分子酯CH 3COOH + HO —CH 2CH3COOCH 2CH 3 + H 2O(2)环酯(3)聚酯(通过羧酸和醇通过缩掉小分子(例如水)二形成的高分子化合物)HOOC —COOH + n HO —CH 2CH 2—n + nH 2O—C —C —OCH2CH 2—O ——O O[]nHO —CH 2—CH 2—n n +HOOC —COOH —C —C —O —CH 2—CH 2—O —OO []n+ 2nH 2O(4)内酯(同一分子中的—COOH 和—OH 脱水而形成的)—CH OHCH —CH 2C=OO+ H 2O(5)无机酸酯(例如硝酸和甘油反应形成的三硝酸甘油酯又叫硝化甘油)CH 2—ONO2CH —ONO 2CH 2—ONO 2CH 2—OHCH —OH CH 2—OH+ 3HO —NO 2+ 3H 2O【注意】无机酸与醇的酯化(酸去氢,醇去羟基)和有机酸与醇的酯化(醇去氢,酸去羟基)反应方式的不同;硝酸酯(硝基连在氧原子上)和硝基化合物(硝基连在碳原子上)的区别。
乙醛的结构与化学性质乙醛是一种有机化合物,化学式为CH3CHO,它也被称为乙醛醛或醋醛。
乙醛是最简单的醛之一,其结构由一个甲基基团和一个醛基(-CHO)组成。
在天然界中,乙醛存在于许多水果、蔬菜和酒类中。
乙醛是一种无色液体,具有刺激性的强烈气味。
它可以通过氧化乙烯或通过乙醇的蒸馏和氧化而得到。
乙醛是一种挥发性液体,在大气中饱和蒸汽压下可以快速挥发,所以非常易于燃烧。
乙醛的燃烧热为1050kJ/mol,燃烧时产生二氧化碳和水。
乙醛是一种亲电试剂,因为它的醛基带有部分正电荷。
这使得乙醛在无机化学和有机化学反应中具有丰富的化学性质。
以下是关于乙醛的一些重要反应:1. 氧化反应:乙醛可以通过氧化反应转化为乙酸。
常用的氧化剂有酸性高锰酸钾(KMnO4)、氢氧化氨银(Tollens试剂)和氧气。
2.还原反应:乙醛可以被还原为乙醇。
常用的还原剂有氢气(H2)、钠硼氢化物(NaBH4)和铝异丙醇化合物(Al(OiPr)3)。
3.加成反应:乙醛可以通过加成反应与许多亲核试剂发生反应。
例如,乙醛与氨(NH3)形成乙胺(CH3CH2NH2)。
乙醛也与氰化钠(NaCN)反应,生成乙腈(CH3CH2CN)。
4. 缩合反应:乙醛可以通过缩合反应与另一个分子结合形成一个更大的分子。
常见的缩合剂有氰化钠(NaCN)和乙酸钠(NaOAc)。
乙醛与甲醛的缩合反应可以形成巴比妥酸(Barbituric acid),它是一种重要的药物中间体。
5.氨基化反应:乙醛可以通过与盐酸和氨水反应生成乙酰胺(CH3C(O)NH2)。
乙酰胺是合成许多有机化合物的重要起始物。
6.羰基亲核加成反应:乙醛的羰基碳上的亲核试剂可以与其发生加成反应。
这包括硫醇、羧酸、醇等。
例如,乙醛与硫醇反应可以形成二烯硫醚。
此外,乙醛还可用于制备其他重要的有机化合物,例如醋酸、乙酸乙酯和乙二醇。
同时,乙醛被广泛应用于化学工业和制药工业中作为重要的中间体。
总结起来,乙醛是一种具有刺激性气味和重要化学性质的有机化合物。
化学醛和醛类化合物的性质和应用化学醛和醛类化合物是一类重要的有机化合物,具有独特的结构和性质。
它们在自然界和人类社会中广泛存在,并具有重要的应用价值。
以下是关于化学醛和醛类化合物的性质和应用的详细介绍:1.结构与命名:醛类化合物的结构特点是含有醛基(-CHO),它由一个碳原子、一个氢原子和一个双键氧原子组成。
醛基连接在有机分子的链或环上,形成不同的醛类化合物。
根据醛基连接的原子或基团的不同,醛类化合物可以分为饱和醛、不饱和醛等。
醛类化合物的命名通常以“醛”结尾,前面加上其相应的碳链或环的名称。
2.物理性质:醛类化合物通常具有刺激性气味,具有一定的挥发性。
它们的沸点较低,易挥发。
饱和醛的熔点较高,而不饱和醛的熔点较低。
醛类化合物的溶解性通常较好,易溶于有机溶剂。
3.化学性质:醛类化合物具有较强的化学活性,易于发生加成反应、氧化反应等。
它们可以与醇反应生成缩醛,与卤素反应生成卤代烃,与氨反应生成酰胺等。
醛类化合物还可以被氧化剂氧化为相应的羧酸。
醛类化合物在工业和日常生活中有广泛的应用。
它们可以用作溶剂、香料、塑料添加剂、药物合成的中间体等。
例如,乙醛是合成塑料和合成纤维的重要原料;甲醛在制药工业中用于生产抗生素和维生素等。
大多数醛类化合物具有一定的毒性,对人体和环境有害。
它们可以通过呼吸道、皮肤等途径进入人体,对内脏和神经系统产生损害。
因此,在使用和处理醛类化合物时,应采取适当的安全措施,避免吸入、接触和摄入。
综上所述,化学醛和醛类化合物是一类具有独特结构和性质的有机化合物。
它们在自然界和人类社会中广泛存在,并具有重要的应用价值。
然而,由于其毒性和危害性,使用和处理醛类化合物时应谨慎,并采取相应的安全措施。
习题及方法:1.习题:写出下列化合物的名称:a)CH3CHOb)C6H5CHOc)CH3CH2CHOd)CH3CHO的名称为乙醛e)C6H5CHO的名称为苯甲醛f)CH3CH2CHO的名称为丙醛2.习题:下列哪个化合物属于醛类化合物?a)CH3COOHb)CH3CHOc)C6H5COOH选项b) CH3CHO属于醛类化合物,因为它含有醛基(-CHO)。