竖曲线计算要素
- 格式:doc
- 大小:75.00 KB
- 文档页数:2
竖曲线要素及变坡点处设计高程计算 坡度计算:①坡度=高差坡长②竖曲线类型:当1n n i i +-为正值时,为凹型竖曲线; 当1n n i i +-为负值时,为凸型竖曲线。
③由厘米坐标纸上,经过反复试坡、调坡, 根据土石方填挖大致平衡和道。
设计规范中最小坡长等设计要求最后确定出变坡点: 变坡点1桩号:67.2550+K ,高程m 9404.0- 变坡点计算 ①变坡点一:桩号 67.2550+K , %150.0-i 1= %220.0i 2= R= 变坡点高程:m 9404.0- A.计算竖曲线要素:=-=1i 2i ω% 此时根据规范可知:该曲线为凹形曲线竖曲线几何要素中曲线长)(m R L 80%37.021621=⨯=⨯=ω 竖曲线几何要素中切线长m L T 402802=== 竖曲线几何要素中外距m R T E 037.062.21621240222=⨯==B.计算竖曲线起终点桩号 竖曲线起点桩号:67.2150+K竖曲线起点高程:m 8804.0-%15.0409404.0-=⨯+ 竖曲线终点桩号:67.2950+K竖曲线终点高程:m 8524.0-%22.0409404.0-=⨯+计算设计高程由110()H H T X i =-- H=H 1±hH 1:任一点切线的高程 x :计算点到起点的距离 i 1:坡度H:任一点的设计高程曲线段内各点的设计高程: K0+220X== m Rx y 0004.022== 切线高程: 设计高程:+= K0+240X= m Rx y 0137.022== 切线高程: 设计高程:+= K0+260X= m Rx y 0294.022== 切线高程: 设计高程:+= K0+280X= m Rx y 0057.022== 切线高程: 设计高程:+=直线段内各点设计高程见下表:设计高程表 桩号 高程(m )桩号高程(m )K0+000 ++ + ++++ ++ ++ ++ ++ ++ ++ ++ ++。
纵断面设计——竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。
当i1- i2为正值时,则为凸形竖曲线。
当i1 - i2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。
其基本方程为:若取抛物线参数为竖曲线的半径,则有:(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距通过推导可得:2、竖曲线曲线长:L = Rω3、竖曲线切线长:T= TA =TB ≈ L/2 =4、竖曲线的外距:E =⑤竖曲线上任意点至相应切线的距离:式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R—为竖曲线的半径,m。
二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。
(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。
为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。
竖曲线是在变坡点处,为了行车平顺的需要而设置的一段曲线。
竖曲线的形状,通常采用圆曲线或二次抛物线两种。
在设计和计算上抛物线比圆曲线更为方便,故一般采用二次抛物线。
在纵坡设计时,由于纵断面上只反映水平距离和竖直高度,因此竖曲线的切线长与弧长是其在水平面上的投影,切线支距是竖直的高程差,相邻两条纵坡线相交角用坡度差表示。
一、竖曲线要素计算如图3-3所示,设变坡处相邻两纵坡度分别为i1和i2,坡度差以ω表示,则坡度差ω为i1和i2的代数差,即ω= i1-i2:当ω>0时,则为凸形竖曲线;当ω<0时,则为凹形竖曲线。
图3-3竖曲线示意图1、竖曲线的基本方程二次抛物线作为竖曲线的基本形式是我国目前常用的一种形式。
如图3-4所示,用二次抛物线作为竖曲线的基本方程:3-4 竖曲线要素示意图竖曲线上任意一点的斜率为:当x=0时:k= i1,则b= i1;当x=L,r=R时:,则:因此,竖曲线的基本方程式为:或 (3-19)2、竖曲线的要素计算曲线长:(3-20)切线长:(3-21)外距:(3-22)曲线上任意一点的竖距(改正值):(3-23)二、竖曲线设计标准竖曲线的设计标准包括竖曲线的最小半径和最小长度。
1、竖曲线设计的限制因素(1)缓和冲击汽车在竖曲线上行驶时会产生径向离心力,在凸形竖曲线上行驶会减重,在凹形竖曲线上行驶会增重,如果这种离心力达到某种程度时,乘客就会有不舒适的感觉,同时对汽车的悬挂系统也有不利影响,故应对径向离心力加速度加以控制。
根据试验得知,离心加速度a限制在0.5~0.7m/s2比较合适。
汽车在竖曲线上行驶时其离心加速度为:(3-24)《标准》中确定竖曲线半径时取a=0.278 m/s2。
或(3-25)(2)行程时间不宜过短汽车从直坡段驶入竖曲线时,如果其竖曲线长度过短,汽车倏忽而过,冲击力大,旅客会感到不舒适,太短的竖曲线长度从视觉上也会感到线形突然转折。
因此,应限制汽车在竖曲线上的行程时间,一般不宜小于3s。
竖曲线⾼程计算公式推导过程及计算流程竖曲线⾼程计算公式推导及计算流程1. 竖曲线介绍竖曲线是指在纵断⾯内,两个坡线之间为了延长⾏车视距或者减⼩⾏车的冲击⼒,⽽设计的⼀段曲线。
⼀般可以⽤圆曲线和抛物线来充当竖曲线。
由于圆曲线的计算量较⼤,所以,通常采⽤抛物线作为竖曲线,以减少计算量。
2. 竖曲线⾼程计算流程竖曲线计算的⽬的是确定设计纵坡上指定桩号的路基设计标⾼,其计算步骤如下:a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距Eb. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-Tc. 计算竖曲线上任意点切线标⾼及改正值:切线标⾼=变坡点的标⾼±(x T -)?i 改正值:221x Ry =d. 计算竖曲线上任意点设计标⾼某桩号在凹形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼+ y 某桩号在凸形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼-y3. 竖曲线⾼程计算公式推导已知条件:第⼀条直线的坡度为1i ,下坡为负值,第⼀条直线的坡度为2i ,上坡为正值,变坡点的⾥程为K ,⾼程为H ,竖曲线的切线长为B A T T T ==, 待求点的⾥程为X K 曲线半径R竖曲线特点:抛物线的对称轴始终保持竖直,即:X 轴沿⽔平⽅向,Y 轴沿竖直⽅向,从⽽保证了X 代表平距,Y 代表⾼程。
抛物线与相邻两条坡度线相切,抛物线变坡点两侧⼀般不对称,但两切线长相等。
竖曲线⾼程改正数计算公式推导设抛物线⽅程为:()021≠++=a c bx ax y设直线⽅程为:()02≠+=k b kx y由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得:00==b c ;分别对21y y 、求导可得:b ax y +=2'1k y ='2当0=x 时,由图可得:b i y ==1'1k i y ==1'2当L x =时,由图可得:12'12i aL i y +==由上式可得:RL L i i a 212212==-=ω所以抛物线⽅程为:x i x Ry 12121+=直线⽅程为:x i y 12=对于竖曲线上任意⼀点P ,到其切线上Q 点处的竖直距离,即⾼程改正数y 为:21122121X RX i X i X R y y y P Q =-+=-= 竖曲线曲线元素推导竖曲线元素有切线长T 、外失距E 和竖曲线长L 三个元素,推导过程如下:由图可知:2tan ω=R T 由于转⾓ω很⼩,所以可近似认为22tan ωω=,因此可得:2ωR T = 由图易得:ωR L =将切线长T 带⼊到221x Ry =中可得外失距RT E 22=4. 曲线⾼程计算⽰例已知:某条道路变坡点桩号为K25+460.00,⾼程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。
1.某山岭区一般二级公路,变坡点桩号为K5+030,高程为427.68m ,%51=i ,%42-=i ,竖曲线半径R =2000m 。
试计算竖曲线各要素以及桩号为k5+000和K5+100处的设计高程。
解:⑴计算竖曲线要素09.005.004.012-=--=-=i i ω,为凸形竖曲线。
曲线长20000.09180L R m ω==⨯=切线长m L T 9021802=== 外距2290 2.03222000T E m R ===⨯ ⑵计算设计高程竖曲线起点桩号=(K5+30)-90=K4+940竖曲线起点高程=427.68-90×0.05=423.18m桩号K5+000处:横距m K K x 60)9404()0005(1=+-+= 竖距m R x h 9.040006022211=== 切线高程=423.18+60×0.5=426.18m设计高程=426.18-0.9=425.28m桩号K5+100处:横距m K K x 160)9404()1005(2=+-+= 竖距m R x h 4.6400016022222=== 切线高程=423.18+160×0.05=431.18m设计高程=431.18-6.4=424.78m2.某山岭区二级公路,已知JD1、JD2、JD3的坐标分别为(40961.914,91066.103)、(40433.528,91250.097)、(40547.416,91810.392),并设JD2的R=150m ,Ls=40m ,求JD2的曲线要素。
解:⑴计算出JD2、JD3形成的方位角fwj2,︒=--=48966.11528.40433416.40547097.91250392.91810arctan 2fwj 计算出JD1、JD2形成的方位角fwj1, ︒=--=19908.289914.40961528.40433103.91066097.91250arctan1fwj 曲线的转角为α=360+fwj2-fwj1=82.29058°⑵由曲线的转角,计算出曲线的切线长T ,曲线长L 及超距J3322402019.9882240240150s s L L q R =-=-=⨯ 24243340400.444242384241502384150s s L L p R R =-=-=⨯⨯ ︒===639.7150406479.286479.280R L s β 438.151988.19229058.82tan )444.0150(2tan )(=++=++=q p R T α 0150(2)2(82.2905827.639)240290.526180180s RL L ππαβ⨯=-+=-⨯+⨯= 781.49150229058.82sec )444.0150(2sec )(=-+=-+=R p R E α下面总结范文为赠送的资料不需要的朋友,下载后可以编辑删除!祝各位朋友生活愉快!员工年终工作总结【范文一】201x年就快结束,回首201x年的工作,有硕果累累的喜悦,有与同事协同攻关的艰辛,也有遇到困难和挫折时惆怅,时光过得飞快,不知不觉中,充满希望的201x年就伴随着新年伊始即将临近。
竖曲线要素计算公式
竖曲线的要素计算公式包括以下几个要素:
1. 半径(R):竖曲线的曲线半径,可以通过以下公式计算:
R = (L^2) / (24 * A)
其中,L为曲线的长度,A为需满足的标准偏差值。
2. 起点切线长(T1):即曲线前切线的长度,可以通过以下
公式计算:
T1 = L * (1 - ((2 * R) / (3 * A)))
其中,L为曲线的长度,R为曲线半径,A为需满足的标准
偏差值。
3. 终点切线长(T2):即曲线后切线的长度,可以通过以下
公式计算:
T2 = L * (1 - ((2 * R) / (3 * A)))
其中,L为曲线的长度,R为曲线半径,A为需满足的标准
偏差值。
4. 铁路曲线中心角(θ):即曲线的转角,可以通过以下公式
计算:
θ = (L / R) * 30°
其中,L为曲线的长度,R为曲线半径。
5. 切线长(T):即曲线的切线长度,可以通过以下公式计算: T = T1 + T2
6. 过渡曲线长度(Lg):即曲线的过渡段长度,可以通过以
下公式计算:
Lg = (R / A) * 100
其中,R为曲线半径,A为需满足的标准偏差值。
需要注意的是,以上公式仅适用于标准的竖曲线计算,实际情况中可能会有一些修正或调整。
竖曲线要素及变坡点处设计高程计算 坡度计算: ①坡度=高差坡长②竖曲线类型:当1n n i i +-为正值时,为凹型竖曲线; 当1n n i i +-为负值时,为凸型竖曲线。
③由厘米坐标纸上,经过反复试坡、调坡, 根据土石方填挖大致平衡和道。
设计规范中最小坡长等设计要求最后确定出变坡点:变坡点1桩号:67.2550+K ,高程m 9404.0- 变坡点计算 ①变坡点一:桩号 67.2550+K , %150.0-i 1= %220.0i 2= R=21621.62m 变坡点高程:m 9404.0- A.计算竖曲线要素:=-=1i 2i ω0.37% 此时根据规范可知:该曲线为凹形曲线竖曲线几何要素中曲线长)(m R L 80%37.021621=⨯=⨯=ω 竖曲线几何要素中切线长m L T 402802===竖曲线几何要素中外距m R T E 037.062.21621240222=⨯==B.计算竖曲线起终点桩号 竖曲线起点桩号:67.2150+K竖曲线起点高程:m 8804.0-%15.0409404.0-=⨯+ 竖曲线终点桩号:67.2950+K竖曲线终点高程:m 8524.0-%22.0409404.0-=⨯+计算设计高程由110()H H T X i =-- H=H 1±hH 1:任一点切线的高程 x :计算点到起点的距离 i 1:坡度H:任一点的设计高程 曲线段内各点的设计高程: K0+220X=220-215.67=4.33m m Rx y 0004.022== 切线高程:-0.8804-4.33×0.15%= -0.8869m 设计高程:-0.8869+0.0004= -0.8865m K0+240X=24.33m m Rx y 0137.022== 切线高程:-0.8804-24.33×0.15%= -0.9169m 设计高程:-0.9169+0.0137= -0.9032m K0+260X=35.67m m Rx y 0294.022== 切线高程:-0.8524-35.67×0.22%= -0.9309m 设计高程:-0.9309+0.0294= -0.9015m K0+280X=15.67m m Rx y 0057.022== 切线高程:-0.8524-15.67×0.22%= -0.8869m 设计高程:-0.8869+0.0057= -0.8812m 直线段内各点设计高程见下表:设计高程表桩号 高程(m ) 桩号 高程(m ) K0+000 -0.56 +240.000 -0.9032 +20.000 -0.59 +260.000 -0.9015 +40.000 -0.62 +280.000 -0.8812 +60.000 -0.65 +300.000 -0.8361 +80.000-0.68+320.000-0.7921+100.000 -0.71 +340.000 -0.7481 +120.000 -0.74 +360.000 -0.7041 +140.000 -0.77 +380.000 -0.6601 +160.000 -0.80 +400.000 -0.6161 +170.000 -0.83 +420.000 -0.5721 +180.000 -0.86 +440.000 -0.5281 +200.000 -0.89+220.000 -0.8865。
竖曲线要素及变坡点处设计高程计算 坡度计算: ①坡度=高差坡长②竖曲线类型:当1n n i i +-为正值时,为凹型竖曲线; 当1n n i i +-为负值时,为凸型竖曲线。
③由厘米坐标纸上,经过反复试坡、调坡, 根据土石方填挖大致平衡和道。
设计规范中最小坡长等设计要求最后确定出变坡点:变坡点1桩号:67.2550+K ,高程m 9404.0- 变坡点计算 ①变坡点一:桩号 67.2550+K , %150.0-i 1= %220.0i 2= R=21621.62m 变坡点高程:m 9404.0- A.计算竖曲线要素:=-=1i 2i ω0.37% 此时根据规范可知:该曲线为凹形曲线竖曲线几何要素中曲线长)(m R L 80%37.021621=⨯=⨯=ω 竖曲线几何要素中切线长m L T 402802===竖曲线几何要素中外距m R T E 037.062.21621240222=⨯==B.计算竖曲线起终点桩号 竖曲线起点桩号:67.2150+K竖曲线起点高程:m 8804.0-%15.0409404.0-=⨯+ 竖曲线终点桩号:67.2950+K竖曲线终点高程:m 8524.0-%22.0409404.0-=⨯+计算设计高程由110()H H T X i =-- H=H 1±hH 1:任一点切线的高程 x :计算点到起点的距离 i 1:坡度H:任一点的设计高程 曲线段内各点的设计高程: K0+220X=220-215.67=4.33m m Rx y 0004.022== 切线高程:-0.8804-4.33×0.15%= -0.8869m 设计高程:-0.8869+0.0004= -0.8865m K0+240X=24.33m m Rx y 0137.022== 切线高程:-0.8804-24.33×0.15%= -0.9169m 设计高程:-0.9169+0.0137= -0.9032m K0+260X=35.67m m Rx y 0294.022== 切线高程:-0.8524-35.67×0.22%= -0.9309m 设计高程:-0.9309+0.0294= -0.9015m K0+280X=15.67m m Rx y 0057.022== 切线高程:-0.8524-15.67×0.22%= -0.8869m 设计高程:-0.8869+0.0057= -0.8812m 直线段内各点设计高程见下表:设计高程表桩号 高程(m ) 桩号 高程(m ) K0+000 -0.56 +240.000 -0.9032 +20.000 -0.59 +260.000 -0.9015 +40.000 -0.62 +280.000 -0.8812 +60.000 -0.65 +300.000 -0.8361 +80.000-0.68+320.000-0.7921+100.000 -0.71 +340.000 -0.7481 +120.000 -0.74 +360.000 -0.7041 +140.000 -0.77 +380.000 -0.6601 +160.000 -0.80 +400.000 -0.6161 +170.000 -0.83 +420.000 -0.5721 +180.000 -0.86 +440.000 -0.5281 +200.000 -0.89+220.000 -0.8865。
竖曲线铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。
两相邻坡段的连续点谓之变坡点。
相邻坡段的坡度差是两相邻坡段的坡度代数差。
当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。
允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。
一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。
竖曲线的计算一、圆曲线形竖曲线圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。
R α x T TyRCα/2 BAi1i21、竖曲线的切线长度TT=R·tan(α/2)=R/2·tanα=R/2·△i‰=R/2000·△i(m) (5-1)式中 R-竖曲线半径(m);α-竖曲线转角(度);△i-相邻坡段的坡度代数差(‰)。
R=5000m时, T=2.5△i(m)R=10000m时,T=5.0△i(m)R=15000m时,T=7.5△i(m)R=20000m时,T=10.0△i(m)R=25000m时,T=12.5△i(m)2、竖曲线长度CC≈2T=R/1000·△i(m) (5-2)3、竖曲线纵距yy=x2/2R (m) (5-3)式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。
当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。
Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1)4、竖曲线上各点的设计标高H设h为计算点的坡度标高,则H=h±y (5-4)式中的y值,凹形取“+”,凸形取“-”。
【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。
缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:S、SZ为里程数据,往往有些人计算时误入,用等实际计算的距离计算!!五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1三、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。
竖曲线要素及变坡点处设计高程计算 坡度计算:②竖曲线类型:当i n i i n 为正值时,为凹型竖曲线;当i n 1 i n 为负值时,为凸型竖曲线。
③由厘米坐标纸上,经过反复试坡、调坡,根据土石方填挖大致平衡和道。
坡长等设计要求最后确定出变坡点:变坡点1桩号:K 0 255.67,高程-0.9404m变坡点计算 ①变坡点一: 桩号 K 0255.67 , i 1 -0.150% i 2 0.220%R=21621.62m变坡点高程:-0.9404m A.计算竖曲线要素:i 2 i 10.37 %此时根据规范可知:该曲线为凹形曲线竖曲线几何要素中曲线长 L R 21621 0.37% 80( m )竖曲线几何要素中切线长T L 280 40m 2竖曲线几何要素中外距ET 2 402m 2R 2 21621. 0 .U37 111B.计算竖曲线起终点桩号 竖曲线起点桩号: K。
215・67竖曲线起点高程: -0.9404 40 0.15% -0.8804m竖曲线终点桩号: K295.67竖曲线终点高程:-0.9404 40 0.22% -0.8524m①坡度=高差 坡长设计规范中最小计算设计高程 由已 H 0 (T X 儿 H=H i h H:任一点切线的高程 x:计算点到起点的距离 i 1:坡度H:任一点的设计高程 曲线段内各点的设计高程: K0+220xX=24.33my0.0137m2R切线高程: 设计高程: -0.8804-24.33 X 0.15%= -0.9169m -0.9169+0.0137= -0.9032m K0+2602x X=35.67my 0.0294m2R切线高程: 设计高程: -0.8524-35.67 X 0.22%= -0.9309m -0.9309+0.0294= -0.9015m K0+280X=15.67m2x y0.0057 m切线高程: 设计高程: -0.8524-15.67 X 0.22%= -0.8869m -0.8869+0.0057= -0.8812m 直线段内各点设计咼程见下表:设计高程表高程咼程(m) -0.9032 桩号桩号 +240.000 K0+000 (m)-0.56 +20.000 -0.59 +260.000 -0.9015 +40.000 -0.62 +280.000 -0.8812 +60.000 -0.65+300.000 -0.8361 +80.000-0.68+320.000-0.7921切线高程: 设计高程: -0.8804-4.33 X 0.15%= -0.8869m-0.8869+0.0004= -0.8865m2x2R0.0004 m X=220-215.67=4.33mK0+2402+100.000 -0.71 +340.000 -0.7481+120.000 -0.74 +360.000 -0.7041 +140.000 -0.77 +380.000 -0.6601 +160.000 -0.80 +400.000 -0.6161 +170.000 -0.83 +420.000 -0.5721 +180.000 -0.86 +440.000 -0.5281+200.000 -0.89+220.000 -0.8865。
精心整理竖曲线要素及变坡点处设计高程计算坡度计算:①坡度=高差坡长②竖曲线类型:当1n n i i +-为正值时,为凹型竖曲线; 当1n n i i +-为负值时,为凸型竖曲线。
③由厘米坐标纸上,经过反复试坡、调坡,根据土石方填挖大致平衡和道。
设计规范中最小坡长等设计要求最后确定出变坡点:变坡点1桩号:67.2550+K ,高程m 9404.0- 变坡点计算 ①变坡点一:桩号67.2550+K ,%150.0-i 1=%220.0i 2=R=21621.62m 变坡点高程:m 9404.0- A.计算竖曲线要素:=-=1i 2i ω0.37%此时根据规范可知:该曲线为凹形曲线竖曲线几何要素中曲线长)(m R L 80%37.021621=⨯=⨯=ω 竖曲线几何要素中切线长m L T 402802=== 竖曲线几何要素中外距m R T E 037.062.21621240222=⨯==B.计算竖曲线起终点桩号 竖曲线起点桩号:67.2150+K竖曲线起点高程:m 8804.0-%15.0409404.0-=⨯+ 竖曲线终点桩号:67.2950+K竖曲线终点高程:m 8524.0-%22.0409404.0-=⨯+计算设计高程由110()H H T X i =--H=H 1±h H 1:任一点切线的高程 x :计算点到起点的距离 i 1:坡度H:任一点的设计高程曲线段内各点的设计高程:K0+220X=220-215.67=4.33m m Rx y 0004.022== 切线高程:-0.8804-4.33×0.15%=-0.8869m 设计高程:-0.8869+0.0004=-0.8865m K0+240X=24.33m m Rx y 0137.022== 切线高程:-0.8804-24.33×0.15%=-0.9169m 设计高程:-0.9169+0.0137=-0.9032m K0+260X=35.67m m Rx y 0294.022== 切线高程:-0.8524-35.67×0.22%=-0.9309m 设计高程:-0.9309+0.0294=-0.9015m K0+280X=15.67m m Rx y 0057.022== 切线高程:-0.8524-15.67×0.22%=-0.8869m 设计高程:-0.8869+0.0057=-0.8812m 直线段内各点设计高程见下表:设计高程表 桩号 高程(m ) 桩号 高程(m ) K0+000 -0.56 +240.000 -0.9032+20.000 -0.59 +260.000 -0.9015 +40.000 -0.62 +280.000 -0.8812 +60.000 -0.65 +300.000 -0.8361 +80.000 -0.68 +320.000 -0.7921 +100.000 -0.71 +340.000 -0.7481 +120.000 -0.74 +360.000 -0.7041 +140.000 -0.77 +380.000 -0.6601 +160.000 -0.80 +400.000 -0.6161 +170.000 -0.83 +420.000 -0.5721 +180.000 -0.86 +440.000 -0.5281+200.000 -0.89 +220.000 -0.8865。
第二节 竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓与,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计与计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线如图所示,设相邻两纵坡坡度分别为i 1 与i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。
当 i 1- i 2为正值时,则为凸形竖曲线。
当 i 1 - i 2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式我国采用的就是二次抛物线形作为竖曲线的常用形式。
其基本方程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点至相应切线的距离:Rx y 22=式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R —为竖曲线的半径,m 。
二、竖曲线的最小半径(一)竖曲线最小半径的确定1、凸形竖曲线极限最小半径确定考虑因素 (1)缓与冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
道路勘测设计计算题答案3-9.某条道路变坡点桩号为K25+460.00 ,高程为780.72 m i 1 = 0.8%, i 2= 5%,竖曲线半径5000m(1) 判断凸、凹性;(2) 计算竖曲线要素;(3) 计算曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的高程。
解:(1) J — i2J = 5%- 0.8% = 4.2% ■ 0,二为凹形竖曲线。
(2) 曲线长:L 二R Y:- 5000 4.2% = 210 m;L 1切线长:T 210 105m;2 2竖曲线外距:E = T 105 1.10252R 2 汉5000(3) ①曲线起点:桩号:K25+460.00-T=K25+355.00 m高程:780.72-T X 0.8%=779.88 m②K25+400.00横距:x1= 400 一355 = 45mX2452竖距:h1=. —m = 0.2025 m12R 2 x 5000切线高程:780.72 一T 一X j 打=780.24 m设计高程:780.24 0.2025 = 780.4425m③K25+460.00外距:E = T I05 1.1025 m2R 2 x 5000切线高程:780.72 m设计高程:780.72 E 二781.8225 m④K25+500.00横距:x2= 500 - 355 = 145m竖距:-21452h22(x2T) 4.2%(145 105) = 0.4225 m22R 2 5000切线高程:780.72 x2-T i2= 782.72 m 设计高程:782.72 0.4225 二783.1425m⑤终点桩号:K25+460.00+105二K25+565.00高程:780.72+105 X 5%=785.97m此题结束3-10某城市I级主干道,其纵坡分别为i^ -2.5%,i^ 1.5%,变坡点桩号为K1+520.00,高程为429.00m。