纳米微粒的基础理论
- 格式:ppt
- 大小:455.50 KB
- 文档页数:8
第二章纳米微粒的基本理论小尺寸效应电转换表面效应T红外敏感、红外隐身三、量子尺寸效应四、宏观量子隧道效应五、库仑堵塞效应六、介电限域效应一、小尺寸效应随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。
由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应(体积效应)。
对超微颗粒而言,尺寸变小,就会产生如下一系列新奇的性质:当微粒的尺寸与光波波长、电子德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,微粒表面层附近的原子密度减小导致材料的磁性、光吸收、化学活性、催化特性以及熔点等与普通粒子相比有很大变化,这就是纳米粒子的小尺寸效应。
1. 尺寸与光波波长(几百nm)相当颗粒光吸收极大增强、光反射显著下降(低于1%);几个nm厚即可消光,高效光热、光固体在宽谱范围内对光均匀吸收光谱蓝移(晶体场)、新吸收带等。
2. 与电子德布罗意波长相当铁电体顺电体;多畴变单畴,显出极强的顺磁性。
20nm的Fe粒子(单磁畴临界尺寸),矫顽力为铁块的1000倍,可用于高存储密度的磁记录粉;但小到6nm的Fe粒,其矫顽力降为0 表现出超顺磁性,可用于磁性液体(润滑、密封)等离子体共振频移(随颗粒尺寸而变化):改变颗粒尺寸,控制吸收边的位移制造具有一定频宽的微波吸收纳米材料(电磁波屏蔽、隐型飞机等)纳米磁性金属磁化率提高20倍(记录可靠);饱和磁矩仅为1/2(更易擦除)。
3. 晶体周期性丧失,晶界增多熔点降低(2nm的金颗粒熔点为600K, 随粒径增加,熔点迅速上升,块状金为1337K;纳米银粉熔点可降低到373K) T 粉末冶金新工艺界面原子排列混乱一易变形、迁移表现出甚佳的韧性及延展性纳米磷酸钙构成牙釉,咼强度、咼硬度纳米Fe晶体断裂强度提高12倍;纳米Cu晶体自扩散是传统的1016-19倍;纳米Cu 的比热是传统Cu的2倍;纳米Pd的热膨胀系数提高一倍;纳米Ag用于稀释致冷的热交换效率提高30%,等等。
纳米知识点总结一、纳米技术的基本原理1. 纳米尺度纳米技术以纳米尺度为研究对象。
纳米尺度即一般意义上的百分之一毫微米,也就是十亿分之一米。
在纳米尺度下,物质的特性会发生显著变化,这使得纳米技术成为一门充满挑战和机遇的领域。
2. 纳米材料纳米技术常用的研究对象是纳米材料,即具有纳米级尺度的材料。
这些材料的特性和性能常常具有显著的差异,例如纳米粒子的光学、电学、热学等性质都与宏观物体不同。
3. 自组装在纳米尺度下,物质会呈现出特殊的自组装性质。
例如,纳米颗粒能够自发地组装成各种结构,如纳米线、纳米片等。
这种自组装性质为纳米技术的应用提供了便利。
4. 表面效应纳米材料的表面积相对于体积而言非常大,这导致了其表面效应的显著增强。
这种表面效应可以极大地改变材料的化学性质和反应活性,常常被用于纳米催化、纳米传感等领域。
5. 量子效应在纳米尺度下,量子效应将会对材料的电学、磁学等性质产生重要影响。
因此,在纳米技术中量子效应被广泛应用于纳米电子学、纳米光学等领域。
二、纳米技术的应用1. 纳米材料纳米技术为材料科学带来了革命性的变革。
纳米材料的研究与应用已经涉及几乎所有的工业领域,例如纳米复合材料、纳米电子材料、纳米光学材料等。
通过调控纳米材料的结构和成分,可以实现许多传统材料所不具备的性能,例如高强度、高导电性、高热传导性等。
2. 纳米医学纳米技术在医学领域的应用也备受关注。
纳米颗粒、纳米载体等纳米材料被广泛用于药物输送、靶向治疗、分子影像等方面。
纳米技术使得药物能够更精确地送达到病灶部位,从而提高了治疗效果,减少了毒副作用。
3. 纳米电子学纳米技术为电子学领域带来了前所未有的机遇。
纳米材料的独特电学性质为纳米电子学提供了丰富的资源,例如纳米线、纳米管等结构作为微电子元器件的发展前景广阔。
此外,基于纳米材料的新型电子器件也为信息存储、显示技术等领域带来了新的展望。
4. 纳米能源在能源领域,纳米技术也被广泛应用。
第三章纳米微粒的基本特性一、纳米微粒的结构二、纳米微粒的基本特性热学、磁学、光学、动力学、表面活性、光催化性能一、纳米微粒的结构纳米态:物质的第?态!区别于固、液、气态,也区别于“等离子体态”(物质第四态)、地球内部的超高温、超高压态(物质第五态),与“超导态”、“超流态”也不同。
纳米态的物质一般是球形的。
物质在球形的时候,在等体积的条件下,它的界面最小、能量最低、自组织性最强、对称性也最高,有着很好的强关联性。
超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2nm)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体、十面体、二十面体等),它既不同于一般固体,又不同于液体,是一种准固体。
在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态。
尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。
纳米微粒一般为球形或类球形,可能还具有其他各种形状(与制备方法有关)。
纳米微粒的结构一般与大颗粒的相同,内部的原子排列比较整齐,但有时也会出现很大的差别:高表面能引起表层(甚至内部)晶格畸变。
二、纳米微粒的基本特性1. 纳米微粒的热学性质固态物质在其形态为大尺寸时,其熔点是固定的;超细微化后发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。
➢大块Pb的熔点为600K,而20nm的的球形Pb微粒熔点降低288K。
➢ Ag的熔点:常规粗晶粒为960︒C;纳米Ag粉为100︒C ➢ Cu的熔点:粗晶粒为1053︒C;粒度40nm时为750︒C纳米微粒的熔点降低:由于颗粒小,纳米微粒的表面能高、比表面原子数多,这些表面原子近邻配位不全、活性大,因此纳米粒子熔化时所需增加的内能比块体材料小得多,使纳米微粒的熔点急剧下降。
✍应用:降低烧结温度。
纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮没,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。