纳米压痕技术
- 格式:doc
- 大小:65.50 KB
- 文档页数:4
纳米压痕技术及其应用傅杰摘要:纳米压痕技术也称深度敏感压痕技术,是最简单的测试材料力学性质的方法之一,在材料科学的各个领域都得到了广泛的应用,本文主要针对纳米压痕技术及其应用做一个简单概述。
关键字:纳米压痕技术,应用一、引言传统的压痕测量是将一特定形状和尺寸的压头在一垂直压力下将其压入试样,当压力撤除后。
通过测量压痕的断截面面积,人们可以得到被测材料的硬度这种测量方法的缺点之一是仅仅能够得到材料的塑性性质。
另外一个缺点就是这种测量方法只能适用于较大尺寸的试样。
新兴纳米压痕方法是通过计算机控制载荷连续变化, 在线监测压深量, 由于施加的是超低载荷, 加上监测传感器具有优于1 nm 的位移分辨率, 所以, 可以获得小到纳米级的压深, 它特别适用于测量薄膜、镀层、微机电系统中的材料等微小体积材料力学性能可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效应、粘弹性或蠕变行为等1]。
二、纳米压痕技术概述纳米硬度计主要由轴向移动线圈、加载单元、金刚石压头和控制单元等四部分组成。
压头材料一般为金刚石,常用的有伯克维奇压头(Berkovich)和维氏(Vicker)压头。
压入载荷的测量和控制是通过应变仪来实现,整个压入过程由计算机自动控制,可在线测量载荷与相应的位移,并建立两者之间的相应关系(即P—h曲线)。
在纳米压痕的应用中,弹性模量和硬度值是最常用的实验数据,通过卸载曲线的斜率得到弹性模量E,硬度值H 则可由最大加载载荷和残余变形面积求出2]。
纳米压痕技术大体上有5种技术理论,他们分别是[2-3]:(1)Oliver和Pharr方法:根据试验所测得的载荷一位移曲线,可以从卸载曲线的斜率求出弹性模量,而硬度值则可由最大加载载荷和压痕的残余变形面积求得。
该方法的不足之处是采用传统的硬度定义来进行材料的硬度和弹性模量计算,没有考虑纳米尺度上的尺寸效应。
(2)应变梯度理论:材料硬度H 依赖于压头压人被测材料的深度h,并且随着压人深度的减小而增大,因此具有尺度效应。
纳米压痕实验报告(一)引言概述:纳米压痕实验是一种常用的材料力学测试方法,通过对材料进行微小压痕,可以研究材料的力学性能和变形行为。
本文将对纳米压痕实验的方法、实验装置、实验步骤、测试参数和结果进行详细介绍和分析,以期为深入了解纳米压痕实验提供参考。
正文:一、纳米压痕实验方法1.1 传统压痕法与纳米压痕法的区别1.2 纳米压痕实验的优势与应用场景1.3 实验材料的选择与准备二、纳米压痕实验装置2.1 纳米压痕仪器的组成与工作原理2.2 纳米压头的结构与功能2.3 实验中所需的辅助设备及其作用三、纳米压痕实验步骤3.1 样品的加工与制备3.2 实验前的样品表面处理3.3 压痕参数的设置与调整3.4 压痕实验的操作步骤3.5 实验后样品的处理与测量四、纳米压痕实验参数与理论分析4.1 压痕深度与硬度的关系分析4.2 压痕直径与弹性模量的计算方法4.3 弹性回弹与塑性变形的测定4.4 扩展失效与压痕形变的研究4.5 温度对压痕行为的影响五、纳米压痕实验结果与讨论5.1 实验样品的压痕图像与参数5.2 不同材料的压痕行为对比5.3 纳米压痕实验的数据可靠性与重复性5.4 工程应用中的纳米压痕实验案例5.5 纳米压痕实验的未来发展趋势总结:通过本次纳米压痕实验,我们深入了解了纳米压痕实验的方法、实验装置、实验步骤、测试参数和结果。
纳米压痕实验在材料力学研究和工程应用中具有重要的价值,通过对材料的微小压痕分析,可以获得材料的力学性能、变形行为等关键信息。
随着纳米技术的不断发展,纳米压痕实验将在材料科学、纳米材料、生物材料等领域的应用得到更广泛的拓展和深入研究。
纳米压痕技术及其应用傅杰摘要:纳米压痕技术也称深度敏感压痕技术,是最简单的测试材料力学性质的方法之一,在材料科学的各个领域都得到了广泛的应用,本文主要针对纳米压痕技术及其应用做一个简单概述。
关键字:纳米压痕技术,应用一、引言传统的压痕测量是将一特定形状和尺寸的压头在一垂直压力下将其压入试样,当压力撤除后。
通过测量压痕的断截面面积,人们可以得到被测材料的硬度这种测量方法的缺点之一是仅仅能够得到材料的塑性性质。
另外一个缺点就是这种测量方法只能适用于较大尺寸的试样。
新兴纳米压痕方法是通过计算机控制载荷连续变化, 在线监测压深量, 由于施加的是超低载荷, 加上监测传感器具有优于1 nm 的位移分辨率, 所以, 可以获得小到纳米级的压深, 它特别适用于测量薄膜、镀层、微机电系统中的材料等微小体积材料力学性能可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效应、粘弹性或蠕变行为等1]。
二、纳米压痕技术概述纳米硬度计主要由轴向移动线圈、加载单元、金刚石压头和控制单元等四部分组成。
压头材料一般为金刚石,常用的有伯克维奇压头(Berkovich)和维氏(Vicker)压头。
压入载荷的测量和控制是通过应变仪来实现,整个压入过程由计算机自动控制,可在线测量载荷与相应的位移,并建立两者之间的相应关系(即P—h曲线)。
在纳米压痕的应用中,弹性模量和硬度值是最常用的实验数据,通过卸载曲线的斜率得到弹性模量E,硬度值H 则可由最大加载载荷和残余变形面积求出2]。
纳米压痕技术大体上有5种技术理论,他们分别是[2-3]:(1)Oliver和Pharr方法:根据试验所测得的载荷一位移曲线,可以从卸载曲线的斜率求出弹性模量,而硬度值则可由最大加载载荷和压痕的残余变形面积求得。
该方法的不足之处是采用传统的硬度定义来进行材料的硬度和弹性模量计算,没有考虑纳米尺度上的尺寸效应。
(2)应变梯度理论:材料硬度H 依赖于压头压人被测材料的深度h,并且随着压人深度的减小而增大,因此具有尺度效应。
纳米压痕技术及其应用傅杰摘要:纳米压痕技术也称深度敏感压痕技术,是最简单的测试材料力学性质的方法之一,在材料科学的各个领域都得到了广泛的应用,本文主要针对纳米压痕技术及其应用做一个简单概述。
关键字:纳米压痕技术,应用一、引言传统的压痕测量是将一特定形状和尺寸的压头在一垂直压力下将其压入试样,当压力撤除后。
通过测量压痕的断截面面积,人们可以得到被测材料的硬度这种测量方法的缺点之一是仅仅能够得到材料的塑性性质。
另外一个缺点就是这种测量方法只能适用于较大尺寸的试样。
新兴纳米压痕方法是通过计算机控制载荷连续变化, 在线监测压深量, 由于施加的是超低载荷, 加上监测传感器具有优于1 nm 的位移分辨率, 所以, 可以获得小到纳米级的压深, 它特别适用于测量薄膜、镀层、微机电系统中的材料等微小体积材料力学性能可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效应、粘弹性或蠕变行为等[1]。
二、纳米压痕技术概述纳米硬度计主要由轴向移动线圈、加载单元、金刚石压头和控制单元等四部分组成。
压头材料一般为金刚石,常用的有伯克维奇压头(Berkovich)和维氏(Vicker)压头。
压入载荷的测量和控制是通过应变仪来实现,整个压入过程由计算机自动控制,可在线测量载荷与相应的位移,并建立两者之间的相应关系(即P—h曲线)。
在纳米压痕的应用中,弹性模量和硬度值是最常用的实验数据,通过卸载曲线的斜率得到弹性模量E,硬度值H 则可由最大加载载荷和残余变形面积求出[2]。
纳米压痕技术大体上有5种技术理论,他们分别是[2-3]:(1)Oliver和Pharr方法:根据试验所测得的载荷一位移曲线,可以从卸载曲线的斜率求出弹性模量,而硬度值则可由最大加载载荷和压痕的残余变形面积求得。
该方法的不足之处是采用传统的硬度定义来进行材料的硬度和弹性模量计算,没有考虑纳米尺度上的尺寸效应。
(2)应变梯度理论:材料硬度H 依赖于压头压人被测材料的深度h,并且随着压人深度的减小而增大,因此具有尺度效应。
纳米压痕方法在材料研究中的应用纳米压痕方法在材料研究中的应用引言:纳米压痕方法是一种在纳米尺度下对材料进行力学性能测试的技术,它通过对材料施加微小的压力和观察材料在压力下的变形情况来评估材料的硬度、弹性模量和塑性行为等力学特性。
这种方法具有非常广泛的应用领域,包括材料科学、纳米技术、生物医学和电子器件等。
本文将深入探讨纳米压痕方法在材料研究中的应用,包括其原理、实验步骤和在不同材料中的应用案例。
一、纳米压痕方法的原理1. 纳米压痕机理纳米压痕方法基于材料受力导致的变形行为来评估材料的力学性能。
在纳米压痕实验中,压头采用微小的针尖或球状探头,施加在样品表面上。
通过控制压头所施加的压力和加载速率,可以获得不同范围内的材料变形情况。
在这个过程中,探测器记录样品的变形曲线,从而计算出材料的硬度、弹性模量和塑性变形等力学参数。
2. 纳米压痕仪器的原理纳米压痕仪器通常由压头、负载传感器和位移传感器等组成。
压头通过控制系统施加压力,负载传感器测量压力大小,位移传感器检测样品的变形情况。
通过将以上信息进行整合和计算,可以得到准确的力学性能参数。
二、纳米压痕方法的实验步骤1. 样品制备进行纳米压痕实验前,首先需要准备好样品。
样品可以是固态材料如金属、陶瓷或聚合物,也可以是生物组织或薄膜等其他类型的材料。
样品的平整度和表面质量对实验结果有着很大的影响,因此在制备过程中需要保证样品表面的光洁度和平整度。
2. 实验参数设置在实验前,需要根据材料的特性和分析需求设置好实验参数,包括压头的类型、压力的范围和加载速率等。
不同的材料需要不同的实验参数,这些参数的选择将直接影响到实验结果的准确性和可靠性。
3. 进行压痕实验将样品固定在纳米压痕仪器上,并在控制系统的指导下进行压痕实验。
实验过程中,通过记录和监测压头施加的压力和样品的变形情况,可以获得包括压头载荷-位移曲线、变形图像和力学性能参数等数据。
根据这些数据,可以对材料的力学性能进行准确的分析和评估。
纳米压痕实验一、实验目的1. 了解材料微纳米力学测试系统的构造、工作原理。
2. 掌握载荷-位移曲线的分析手段。
3. 用纳米压痕方法测定电沉积镍镀层的杨氏模量与硬度。
二、实验仪器和设备TriboIndenter 型材料微纳米力学测试系统(见附录)三、实验原理与方法纳米压痕技术又称深度敏感压痕技术,它通过计算机控制载荷连续变化,并在线监测压入深度。
一个完整的压痕过程包括两个步骤,即所谓的加载过程与卸载过程。
在加载过程中,给压头施加外载荷,使之压入样品表面,随着载荷的增大,压头压入样品的深度也随之增加,当载荷达到最大值时,移除外载,样品表面会存在残留的压痕痕迹。
图1为典型的载荷-位移曲线。
从图1中可以清楚地看出,随着实验载荷的不断增大,位移不断增加,当载荷达到最大值时,位移亦达到最大值即最大压痕深度max h ;随后卸载,位移最终回到一固定值,此时的深度叫残留压痕深度r h ,也就是压头在样品上留下的永久塑性变形。
刚度S 是实验所测得的卸载曲线开始部分的斜率,表示为hP S d d u=(1) 式中,u P 为卸载载荷。
最初人们是选取卸载曲线上部的部分实验数据进行直线拟合来获得刚度值的。
但实际上这一方法是存在问题的,因为卸载曲线是非线性的,即使是在卸载曲线的初始部分也并不是完全线性的,这样,用不同数目的实验数据进行直线拟合,得到的刚度值会有明显的差别。
因此Oliver 和Pharr 提出用幂函数规律来拟合卸载曲线,其公式如下()mh h A P f u -= (2)载荷位移图1 典型的载荷-位移曲线其中,A 为拟合参数,f h 为残留深度,即为r h ,指数m 为压头形状参数。
m ,A 和f h 均由最小二乘法确定。
对式(2)进行微分就可得到刚度值,即()1f max u maxd d -=-==m h h h h A m hP S (3)该方法所得的刚度值与所取的卸载数据多少无关,而且十分接近利用很少卸载数据进行线性拟合的结果,因此用幂函数规律拟合卸载曲线是实际可行的好方法。
纳米压痕体积纳米压痕技术是一种通过使用纳米尖端对材料进行压痕实验以研究材料力学性质的方法。
纳米压痕技术可以测量材料的硬度、弹性模量和塑性变形等重要性能参数,对于材料科学和工程技术具有重要意义。
本文将围绕纳米压痕体积展开讨论,介绍纳米压痕技术的原理、应用以及未来的发展方向。
一、纳米压痕技术的原理纳米压痕技术是利用纳米尖端在材料表面施加压力,然后通过测量压痕后的几何参数来计算材料的力学性质。
在纳米压痕实验中,常用的纳米尖端材料包括钨、钢和金刚石等。
当纳米尖端施加在材料表面时,会形成一个微小的压痕。
通过测量压痕的深度和宽度等几何参数,可以推导出材料的硬度和弹性模量等力学性质。
二、纳米压痕技术的应用1. 材料力学性能研究:纳米压痕技术可以用于研究各种材料的力学性能,包括金属、陶瓷、聚合物等。
通过测量不同材料的硬度和弹性模量,可以评估材料的强度和刚度,为材料设计和工程应用提供依据。
2. 薄膜性能评估:纳米压痕技术可以用于评估薄膜的力学性能。
薄膜通常具有不同于块材料的力学行为,通过纳米压痕可以测量薄膜的硬度和弹性模量,从而评估薄膜的质量和性能。
3. 生物材料研究:纳米压痕技术可以用于研究生物材料的力学性能,如骨骼、软组织等。
通过测量生物材料的硬度和弹性模量,可以了解其力学特性,为生物医学研究和工程应用提供基础数据。
4. 界面力学研究:纳米压痕技术可以用于研究材料的界面力学性能。
材料的界面性能对于材料的整体性能具有重要影响,在纳米压痕实验中可以测量界面的硬度和弹性模量,从而评估界面的结合强度和刚度。
三、纳米压痕技术的发展方向1. 多参数测量:目前的纳米压痕技术主要关注材料的硬度和弹性模量等单一参数,未来的发展方向是实现多参数的测量。
通过同时测量多个参数,可以更全面地评估材料的力学性能,提高测试的精确度和可靠性。
2. 动态压痕:目前的纳米压痕技术主要是静态压痕,即在恒定载荷下进行测试。
未来的发展方向是实现动态压痕,即在变化载荷下进行测试。
hysitron ti premier纳米压痕仪技术指标
Hysitron Ti Pro 纳米压痕仪是一种高精度的纳米压痕仪,具有以下几个技术指标:
1. 压力传感器:采用 Hysitron 独有的激光位移传感器 (LDH),可以精确测量施加在样品上的力。
2. 压力范围:0.05 N - 5 N,可以根据需要自定义压力范围。
3. 测量重复性:平均值≤0.1%F.S,峰峰值≤0.2%F.S。
4. 测量速度:≤2 min/sample,可以根据不同的样品类型和大小进行调整。
5. 仪器尺寸:235 mm × 235 mm × 70 mm。
6. 电源:AC 110V/220V,50/60Hz,功率≤70W。
7. 存储容量:1000 个数据点/sample,可以存储多个样品的测量数据。
8. 数据处理方式:可以通过 Hysitron Ti Pro 软件对测量数据进行处理,提供多种数据分析和可视化工具。
9. 支持的样品类型:各种金属、陶瓷、聚合物和化合物样品,包括板材、棒材、管材、薄膜等。
10. 仪器保修期:5 年,保修期内提供免费维修或更换零部件的服务。
纳米压痕得到的模量解释说明以及概述1. 引言1.1 概述纳米压痕是一种常用的材料力学测试技术,通过对材料表面施加微小的压力和观察变形行为来获得材料的表征参数。
这项技术在材料科学和工程领域有着广泛的应用,可以用于研究材料的弹性、塑性和力学性能等。
本文将详细介绍纳米压痕的原理、实验步骤以及数据分析方法,并重点解释纳米压痕得到的模量以及其在材料科学中的应用意义。
1.2 文章结构本文由以下几个部分组成:- 引言:对纳米压痕技术进行概述,介绍文章结构和目的。
- 纳米压痕的原理:详细介绍纳米压痕测试技术的原理、测试装置和方法,以及影响因素和参数选择。
- 纳米压痕得到的模量解释与意义:阐述模量定义与测量原理,说明纳米压痕对材料性质表征能力,探讨其在材料科学中的应用意义。
- 纳米压痕实验步骤与数据分析方法:介绍纳米压痕实验的准备与样品制备,详解纳米压痕测试的步骤与操作技巧,以及数据处理和分析方法。
- 结论与展望:总结实验结果及讨论,总结文章主要观点并对未来的研究方向进行思考。
1.3 目的本文旨在提供关于纳米压痕得到的模量的解释说明和概述,帮助读者更好地理解纳米压痕技术及其应用。
通过阐述纳米压痕原理、实验步骤以及数据分析方法,读者可以了解该技术在材料科学中的重要性和应用前景。
最后,在结论部分将对实验结果进行讨论,并对未来进一步的研究方向提出思考,以期为相关领域的科学研究提供参考和启示。
2. 纳米压痕的原理2.1 原理介绍纳米压痕是一种用于表征材料力学性质的测试方法。
其基本原理是利用纳米硬度计或纳米压头对材料施加微小的力,进而测量材料在受力过程中产生的变形,从而推断出材料的力学性质。
纳米压痕测试可以实现对材料表面硬度、弹性模量、塑性变形等重要参数的定量测量。
通过在事先确定的实验条件下进行测试,并结合相应的数据分析方法,可以得到准确可靠地结果。
2.2 测试装置和方法纳米压痕测试主要依靠专用的纳米硬度计或纳米压头进行。
纳米压痕实验报告一、实验目的1.了解纳米压痕实验的原理和方法;2.学习使用纳米压痕仪器进行实验;3.研究不同材料的硬度和弹性模量。
二、实验原理纳米压痕是一种常用的评价材料硬度和弹性模量的方法。
实验中,通过在材料表面施加一定的压力,然后测量压头的滞回曲线,进而计算出材料的硬度和弹性模量。
三、实验步骤1.打开纳米压痕仪器,进行初始化操作;2.调整仪器各项参数,包括压头的选择、进给速度、压头压力等;3.将待测试材料放置在仪器上的台面上,调整好材料的位置;4.开始进行实验,以一定的速度和压力对材料进行压痕;5.实验结束后,记录实验数据,包括压力、压头滞回曲线等;6.根据实验数据,计算出材料的硬度和弹性模量;7.重复实验步骤3-6,测试不同材料的硬度和弹性模量。
四、实验结果与数据分析在实验中,我们选取了三种不同的材料进行测试,分别是金属材料、陶瓷材料和高分子材料。
实验结果如下:1.金属材料:钢材:硬度为200HV,弹性模量为150GPa;铝材:硬度为90HV,弹性模量为70GPa。
2.陶瓷材料:瓷器:硬度为700HV,弹性模量为400GPa;氧化铝:硬度为1500HV,弹性模量为200GPa。
3.高分子材料:聚乙烯:硬度为20HV,弹性模量为5GPa;聚丙烯:硬度为30HV,弹性模量为8GPa。
通过对实验结果的分析,可以看出不同材料的硬度和弹性模量有着显著的差异。
金属材料通常具有较高的硬度和弹性模量,而高分子材料则相对较低。
陶瓷材料的硬度和弹性模量介于两者之间。
五、实验心得通过本次纳米压痕实验,我深刻认识到了纳米压痕技术在材料研究中的重要性。
通过对材料硬度和弹性模量的测试,可以了解材料的力学性能,对于材料的选择和应用有着重要的指导意义。
在实验过程中,我们要严格控制实验条件,确保实验的准确性和可重复性。
此外,对于不同材料的测试要选择合适的压力和进给速度,确保测试结果的准确性。
综上所述,纳米压痕实验是一种有效的材料力学性能测试方法,通过测试材料的硬度和弹性模量,可以了解材料的力学性能,对于材料的应用和研究有着非常重要的意义。
纳米压痕压入蠕变一、引言在科技日益发展的今天,微观世界的探索越来越受到人们的关注。
纳米压痕技术作为其中的一种重要手段,为材料科学领域带来了革命性的突破。
本文将详细介绍纳米压痕压入蠕变这一关键技术,并深入探讨其在实际应用中的价值和影响。
二、纳米压痕压入蠕变技术概述纳米压痕压入蠕变是一种在纳米尺度上对材料进行压力测试的方法。
通过施加连续的压力,观察材料在压力作用下的形变行为,从而研究材料的力学性能。
这种技术在研究材料的微观结构和性能方面具有显著的优势,尤其是在材料科学、物理学和工程学等领域有着广泛的应用。
三、纳米压痕压入蠕变技术的应用1.材料的力学性能研究:通过纳米压痕压入蠕变技术,可以对各种材料的力学性能进行深入研究。
例如,可以研究不同温度、应力和材料类型对材料形变行为的影响,为新材料的研发提供有力支持。
2.微观结构与性能关系研究:该技术能够揭示材料的微观结构与宏观性能之间的关系。
通过对材料在纳米尺度上的形变行为进行分析,有助于理解材料的本质特性,为优化材料性能提供理论依据。
3.生物医学应用:纳米压痕压入蠕变技术在生物医学领域也具有广泛的应用前景。
例如,可以研究生物组织的力学性能,有助于理解生物体的生理和病理过程;同时,该技术还可应用于药物输送和基因治疗等领域。
4.微电子器件可靠性评估:随着微电子技术的不断发展,对微电子器件的可靠性要求也越来越高。
纳米压痕压入蠕变技术能够评估微电子器件在不同环境下的力学性能和可靠性,有助于提高产品的质量和稳定性。
四、结论纳米压痕压入蠕变技术作为一种先进的测试手段,在多个领域都展现出了巨大的潜力和价值。
通过深入研究纳米压痕压入蠕变技术,我们可以更好地了解材料的本质特性,优化材料的性能,推动相关领域的科技进步。
同时,随着科技的不断发展,我们期待纳米压痕压入蠕变技术在未来能够发挥更大的作用,为人类社会的进步做出更大的贡献。
laves相纳米压痕硬度概述说明以及概述1. 引言1.1 概述本文旨在探讨Laves相纳米压痕硬度的概况,并对其进行深入说明。
Laves相是一类重要的金属化合物,由于其特殊的结晶结构和优异的力学性能,在材料科学领域引起了广泛关注。
而纳米压痕硬度作为表征材料力学性能的重要测试方法之一,具有高精度、非破坏性等优势,已被广泛应用于材料力学性能研究中。
1.2 文章结构本文主要分为五个部分进行阐述。
第一部分为引言,对文章的背景和意义进行了简要介绍。
第二部分讨论了Laves相,包括其定义和发现、特性和应用以及结晶结构和组成等方面内容。
这些知识将有助于我们更好地理解Laves相在纳米压痕硬度研究中的应用和意义。
第三部分对纳米压痕硬度进行了概述,涵盖了压痕硬度测试原理、纳米压痕技术发展历程以及纳米压痕硬度对材料性能的评价作用等内容。
这部分将为我们理解纳米压痕硬度的基本原理和应用提供必要的背景知识。
第四部分是本文的重点,即Laves相的纳米压痕硬度研究。
我们将介绍实验方法和参数设置,展示实验结果并进行分析,并讨论影响纳米压痕硬度的因素。
这部分内容将深入探讨Laves相在纳米压痕硬度方面的表现和规律。
最后一部分为结论与展望,主要总结了文章中得出的主要结论,并对当前存在的问题进行了讨论,并提出了改进方向展望。
通过此部分,我们可以更好地理解现有研究成果并找到未来工作的方向。
1.3 目的本文旨在系统综述Laves相纳米压痕硬度的相关性质、特点及其在材料力学性能评价中所起到的作用。
通过对Laves相和纳米压痕硬度原理以及应用领域的综合介绍,可以深入理解该领域内目前已有研究成果,并对未来开展相关实验与研究工作提供指导和参考。
2. Laves相2.1 定义和发现Laves相是一种特殊的金属间化合物,由于其独特的结构和化学组成而备受关注。
Laves相最早在1936年由Walton首次被发现并命名为"beta-W"结构。
纳米压痕技术(英:Nanoindentation),也称深度敏感压痕技术(英:Depth-Sensing Indentation, DSI),是最简单的测试材料力学性质的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量(Elastic Modulus)、硬度(Hardness)、断裂韧性(Frac ture Toughness)、应变硬化效应(Strain Hardening Effect)、粘弹性
使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
能隙(Bandgap energy gap)或译作能带隙,在固态物理学中泛指半导体或是绝缘体的价带(valenc e band)(价带[1](valenc e band)或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。
对半导体而言,此能带中的能级基本上是连续的。
全充满的能带中的电子不能在固体中自由运动。
但若该电子受
它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充
带中留下的电子可在固体中自由运动。
)顶端至传导带(传导带(conduction band)系指半导体或是绝缘体材料中,一个电子所具有能量的范围。
这个能量的范围高于价带(valence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流)(conduction band)底端的能量差距, 对一个本征半导体(intrinsic semic onduc tor)而言,其导电性与能隙的大小有关,只有获得足够能量的电子才能从价带被激发,跨过能隙并跃迁至传导带。
利用费米-狄拉克统计(Fermi-Dirac Statistics)可以得到电子占据某个能阶(energy state)E0的机率。
又假设E0 > > EF,EF是所谓的费米能阶(Fermi level),电子占据E0的机率可以利用波兹曼近似简化为:
半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。
在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成
半导体一个带正电的空位,称为空穴。
导带中的电子和价带中的空穴合称电子- 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。
这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。
导带中的电子会落入空穴,电子-空穴对消失,称为复合。
复合时释放出的能量变成电磁辐射(发光)
或晶格的热振动能量(发热)。
在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。
温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。
无晶格缺陷的纯净半导体的电阻率较大,实际应用不多
光子原始称呼是光量子(light quantum),电磁辐射的量子,传递电磁相互作用的规范粒子,记为γ。
其静止质量为零,不带电荷,其能量为普朗克常量和电磁辐射频率的乘积,E=hv,在真空中以光速c运行,其自旋为1,是玻色子光子。
是由同样大小的正电粒子和负电粒子所组成,正电粒子中心与负电粒子中心的距离为光子的半径,正电粒子的直径等于负电粒子的直径等于光子的半径,正电粒子的质量等于负电粒子的质量。
光子是以光速运动的旋转的电偶极子,旋转轴的方向与光的运动方向垂直,光子是在电子运动的向心力最大的地方发射的,即发射的方向、受力的方向和旋转轴的方向相互垂直。
玻色子英文名称:boson 定义:具有自旋量子数为整数的基本粒子。
不遵守泡利不相容原理,即一个量子态可以被任意多个粒子所占据。
如光子、粒子、氢原子等,它们具有整数自旋(0,1,……),它们的能量状态只能取不连续的量子态,但允许多个玻色子占有同一种状态。
费米子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像光子一样的粒子,有整数自旋(如0,1,2等)。
这种自旋差异使费米子和玻色子有完全不同的特性。
没有任何两个费米子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。
电流载体,称载流子。
在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。
在半导体物理学中,电子流失导致共价键上留下的空位(空穴引)被视为载流子。
金属中为电子,半导体中有两种载流子即电子和空穴。
在电场作用下能作定向运动的带电粒子。
如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
势垒(Potential Energy Barrier)就是势能比附近的势能都高的空间区域,基本上就是极值点附近的一小片区域。
二极管;它是一种具有单向传导电流的电子器件。
PN结(PN junction)。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN 结有同质结和异质结两种。
用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。