北京市大兴区2015届高三上学期期末数学试卷(文科)
- 格式:doc
- 大小:330.00 KB
- 文档页数:16
北京市大兴区高三上学期期末检测数学试卷(文)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.设集合,,则等于( )A. B. C. D.【答案】C【解析】求解一元二次不等式化简集合B,然后直接利用交集运算得答案.∵x2﹣3x≤0,∴0≤x≤3,∴B=[0,3],A=(2,+∞),∴A∩B=(2,3].故选:C.2.已知,则下列不等式成立的是( )A. B. C. D.【答案】B【解析】利用不等式的基本性质、函数的单调性即可得出.∵a>b>0,∴,,lg a>lg b,2﹣a<2﹣b.只有B正确.故选:B.3.在复平面内,复数对应的点的坐标为,则等于( )A. B. C. D.【答案】A【解析】由已知可得z,代入(1+i)z,利用复数代数形式的乘除运算化简得答案.由已知得,z=2﹣i,∴(1+i)z=(1+i)(2﹣i)=3+i.故选:A.4.执行如图所示的程序框图,若输出的的值为,则输入的值为( )A. B. C. D.【答案】B【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.模拟程序的运行,可得S=0,n=1满足条件1<i,执行循环体,S,n=2满足条件2<i,执行循环体,S,n=3满足条件3<i,执行循环体,S,n=4满足条件4<i,执行循环体,S(1)+()+()+(),n=5由题意,此时应该不满足条件5<i,退出循环,输出S的值为,可得4<i≤5,可得i的值为5.故选:B.5.已知奇函数是定义在上的增函数,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】根据函数奇偶性和单调性之间的关系,结合充分条件和必要条件的定义即可得到结论.∵奇函数f(x)在R上为增函数,∴若a+b>0,得a>﹣b,则f(a)>f(﹣b),即f(a)>﹣f(b),则f(a)+f(b)>0成立,即充分性成立,若f(a)+f(b)>0,则f(a)>﹣f(b)=f(﹣b),∵函数f(x)在R上为增函数,∴a>﹣b,即a+b>0成立,即必要性成立,则“a+b>0”是“f(a)+f(b)>0”充分必要条件,故选:C.6.已知向量,,若,则()•()的最大值为( )A. B. C. D.【答案】D【解析】向量加法的坐标运算及及数量积的运算有:(1+cosθ,sinθ),(cosθ,1+sinθ),()•()=(1+cosθ)cosθ+sinθ(1+sinθ)由三角函数辅助角公式有:()•()=1sin(),再求最值即可.由||=1设(cosθ,sinθ),则(1+cosθ,sinθ),(cosθ,1+sinθ),所以()•()=(1+cosθ)cosθ+sinθ(1+sinθ)=1sin(),即()•()的最大值为:1,故选:D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D.【答案】A【解析】由三视图还原原几何体,可知原几何体为三棱锥,再由棱锥体积公式求解.由三视图还原原几何体如图,该几何体为三棱锥P﹣ABC,则该几何体的体积V.故选:A.8.A、B两种品牌各三种车型2017年7月的销量环比(与2017年6月比较)增长率如下表:A品牌车型A1A2A3环比增长率-7.29% 10.47% 14.70%B品牌车型B1B2B3环比增长率-8.49% -28.06% 13.25%根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;②A品牌三种车型总销量环比增长率可能大于14.70%;③B品牌三款车型总销量环比增长率可能为正;④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.其中正确结论的个数是( )A. B. C. D.【答案】B【解析】根据表中数据,对关于7月份销量的四个结论,分析正误即可.根据表中数据,对关于7月份销量的四个结论:对于①,A1车型销量增长率比B1车型销量增长率高,但销量不一定多,①错误;对于②,A品牌三种车型中增长率最高为14.70%,所以总销量环比增长率不可能大于14.70%,②错误;对于③,B品牌三款车型中有销量增长率为13.25%,所以它的总销量环比增长率也可能为正,③正确;对于④,由题意知A品牌三种车型总销量环比增长率,也可能小于B品牌三种车型总销量环比增长率,④正确;综上所述,其中正确的结论序号是③④.故选:B.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
东城区2014-2015学年第一学期期末教学统一检测高三数学 (文科)学校_____________班级_______________姓名______________考号___________本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}12A x x =∈-≤≤Z ,集合{}420,,=B ,则A B =(A ){}02, (B ){}420,, (C ){}4,2,0,1- (D ){}4,2,1,0,1- 【答案】A 【解析】因为{}1,0,1,2A =-,所以{}0,2A B =故答案为:A 【考点】 集合的运算 【难度】1(2)下列函数中,既是奇函数,又在区间(0+)∞,上为增函数的是 (A )x y ln = (B )3y x = (C )3x y = (D )x y sin = 【答案】B【解析】选项中的函数是奇函数的是3y x =、sin y x =,是奇函数且又在(0,)+∞上为增函数的是3y x = 故答案为:B 【考点】 函数综合 【难度】1(3)设x ∈R ,则“1x >”是“21x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A 【解析】21x >,则1x >或1x <-,所以“1x >”是“21x >”的充分不必要条件。
故答案为:A【考点】充分条件与必要条件 【难度】1(4)当3n =时,执行如图所示的程序框图,输出的S 值为(A )6 (B )8 (C )14 (D )30【答案】C 【解析】1k =,1022S =+=; 2k =,2226S =+=; 3k =,36214S =+=; 43k =>,所以输出14故答案为:C 【考点】算法和程序框图 【难度】 1 (5)已知3cos 4α=,(,0)2απ∈-,则sin 2α的值为(A )38 (B )38- (C (D )【答案】D【解析】 因为02π⎛⎫-⎪⎝⎭,,所以sin 0α<,所以sin α=,所以sin 22sin cos ααα== 故答案为:D 【考点】 恒等变换综合 【难度】2(6)如图所示,为了测量某湖泊两侧A ,B 间的距离,某同学首先选定了与A ,B 不共线的一点C ,然后给出了四种测量方案:(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ) ①测量A ,C ,b ②测量a ,b ,C ③测量A ,B ,a ④测量a ,b ,B 则一定能确定A ,B 间距离的所有方案的序号为(A )①②③ (B )②③④ (C )①③④ (D )①②③④ 【答案】A 【解析】选项①,在ABC ∆中,()B A C π=-+,所以sin sin()B A C =+,由正弦定理得sin()sin b c A C C=+,所以sin sin()b Cc A C =+选项②,由余弦定理可得2222cos c a b ab C =+-,所以c =选项③,在ABC ∆中,()C A B π=-+,所以sin sin()C A B =+由正弦定理得sin sin()a cA AB =+,所以sin()sin a A B c A +=选项④,用余弦定理222cos 2a c b B ac+-=解得的c ,可能有两个值。
东城区2014-2015学年第一学期期末教学统一检测高三数学(文科)学校_____________班级_______________姓名______________考号___________本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,集合,则{}12A x x =∈-≤≤Z {}420,,=B A B =(A ) (B ) {}02,{}420,,(C )(D ){}4,2,0,1-{}4,2,1,0,1-(2)下列函数中,既是奇函数,又在区间上为增函数的是(0+)∞, (A ) (B ) x y ln =3y x =(C )(D )3xy =xy sin =(3)设,则“”是“”的x ∈R 1x >21x >(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(4)当时,执行如图所示的程序框图,3n =输出的值为S (A ) (B ) 68(C ) (D )1430(5)已知,,则的值为3cos 4α=(,0)2απ∈-sin 2α(A )(B ) (C (D )3838-(6)如图所示,为了测量某湖泊两侧,间的距离,某同学首先选定了与,不A B A B 共线的一点,然后给出了四种测量方案:(△的角,,所对的边C ABC A B C 分别记为,,)a b c①测量,, ②测量,, ③测量,, ④测量,,A C b a b C A B a a b B 则一定能确定,间距离的所有方案的序号为A B (A )①②③(B )②③④(C )①③④ (D )①②③④(7)已知向量,,平面上任意向量都可以唯一地表示为(1,3)=a (,23)m m =-b c ,则实数的取值范围是+λμ=c a b (,)λμ∈R m (A ) (B ) (,0)(0,)-∞+∞ (,3)-∞(C )(D )(,3)(3,)-∞--+∞ [3,3)-(8)已知两点,,若直线上至少存在三个点,使得△(1,0)M -(1,0)N (2)yk x =-P 是直角三角形,则实数的取值范围是MNP k (A ) (B ) 11[,0)(0,33- [,0)(0, (C ) (D )11[,33-[5,5]-第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2021 届高三上学期期末数学试卷〔文科〕一、选择题共8小题,每题5分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.〔5分〕集合A={x∈Z|﹣1≤x≤2},集合B={0,2,4},那么A∩B=〔〕A.{0,2} B.{0,2,4} C.{﹣1,0,2,4} D.{﹣1,0,1,2,4}2.〔5分〕以下函数中,既是奇函数,又在区间〔0,+∞〕上为增函数的是〔〕A.y=lnx B.y=x3C.y=3x D.y=sinx3.〔5分〕假设x∈R,那么“x>1”,那么“x2>1”的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.〔5分〕当n=4时,执行如下图的程序框图,输出的S值为〔〕A.6 B.8 C.14 D.305.〔5分〕cosα=,α∈〔﹣,0〕,那么sin2α的值为〔〕A.B.﹣C.D.﹣6.〔5分〕如下图,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:〔△ABC的角A,B,C所对的边分别记为a,b,c〕①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.那么一定能确定A,B间距离的所有方案的序号为〔〕A.①②③B.②③④C.①③④D.①②③④7.〔5分〕=〔1,3〕,=〔m,2m﹣3〕,平面上任意向量都可以唯一地表示为=λ+μ〔λ,μ∈R〕,那么实数m的取值范围是〔〕A.〔﹣∞,0〕∪〔0,+∞〕B.〔﹣∞,3〕C.〔﹣∞,﹣3〕∪〔﹣3,+∞〕D.[﹣3,3〕8.〔5分〕两点M〔﹣1,0〕,N〔1,0〕,假设直线y=k〔x﹣2〕上至少存在三个点P,使得△MNP 是直角三角形,那么实数k的取值范围是〔〕A.[﹣,0〕∪〔0,] B.[﹣,0〕∪〔0,] C.[﹣,] D.[﹣5,5]二、填空题共6小题,每题5分,共30分.9.〔5分〕抛物线的方程为y2=4x,那么其焦点到准线的距离为.10.〔5分〕假设=1+mi〔m∈R〕,那么m=.11.〔5分〕某几何体的三视图〔单位:cm〕如下图,那么该几何体最长棱的棱长为cm.12.〔5分〕x,y满足那么z=2x+y的最大值为.13.〔5分〕设函数f〔x〕=那么f〔f〔〕〕=;假设函数g〔x〕=f〔x〕﹣k 存在两个零点,那么实数k的取值范围是.14.〔5分〕某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,那么不给予优惠;②如果一次性购物超过200元但不超过500元,那么按标价给予9折优惠;③如果一次性购物超过500元,那么500元按第②条给予优惠,剩余局部给予7折优惠.甲单独购置A商品实际付款100元,乙单独购置B商品实际付款450元,假设丙一次性购置A,B两件商品,那么应付款元.三、解答题共6小题,共80分.解容许写出文字说明,演算步骤或证明过程.15.〔13分〕函数f〔x〕=Asin〔ωx﹣〕〔A>0,ω>0〕的最大值为2,其图象相邻两条对称轴之间的距离为.〔Ⅰ〕求f〔x〕的解析式及最小正周期;〔Ⅱ〕设α∈〔0,〕,且f〔〕=1,求α的值.16.〔13分〕数列{a n}是等差数列,数列{b n}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.〔Ⅰ〕求数列{a n}和{b n}的通项公式;〔Ⅱ〕记c n=a bn,求数列{c n}的前n项和S n.17.〔14分〕在三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.〔Ⅰ〕求证:AC⊥平面PBC;〔Ⅱ〕求证:CM∥平面BEF;〔Ⅲ〕假设PB=BC=CA=2,求三棱锥E﹣ABC的体积.18.〔13分〕为选拔选手参加“中国谜语大会〞,某中学举行了一次“谜语大赛〞活动.为了了解本次竞赛学生的成绩情况,从中抽取了局部学生的分数〔得分取正整数,总分值为100分〕作为样本〔样本容量为n〕进展统计.按照[50,60〕,[60,70〕,[70,80〕,[80,90〕,[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图〔图中仅列出了得分在[50,60〕,[90,100]的数据〕.〔Ⅰ〕求样本容量n和频率分布直方图中的x、y的值;〔Ⅱ〕在选取的样本中,从竞赛成绩在80分以上〔含80分〕的学生中随机抽取2名学生参加“中国谜语大会〞,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.19.〔13分〕椭圆C1:+y2=1,椭圆C2的中心在坐标原点,焦点在y轴上,与C1有一样的离心率,且过椭圆C1的长轴端点.〔Ⅰ〕求椭圆C2的标准方程;〔Ⅱ〕设O为坐标原点,点A,B分别在椭圆C1和C2上,假设=2,求直线AB的方程.20.〔14分〕函数f〔x〕=alnx﹣bx2,a,b∈R.〔Ⅰ〕假设f〔x〕在x=1处与直线y=﹣相切,求a,b的值;〔Ⅱ〕在〔Ⅰ〕的条件下,求f〔x〕在[,e]上的最大值;〔Ⅲ〕假设不等式f〔x〕≥x对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,求a的取值范围.北京市东城区2021 届高三上学期期末数学试卷〔文科〕参考答案与试题解析一、选择题共8小题,每题5分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.〔5分〕集合A={x∈Z|﹣1≤x≤2},集合B={0,2,4},那么A∩B=〔〕A.{0,2} B.{0,2,4} C.{﹣1,0,2,4} D.{﹣1,0,1,2,4}考点:交集及其运算.专题:集合.分析:根据集合的交集运算进展求解.解答:解:集合A={x∈Z|﹣1≤x≤2}={﹣1,0,1,2},集合B={0,2,4},那么A∩B={0,2},应选:A点评:此题主要考察集合的根本运算,比拟根底.2.〔5分〕以下函数中,既是奇函数,又在区间〔0,+∞〕上为增函数的是〔〕A.y=lnx B.y=x3C.y=3x D.y=sinx考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数奇偶性和单调性的定义和性质进展判断即可.解答:解:y=lnx的定义域为〔0,+∞〕,关于原点不对称,即函数为非奇非偶函数.y=x3是奇函数,又在区间〔0,+∞〕上为增函数,满足条件.y=3X在区间〔0,+∞〕上为增函数,为非奇非偶函数,不满足条件.y=sinx是奇函数,但在〔0,+∞〕上不是单调函数,应选:B点评:此题主要考察函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性.3.〔5分〕假设x∈R,那么“x>1”,那么“x2>1”的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:直接利用充要条件的判定判断方法判断即可.解答:解:因为“x>1〞,那么“x2>1”;但是“x2>1”不一定有“x>1〞,所以“x>1〞,是“x2>1”成立的充分不必要条件.应选A.点评:此题考察充要条件的判定方法的应用,考察计算能力.4.〔5分〕当n=4时,执行如下图的程序框图,输出的S值为〔〕A.6 B.8 C.14 D.30考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的k,s的值,当k=5>4,退出循环,输出s 的值为30.解答:解:由程序框图可知:k=1,s=2k=2,s=6k=3,s=14k=4,s=30k=5>4,退出循环,输出s的值为30.应选:D.点评:此题主要考察了程序框图和算法,正确理解循环构造的功能是解题的关键,属于根本知识的考察.5.〔5分〕cosα=,α∈〔﹣,0〕,那么sin2α的值为〔〕A.B.﹣C.D.﹣考点:二倍角的正弦.专题:计算题;三角函数的求值.分析:由及同角三角函数的关系式可先求sinα的值,从而有倍角公式即可代入求值.解答:解:∵cosα=,α∈〔﹣,0〕,∴sinα=﹣=﹣=﹣,∴sin2α=2sinαcosα=2×=﹣.应选:D.点评:此题主要考察了同角三角函数的关系式,二倍角的正弦公式的应用,属于根底题.6.〔5分〕如下图,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:〔△ABC的角A,B,C所对的边分别记为a,b,c〕①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.那么一定能确定A,B间距离的所有方案的序号为〔〕A.①②③B.②③④C.①③④D.①②③④考点:解三角形的实际应用.专题:计算题;解三角形.分析:根据图形,可以知道a,b可以测得,角A、B、C也可测得,利用测量的数据,求解A,B两点间的距离唯一即可.解答:解:对于①③可以利用正弦定理确定唯一的A,B两点间的距离.对于②直接利用余弦定理即可确定A,B两点间的距离.对于④测量a,b,B,,sinA=,b<a,此时A不唯一应选:A.点评:此题以实际问题为素材,考察解三角形的实际应用,解题的关键是分析哪些可测量,哪些不可直接测量,注意正弦定理的应用.7.〔5分〕=〔1,3〕,=〔m,2m﹣3〕,平面上任意向量都可以唯一地表示为=λ+μ〔λ,μ∈R〕,那么实数m的取值范围是〔〕A.〔﹣∞,0〕∪〔0,+∞〕B.〔﹣∞,3〕C.〔﹣∞,﹣3〕∪〔﹣3,+∞〕D.[﹣3,3〕考点:平面向量的根本定理及其意义.专题:平面向量及应用.分析:首先,根据题意,得向量,不共线,然后,根据坐标运算求解实数m的取值范围.解答:解:根据平面向量根本定理,得向量,不共线,∵=〔1,3〕,=〔m,2m﹣3〕,∴2m﹣3﹣3m≠0,∴m≠﹣3.应选:C.点评:此题重点考察了向量的共线的条件、坐标运算等知识,属于中档题.8.〔5分〕两点M〔﹣1,0〕,N〔1,0〕,假设直线y=k〔x﹣2〕上至少存在三个点P,使得△MNP 是直角三角形,那么实数k的取值范围是〔〕A.[﹣,0〕∪〔0,] B.[﹣,0〕∪〔0,] C.[﹣,] D.[﹣5,5]考点:两条直线垂直与倾斜角、斜率的关系.专题:直线与圆.分析:当k=0时,M、N、P三点共线,构不成三角形,故k≠0.△MNP是直角三角形,由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,由此能求出实数k的取值范围.解答:解:当k=0时,M、N、P三点共线,构不成三角形,∴k≠0,如下图,△MNP是直角三角形,有三种情况:当M是直角顶点时,直线上有唯一点P1点满足条件;当N是直角顶点时,直线上有唯一点P3满足条件;当P是直角顶点时,此时至少有一个点P满足条件.由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,那么,解得﹣≤k≤,且k≠0.∴实数k的取值范围是[﹣,0〕∪〔0,].应选:B.点评:此题考察直线与圆的位置关系等根底知识,意在考察运用方程思想求解能力,考察数形结合思想的灵活运用.二、填空题共6小题,每题5分,共30分.9.〔5分〕抛物线的方程为y2=4x,那么其焦点到准线的距离为2.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由抛物线y2=2px的焦点为〔,0〕,准线为x=﹣,可得抛物线y2=4x的焦点为〔1,0〕,准线为x=﹣1,再由点到直线的距离公式计算即可得到.解答:解:抛物线y2=2px的焦点为〔,0〕,准线为x=﹣,那么抛物线y2=4x的焦点为〔1,0〕,准线为x=﹣1,那么焦点到准线的距离为2.故答案为:2.点评:此题考察抛物线的方程和性质,主要考察抛物线的焦点和准线方程,同时考察点到直线的距离的求法,属于根底题.10.〔5分〕假设=1+mi〔m∈R〕,那么m=﹣2.考点:复数代数形式的乘除运算.专题:数系的扩大和复数.分析:利用复数的运算法那么、复数相等即可得出.解答:解:∵1+mi===1﹣2i,∴m=﹣2.故答案为:﹣2.点评:此题考察了复数的运算法那么、复数相等,属于根底题.11.〔5分〕某几何体的三视图〔单位:cm〕如下图,那么该几何体最长棱的棱长为cm.考点:由三视图复原实物图.专题:空间位置关系与距离.分析:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案.解答:解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,如图:其中PA⊥平面ABCD,∴PA=3,AB=3,AD=4,∴PB=3,PC==,PD=5.该几何体最长棱的棱长为:.故答案为:.点评:此题考察了由三视图求几何体的最长棱长问题,根据三视图判断几何体的构造特征是解答此题的关键.12.〔5分〕x,y满足那么z=2x+y的最大值为7.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:〔阴影局部〕.由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A〔3,1〕,代入目标函数z=2x+y得z=2×3+1=6+1=7.即目标函数z=2x+y的最大值为7.故答案为:7点评:此题主要考察线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的根本方法.13.〔5分〕设函数f〔x〕=那么f〔f〔〕〕=;假设函数g〔x〕=f〔x〕﹣k存在两个零点,那么实数k的取值范围是〔0.1].考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:直接利用分段函数求解第一个空,利用函数的图象求解第二问.解答:解:函数f〔x〕=那么f〔f〔〕〕=f〔﹣1〕=;函数g〔x〕=f〔x〕﹣k存在两个零点,即f〔x〕=k存在两个解,如图:可得a∈〔0,1].故答案为:;〔0,1].点评:此题考察函数的零点以及分段函数的应用,考察数形结合以及计算能力.14.〔5分〕某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,那么不给予优惠;②如果一次性购物超过200元但不超过500元,那么按标价给予9折优惠;③如果一次性购物超过500元,那么500元按第②条给予优惠,剩余局部给予7折优惠.甲单独购置A商品实际付款100元,乙单独购置B商品实际付款450元,假设丙一次性购置A,B两件商品,那么应付款520元.考点:分段函数的应用.专题:应用题;函数的性质及应用.分析:单独购置A,B分别付款100元与450元,而450元是优惠后的付款价格,实际标价为450÷0.9=500元,假设丙一次性购置A,B两件商品,即价值100+500=600元的商品,按规定〔3〕进展优惠计算即可.解答:解:甲单独购置A商品实际付款100元,乙单独购置B商品实际付款450元,由于商场的优惠规定,100元的商品未优惠,而450元的商品是按九折优惠后的,那么实际商品价格为450÷0.9=500元,假设丙一次性购置A,B两件商品,即价值100+500=600元的商品时,应付款为:500×0.9+〔600﹣500〕×0.7=450+70=520〔元〕.故答案为:520.点评:此题考察了应用函数解答实际问题的知识,解题关键是读懂题意,根据题目给出的条件,找出适宜的解题途径,从而解答问题,是根底题.三、解答题共6小题,共80分.解容许写出文字说明,演算步骤或证明过程.15.〔13分〕函数f〔x〕=Asin〔ωx﹣〕〔A>0,ω>0〕的最大值为2,其图象相邻两条对称轴之间的距离为.〔Ⅰ〕求f〔x〕的解析式及最小正周期;〔Ⅱ〕设α∈〔0,〕,且f〔〕=1,求α的值.考点:由y=Asin〔ωx+φ〕的局部图象确定其解析式.专题:三角函数的求值;三角函数的图像与性质.分析:〔Ⅰ〕由最大值为2可求A的值,由图象相邻两条对称轴之间的距离为,得最小正周期T,根据周期公式即可求ω,从而得解;〔Ⅱ〕由得,由,得,从而可解得α的值.解答:〔共13分〕解:〔Ⅰ〕因为函数f〔x〕的最大值为2,所以A=2.由图象相邻两条对称轴之间的距离为,得最小正周期T=π.所以ω=2.故函数的解析式为.…〔6分〕〔Ⅱ〕,由得.因为,所以.所以,故.…〔13分〕点评:此题主要考察了由y=Asin〔ωx+φ〕的局部图象确定其解析式,考察了周期公式的应用,属于根本知识的考察.16.〔13分〕数列{a n}是等差数列,数列{b n}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.〔Ⅰ〕求数列{a n}和{b n}的通项公式;〔Ⅱ〕记c n=a bn,求数列{c n}的前n项和S n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:〔Ⅰ〕设出等差数列{a n}的公差为d,等比数列{b n}的公比为q,且q>0.由列式求得等差数列的公差和等比数列的公比,代入等差数列和等比数列的通项公式得答案;〔Ⅱ〕由c n=a bn结合数列{a n}和{b n}的通项公式得到数列{c n}的通项公式,结合等比数列的前n 项和求得数列{c n}的前n项和S n.解答:解:〔Ⅰ〕设等差数列{a n}的公差为d,等比数列{b n}的公比为q,且q>0.由a1=2,a3=8,得8=2+2d,解得d=3.∴a n=2+〔n﹣1〕×3=3n﹣1,n∈N*.由b1=2,b3=8,得8=2q2,又q>0,解得q=2.∴,n∈N*;〔Ⅱ〕∵,∴=3×2n+1﹣n﹣6.点评:此题考察了等差数列与等比数列的通项公式,考察了等比数列的前n项和,是中档题.17.〔14分〕在三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.〔Ⅰ〕求证:AC⊥平面PBC;〔Ⅱ〕求证:CM∥平面BEF;〔Ⅲ〕假设PB=BC=CA=2,求三棱锥E﹣ABC的体积.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:〔Ⅰ〕由PB⊥底面ABC,可证AC⊥PB,由∠BCA=90°,可得AC⊥CB.又PB∩CB=B,即可证明AC⊥平面PBC.〔Ⅱ〕取AF的中点G,连结CG,GM.可得EF∥CG.又CG⊄平面BEF,有EF⊂平面BEF,有CG∥平面BEF,同理证明GM∥平面BEF,有平面CMG∥平面BEF,即可证明CM∥平面BEF.〔Ⅲ〕取BC中点D,连结ED,可得ED∥PB,由PB⊥底面ABC,故ED⊥底面ABC,由PB=BC=CA=2,即可求得三棱锥E﹣ABC的体积.解答:〔共14分〕证明:〔Ⅰ〕因为PB⊥底面ABC,且AC⊂底面ABC,所以AC⊥PB.由∠BCA=90°,可得AC⊥CB.又PB∩CB=B,所以AC⊥平面PBC.…〔5分〕〔Ⅱ〕取AF的中点G,连结CG,GM.因为AF=2FP,G为AF中点,所以F为PG中点.在△PCG中,E,F分别为PC,PG中点,所以EF∥CG.又CG⊄平面BEF,EF⊂平面BEF,所以CG∥平面BEF.同理可证GM∥平面BEF.又CG∩GM=G,所以平面CMG∥平面BEF.又CM⊂平面CMG,所以CM∥平面BEF.…〔11分〕〔Ⅲ〕取BC中点D,连结ED.在△PBC中,E,D分别为中点,所以ED∥PB.因为PB⊥底面ABC,所以ED⊥底面ABC.由PB=BC=CA=2,可得.…〔14分〕点评:此题主要考察了直线与平面垂直的判定,直线与平面平行的判定,三棱锥体积公式的应用,正确做出相应的辅助线是解题的关键,考察了转化思想,属于中档题.18.〔13分〕为选拔选手参加“中国谜语大会〞,某中学举行了一次“谜语大赛〞活动.为了了解本次竞赛学生的成绩情况,从中抽取了局部学生的分数〔得分取正整数,总分值为100分〕作为样本〔样本容量为n〕进展统计.按照[50,60〕,[60,70〕,[70,80〕,[80,90〕,[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图〔图中仅列出了得分在[50,60〕,[90,100]的数据〕.〔Ⅰ〕求样本容量n和频率分布直方图中的x、y的值;〔Ⅱ〕在选取的样本中,从竞赛成绩在80分以上〔含80分〕的学生中随机抽取2名学生参加“中国谜语大会〞,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.考点:列举法计算根本领件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:〔Ⅰ〕由样本容量和频数频率的关系易得答案;〔Ⅱ〕由题意可知,分数在[80,90〕内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2,列举法易得.解答:解:〔Ⅰ〕由题意可知,样本容量,,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030;〔Ⅱ〕由题意可知,分数在[80,90〕内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2.抽取的2名学生的所有情况有21种,分别为:〔a1,a2〕,〔a1,a3〕,〔a1,a4〕,〔a1,a5〕,〔a1,b1〕,〔a1,b2〕,〔a2,a3〕,〔a2,a4〕,〔a2,a5〕,〔a2,b1〕,〔a2,b2〕,〔a3,a4〕,〔a3,a5〕,〔a3,b1〕,〔a3,b2〕,〔a4,a5〕,〔a4,b1〕,〔a4,b2〕,〔a5,b1〕,〔a5,b2〕,〔b1,b2〕.其中2名同学的分数都不在[90,100]内的情况有10种,分别为:〔a1,a2〕,〔a1,a3〕,〔a1,a4〕,〔a1,a5〕,〔a2,a3〕,〔a2,a4〕,〔a2,a5〕,〔a3,a4〕,〔a3,a5〕,〔a4,a5〕.∴所抽取的2名学生中至少有一人得分在[90,100]内的概率.点评:此题考察列举法求古典概型的概率,涉及频率分布直方图,属根底题.19.〔13分〕椭圆C1:+y2=1,椭圆C2的中心在坐标原点,焦点在y轴上,与C1有一样的离心率,且过椭圆C1的长轴端点.〔Ⅰ〕求椭圆C2的标准方程;〔Ⅱ〕设O为坐标原点,点A,B分别在椭圆C1和C2上,假设=2,求直线AB的方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:〔Ⅰ〕通过设椭圆C2的方程为:,由C1方程可得,计算即得结论;〔Ⅱ〕通过及〔Ⅰ〕知可设直线AB的方程为y=kx,并分别代入两椭圆中、利用,计算即可.解答:解:〔Ⅰ〕由C1方程可得,依题意可设椭圆C2的方程为:,由C1的离心率为,那么有,解得a2=16,故椭圆C2的方程为;〔Ⅱ〕设A,B两点的坐标分别为〔x1,y1〕,〔x2,y2〕,由及〔Ⅰ〕知,O,A,B三点共线且点A,B不在y轴上,因此可设直线AB的方程为y=kx,将y=kx代入中,解得;将y=kx代入中,解得.又由,得,即,解得k=±1.故直线AB的方程为y=x或y=﹣x.点评:此题是一道直线与圆锥曲线的综合题,考察运算求解能力,考察分析问题、解决问题的能力,注意解题方法的积累,属于中档题.20.〔14分〕函数f〔x〕=alnx﹣bx2,a,b∈R.〔Ⅰ〕假设f〔x〕在x=1处与直线y=﹣相切,求a,b的值;〔Ⅱ〕在〔Ⅰ〕的条件下,求f〔x〕在[,e]上的最大值;〔Ⅲ〕假设不等式f〔x〕≥x对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,求a的取值范围.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:〔Ⅰ〕求出f〔x〕的导数,求得切线的斜率,由题意可得f〔1〕=﹣,f′〔1〕=0,即可解得a,b的值;〔Ⅱ〕求出f〔x〕的导数,求得单调区间,即可得到最大值;〔Ⅲ〕由题意可得alnx﹣bx2≥x对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,即alnx﹣x≥bx2对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,即alnx﹣x≥0对x∈〔e,e2]恒成立,即对x∈〔e,e2]恒成立,求得右边函数的最大值即可.解答:解:〔Ⅰ〕.由函数f〔x〕在x=1处与直线相切,得即解得;〔Ⅱ〕由〔Ⅰ〕得,定义域为〔0,+∞〕.此时=.令f'〔x〕>0,解得0<x<1,令f'〔x〕<0,得x>1.所以f〔x〕在〔,1〕上单调递增,在〔1,e〕上单调递减,所以f〔x〕在上的最大值为;〔Ⅲ〕假设不等式f〔x〕≥x对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,即alnx﹣bx2≥x对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,即alnx﹣x≥bx2对所有的b∈〔﹣∞,0],x∈〔e,e2]都成立,即alnx﹣x≥0对x∈〔e,e2]恒成立.即对x∈〔e,e2]恒成立,即a大于或等于在区间〔e,e2]上的最大值.令,那么,当x∈〔e,e2]时,h'〔x〕>0,h〔x〕单调递增,所以,x∈〔e,e2]的最大值为.即.所以a的取值范围是.点评:此题考察导数的运用:求切线的斜率和单调区间、极值和最值,考察不等式的恒成立问题注意运用参数别离和转化为求函数的最值问题,属于中档题和易错题.。
北京市丰台区2015届高三上学期期末数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)在复平面内,复数对应的点的坐标为()A.(﹣1,1)B.(l,1)C.(1,﹣l)D.(﹣1,﹣l)2.(5分)等差数列{a n}的前n项和为S n,如果a1=2,a3+a5=22,那么S3等于()A.8B.15 C.24 D.303.(5分)命题p:∀x>0,e x>1,则¬p是()A.∃x0≤0,B.∃x0>0,C.∀x>0,e x≤1 D.∀x≤0,e x≤14.(5分)已知a=2log32,,,则a,b,c的大小关系是()A.a>b>c B.c>b>a C.c>a>b D.a>c>b5.(5分)甲、乙两名同学在5次体能测试中的成绩的茎叶图如图所示,设,分别表示甲、乙两名同学测试成绩的平均数,s1,s2分别表示甲、乙两名同学测试成绩的标准差,则有()A.,s1<s2B.,s1>s2C.,s1>s2D.,s1=s26.(5分)已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=log b(x﹣a)的图象可能是()A.B.C. D.7.(5分)如图,网格纸的各小格都是正方形,粗线画出的是一个三棱锥的侧视图和俯视图,则该三棱锥的正视图可能是()A.B.C.D.8.(5分)在平面直角坐标系xOy中,如果菱形OABC的边长为2,点A在x轴上,则菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是()A.{1,2} B.{1,2,3} C.{0,1,2} D.{0,1,2,3}二、填空题共6小题,每小题5分,共30分.9.(5分)已知集合A={x|x2﹣2x>0},B={1,2,3,4},则A∩B=.10.(5分)已知向量,且,,那么实数x=;=.11.(5分)执行如图所示的程序框图,则输出的结果是.12.(5分)如果变量x,y满足条件且z=3x+y,那么z的取值范围是.13.(5分)已知圆C:x2+y2+2x﹣4y=0,那么圆心坐标是;如果圆C的弦AB的中点坐标是(﹣2,3),那么弦AB所在的直线方程是.14.(5分)设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,如果函数y=f (x)﹣g(x)在区间[a,b]上有k(k∈N*)个不同的零点,那么称函数f(x)和g(x)在区间[a,b]上为“k阶关联函数”.现有如下三组函数:①f(x)=x,g(x)=sin x;②f(x)=2﹣x,g(x)=lnx;③f(x)=|x﹣1|,g(x)=.其中在区间[0,4]上是“2阶关联函数”的函数组的序号是.(写出所有满足条件的函数组的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数,x∈R.(Ⅰ)求的值;(Ⅱ)求函数f(x)在区间上的最大值和最小值,及相应的x的值.16.(13分)某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制出频率分布直方图,如图所示.(Ⅰ)求频率分布直方图中的a值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;(Ⅱ)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;(Ⅲ)试估计样本的中位数落在哪个分组区间内(只需写出结论).(注:将频率视为相应的概率)17.(14分)如图,在四棱锥S﹣ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.(Ⅰ)求证:PQ∥平面SAD;(Ⅱ)求证:AC⊥平面SEQ;(Ⅲ)如果SA=AB=2,求三棱锥S﹣ABC的体积.18.(13分)已知函数.(Ⅰ)求函数f(x)的极小值;(Ⅱ)过点B(0,t)能否存在曲线y=f(x)的切线,请说明理由.19.(14分)在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的一个顶点为A(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l过点A,过O作l的平行线交椭圆C于P,Q两点,如果以PQ为直径的圆与直线l相切,求l的方程.20.(13分)已知数列{a n}的前n项和S n满足S n=λa n﹣,(λ≠±1,n∈N*).(Ⅰ)如果λ=0,求数列{a n}的通项公式;(Ⅱ)如果λ=2,求证:数列为等比数列,并求S n;(Ⅲ)如果数列{a n}为递增数列,求λ的取值范围.北京市丰台区2015届高三上学期期末数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)在复平面内,复数对应的点的坐标为()A.(﹣1,1)B.(l,1)C.(1,﹣l)D.(﹣1,﹣l)考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义.专题:计算题.分析:直接利用复数的除法运算化简为a+bi(a,b∈R)的形式,则答案可求.解答:解:由=.所以复数对应的点的坐标为(﹣1,1).故选A.点评:本题考查了复数代数形式的乘除运算,考查了复数的代数表示法与几何意义,是基础题.2.(5分)等差数列{a n}的前n项和为S n,如果a1=2,a3+a5=22,那么S3等于()A.8B.15 C.24 D.30考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质求出a4的值,再求出公差d的值,利用等差数列的前n项和公式求出S3的值.解答:解:由等差数列的性质得,a3+a5=2a4=22,解得a4=11,又a1=2,所以公差d==3,所以S3==3×2+9=15,故选:B.点评:本题考查等差数列的前n项和公式、性质,属于基础题.3.(5分)命题p:∀x>0,e x>1,则¬p是()A.∃x0≤0,B.∃x0>0,C.∀x>0,e x≤1 D.∀x≤0,e x≤1考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题p:∀x>0,e x>1,则¬p是∃x0>0,.故选:B.点评:本题考查特称命题与全称命题的否定关系,基本知识的考查.4.(5分)已知a=2log32,,,则a,b,c的大小关系是()A.a>b>c B.c>b>a C.c>a>b D.a>c>b考点:对数值大小的比较.专题:函数的性质及应用.分析:分别判断a,b,c的取值范围即可.解答:解:a=2log32=log34>1,=,=<1,则a>c>b,故选:D.点评:本题主要考查函数值的大小比较,根据指数函数和对对数函数的性质是解决本题的关键.5.(5分)甲、乙两名同学在5次体能测试中的成绩的茎叶图如图所示,设,分别表示甲、乙两名同学测试成绩的平均数,s1,s2分别表示甲、乙两名同学测试成绩的标准差,则有()A.,s1<s2B.,s1>s2C.,s1>s2D.,s1=s2考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,计算出甲、乙同学测试成绩的平均数与方差、标准差,即可得出结论.解答:解:根据茎叶图中的数据,得;甲同学测试成绩的平均数是=(76+76+82+88+88)=82,乙同学测试成绩的平均数是=(76+78+83+86+87)=82;甲同学测试成绩的方差是:=[(76﹣82)2+(76﹣82)2+(82﹣82)2+(88﹣82)2+(88﹣82)2]=,标准差是s1=,乙同学测试成绩的方差是=[(﹣6)2+(﹣4)2+12+(4)2+52]=,标准差是s2=.∴=,s 1>s2.故选:B.点评:本题考查了茎叶图的应用问题,也考查了平均数、方差、标准差的计算问题,是基础题.6.(5分)已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=log b(x﹣a)的图象可能是()A.B.C. D.考点:函数的图象.专题:函数的性质及应用.分析:先根据正弦函数的图象得到a,b的取值范围,再根据对数函数的图象和性质得到答案.解答:解:函数y=a+sinbx(b>0且b≠1)的图象,是有y=sinbx的图象向上平移a的单位得到的,由图象可知1<a<2,由图象可知函数的最小正周期<T<π,∴<<π,解得2<b<4,∴y=log b x的图象过定点(1,0)且为增函数,∵y=log b(x﹣a)函数的图象是由y=log b x图象向右平移a的单位得到,∴y=log b(x﹣a)函数的图象过定点(a+1,0),其中2<a+1<3,故选:C点评:本题考查了正弦函数的图象和对数函数的图象,属于基础题.7.(5分)如图,网格纸的各小格都是正方形,粗线画出的是一个三棱锥的侧视图和俯视图,则该三棱锥的正视图可能是()A.B.C.D.考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:由已知中锥体的侧视图和俯视图,画出该几何的直观图,进而可得该锥体的正视图.解答:解:由已知中锥体的侧视图和俯视图,可得该几何体是三棱锥,由侧视图和俯视图可得,该几何的直观图如图P﹣ABC所示:顶点P在以BA和BC为邻边的平行四边形ABCD上的射影为CD的中点O,故该锥体的正视图是:故选A点评:本题考查的知识点是简单空间几何体的三视图,其中根据已知中的三视图,画出直观图是解答的关键.8.(5分)在平面直角坐标系xOy中,如果菱形OABC的边长为2,点A在x轴上,则菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是()A.{1,2} B.{1,2,3} C.{0,1,2} D.{0,1,2,3}考点:二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:根据菱形的不同位置进行判断即可.解答:解:根据对称性我们只研究在第一象限内的整点情况,设∠AOC=θ,则C(2cosθ,2sinθ),B(2cosθ+2,2sinθ),①若0°<θ≤30°,则0<2sinθ≤1,此时区域内整点个数为0,排除A,B,②若30°<θ<45°,则1<2sinθ<,<2cosθ<,+2<2cosθ+2<2+,此时区域内整点为(2,1),个数为1,③若45°<θ<90°,则<2sinθ<2,0<2cosθ<,此时区域内整点为(1,1),(1,2),个数为2,④若θ=90°,则此时区域内整点为(1,1),个数为1个,综上菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是{0,1,2},故选:C点评:本题主要考查平面区域内整点的判断,利用数形结合是解决本题的关键.比较复杂.二、填空题共6小题,每小题5分,共30分.9.(5分)已知集合A={x|x2﹣2x>0},B={1,2,3,4},则A∩B={3,4}.考点:交集及其运算.专题:集合.分析:求解一元二次不等式化简集合A,然后直接利用交集运算得答案.解答:解:由x2﹣2x>0,得x<0或x>2,∴A={x|x2﹣2x>0}={x|x<0或x>2},又B={1,2,3,4},则A∩B={3,4}.故答案为:{3,4}.点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.10.(5分)已知向量,且,,那么实数x=2;=.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量垂直的条件:数量积为0,解得x=2,再由向量的平方即为模的平方,计算即可得到.解答:解:,,且向量,则=x﹣2=0,解得,x=2.即有=(2,1),则====.故答案为:2,.点评:本题考查平面向量的数量积的性质,考查向量垂直的条件,考查运算能力,属于基础题.11.(5分)执行如图所示的程序框图,则输出的结果是4.考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的A,B的值,当A=16时,满足条件A>15,退出循环,输出B的值为4.解答:解:执行程序框图,有A=1,B=1A=3,B=2不满足条件A>15,A=8,B=3不满足条件A>15,A=16,B=4满足条件A>15,退出循环,输出B的值为4.故答案为:4.点评:本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.12.(5分)如果变量x,y满足条件且z=3x+y,那么z的取值范围是[2,9].考点:简单线性规划.专题:不等式的解法及应用.分析:先做出不等式组表示的平面区域,求出各个角点的坐标,分别代入目标函数,比较后,求出目标函数的最优解,进而可得目标函数的取值范围.解答:解:满足条件的可行域如下图所示:∵z=3x+y,∴z A=2,z B=9,z C=4,故z=3x+y的最大值为9,最小值为2,故z的取值范围是:[2,9],故答案为:[2,9]点评:本题给出二元一次不等式组,求目标函数z的最值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.13.(5分)已知圆C:x2+y2+2x﹣4y=0,那么圆心坐标是(﹣1,2);如果圆C的弦AB的中点坐标是(﹣2,3),那么弦AB所在的直线方程是x﹣y+5=0.考点:圆的一般方程.专题:直线与圆.分析:求出圆的标准方程即可求出圆心坐标,根据弦AB的中点性质即可求出直线方程.解答:解:圆的标准方程为(x+1)2+(y﹣2)2=5,圆心坐标为C(﹣1,2),半径r=,若圆C的弦AB的中点坐标是D(﹣2,3),则满足AB⊥CD,则CD的斜率k=,则弦AB所在的直线斜率k=1,则对应的直线方程为y﹣3=x+2,即x﹣y+5=0,故答案为:(﹣1,2),x﹣y+5=0点评:本题主要考查圆的标准方程的应用以及直线和圆的位置关系的应用,利用相交弦的性质是解决本题的关键.14.(5分)设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,如果函数y=f (x)﹣g(x)在区间[a,b]上有k(k∈N*)个不同的零点,那么称函数f(x)和g(x)在区间[a,b]上为“k阶关联函数”.现有如下三组函数:①f(x)=x,g(x)=sin x;②f(x)=2﹣x,g(x)=lnx;③f(x)=|x﹣1|,g(x)=.其中在区间[0,4]上是“2阶关联函数”的函数组的序号是①③.(写出所有满足条件的函数组的序号)考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:函数的零点可化为方程的解,从而依次判断.解答:解:①∵sin x=x在[0,4]上有两个解0,1;故成立;②∵2﹣x=lnx在[0,4]上有一个解,故不成立;③∵|x﹣1|=可化为x2﹣3x+1=0;∴有两个解,故成立.故答案为:①③.点评:本题考查了学生对新定义的接受能力及应用能力,属于基础题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数,x∈R.(Ⅰ)求的值;(Ⅱ)求函数f(x)在区间上的最大值和最小值,及相应的x的值.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)化简解析式可得f(x)=2sin(2x+),从而可求f()的值.(Ⅱ)可先求得,从而可求函数f(x)在区间上的最大值和最小值,及相应的x的值.解答:解:(Ⅰ)f(x)=2sinxcosx+cos(2x﹣)+cos(2x+)=sin2x+(cos2xcos+sin2xsin)+(cos2xcos﹣sin2xsin)=sin2x+cos2x=2sin(2x+)所以f()=2sin=2.…(7分)(另解)f()=2sin cos+cos(2×﹣)+cos(2×+)=sin+sn+cos=2.…(2分)(Ⅱ)因为,所以.所以当2x=,即x=π时,;当2x=,即x=时,y min=﹣2.…(13分)所以当x=π时,;当x=时,y min=﹣2.点评:本题主要考察了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.16.(13分)某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制出频率分布直方图,如图所示.(Ⅰ)求频率分布直方图中的a值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;(Ⅱ)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;(Ⅲ)试估计样本的中位数落在哪个分组区间内(只需写出结论).(注:将频率视为相应的概率)考点:频率分布直方图;众数、中位数、平均数;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)根据频率分布直方图中频率和为1,求出a的值,估计这名学生参加考试的成绩低于90(分)的概率;(Ⅱ)用列举法求出从这5位学生代表中任选两人的所有选法种数以及代表M,N至少有一人被选中的选法种数,求出对应的概率;(Ⅲ)求出样本的中位数落在那个区间内.解答:解:(Ⅰ)根据频率分布直方图中频率和为1,得;a=0.1﹣0.03﹣0.025﹣0.02﹣0.01=0.015,∴估计这名学生参加考试的成绩低于90(分)的概率为;1﹣0.15=0.85;…(3分)(Ⅱ)从这5位学生代表中任选两人的所有选法共10种,分别为:AB,AC,AM,AN,BC,BM,BN,CM,CN,MN;代表M,N至少有一人被选中的选法共7种,分别为:AM,AN,BM,BN,CM,CN,MN;设“学生代表M,N至少有一人被选中”为事件D,∴P(D)=;…(11分)∴学生代表M,N至少有一人被选中的概率为;(Ⅲ)∵0.01×10+0.2×10=0.3<0.5,0.3+0.025×10=0.55>0.5,∴样本的中位数落在区间[70,80)内.…(13分)点评:本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,是基础题目.17.(14分)如图,在四棱锥S﹣ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.(Ⅰ)求证:PQ∥平面SAD;(Ⅱ)求证:AC⊥平面SEQ;(Ⅲ)如果SA=AB=2,求三棱锥S﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)取SD中点F,连结AF,PF.证明PQ∥AF.利用直线与平面平行的判定定理证明PQ∥平面SAD.(Ⅱ)连结BD,证明SE⊥AD.推出SE⊥平面ABCD,得到SE⊥AC.证明EQ⊥AC,然后证明AC⊥平面SEQ.(Ⅲ)求出S△ABC,SE=.说明SE⊥平面ABC,然后去三棱锥S﹣ABC的体积.解答:(Ⅰ)证明:取SD中点F,连结AF,PF.因为P,F分别是棱SC,SD的中点,所以FP∥CD,且FP=CD.又因为菱形ABCD中,Q是AB的中点,所以AQ∥CD,且AQ=CD.所以FP∥AQ且FP=AQ.所以AQPF为平行四边形.所以PQ∥AF.又因为PQ⊄平面SAD,AF⊂平面SAD,所以PQ∥平面SAD.…(5分)(Ⅱ)证明:连结BD,因为△SAD中SA=SD,点E棱AD的中点,所以SE⊥AD.又平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE⊂平面SAD,所以SE⊥平面ABCD,所以SE⊥AC.因为底面ABCD为菱形,E,Q分别是棱AD,AB的中点,所以BD⊥AC,EQ∥BD.所以EQ⊥AC,因为SE∩EQ=E,所以AC⊥平面SEQ.…(11分)(Ⅲ)解:因为菱形ABCD中,∠BAD=60°,AB=2,所以S△ABC=AB•BCsin∠ABC=.因为SA=AD=SD=2,E是AD的中点,所以SE=.由(Ⅱ)可知SE⊥平面ABC,所以三棱锥S﹣ABC的体积V=S△ABC•SE=1.…(14分)点评:本题考查直线与平面平行以及直线与平面垂直的判定定理的应用,棱锥的体积的求法,考查计算能力.18.(13分)已知函数.(Ⅰ)求函数f(x)的极小值;(Ⅱ)过点B(0,t)能否存在曲线y=f(x)的切线,请说明理由.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:转化思想;导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出函数的导数,令导数为0,令导数大于0,得增区间,令导数小于0,得减区间,进而得到极小值;(Ⅱ)假设存在切线,设切点坐标为(m,n),求出导数,求得切线的方程,代入点(0,t),得到t=﹣1.求出右边函数的导数,求得单调区间和极值,也为最值,即可判断切线是否存在.解答:解:(Ⅰ)函数的定义域为R.因为函数,所以f′(x)=.令f′(x)=0,则x=0.x (﹣∞,0)0 (0,+∞)f′(x)﹣0 +f(x)↘极小值↗所以f(x)极小值为f(0)=0﹣1+=0;(Ⅱ)假设存在切线,设切点坐标为(m,n),则切线方程为y﹣n=f′(m)(x﹣m),即y﹣(m﹣1+)=(1﹣e﹣m)(x﹣m),将B(0,t)代入得t=﹣1.方程t=﹣1有解,等价于过点B(0,t)作曲线f(x)的切线存在.令M(x)=﹣1,所以M′(x)=.当M′(x)=0,x=0,所以当x<0时,以M′(x)>0,函数以M(x)在(﹣∞,0)上单调递增;当x>0时,M′(x)<0,M(x)在(0,+∞)上单调递减.所以当x=0时,M(x)max=M(0)=0,无最小值.当t≤0时,方程t=﹣1有解;当t>0时,方程t=﹣1无解.综上所述,当t≤0时存在切线;当t>0时不存在切线.点评:本题考查导数的运用:求切线方程和单调区间、极值和最值,主要考查导数的几何意义,运用函数和方程转化思想是解题的关键.19.(14分)在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的一个顶点为A(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l过点A,过O作l的平行线交椭圆C于P,Q两点,如果以PQ为直径的圆与直线l相切,求l的方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用椭圆的焦点在x轴上,a=2,=,计算即得结论;(Ⅱ)通过设直线l的方程,利用以PQ为直径的圆与直线l相切,即|PQ|与原点O到直线l的距离相等,计算即可.解答:解:(Ⅰ)依题意,椭圆的焦点在x轴上,∵a=2,=,∴c=,b2=a2﹣c2=,∴椭圆的方程为:+=1;(Ⅱ)依题意,直线l的斜率显然存在且不为0,设l的斜率为k,则可设直线l的方程为:y=k(x+2),则原点O到直线l的距离d=.设P(x1,y1),Q(x2,y2),联立,消去y整理得:(1+3k2)x2=4,可得P(,),Q(﹣,﹣),∵以PQ为直径的圆与直线l相切,∴|PQ|=d,即|OP|=d,∴()2+()2=()2,解得:k=±1,∴直线l的方程为x﹣y+2=0或x+y+2=0.点评:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.20.(13分)已知数列{a n}的前n项和S n满足S n=λa n﹣,(λ≠±1,n∈N*).(Ⅰ)如果λ=0,求数列{a n}的通项公式;(Ⅱ)如果λ=2,求证:数列为等比数列,并求S n;(Ⅲ)如果数列{a n}为递增数列,求λ的取值范围.考点:数列的求和.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)如果λ=0,根据数列的递推关系即可求数列{a n}的通项公式;(Ⅱ)如果λ=2,根据等比数列的定义利用构造法即可证明数列为等比数列,并求S n;(Ⅲ)求出数列{a n}的通项公式,利用数列的单调性即可得到结论.解答:解:(Ⅰ)λ=0时,S n=﹣n,当n=1时,a1=S1=﹣1,当n≥2时,a n=S n﹣S n﹣1=﹣1,所以a n=﹣1.…(3分)(Ⅱ)证明:当λ=2时,S n=2a n﹣,S n+1=2a n+1﹣,相减得a n+1=2a n+.所以a n+1+=2(a n+).又因为a1=,a1+=,所以数列为等比数列,所以a n+=,S n=2a n﹣=.…(8分)(Ⅲ)由(Ⅰ)可知,显然λ≠0当n=1时,则S1=λa1﹣,得a1=.当n≥2时,S n=λa n﹣,S n﹣1=λa n﹣1﹣,相减得a n=a n﹣1+,即a n+=(a n﹣1+).因为λ≠±1,所以a1+=.所以{a n+}为等比数列.所以a n=()n﹣1﹣=()n﹣.因为数列{a n}为递增数列,所以或,所以λ的取值范围是λ>1或λ<﹣1.…(13分)点评:本题主要考查递推数列的应用,数列的通项公式和前n项和的求解,考查学生的推理和运算能力,综合性较强,运算量较大.。
北京市东城区2015届高三上学期期末数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x∈Z|﹣1≤x≤2},集合B={0,2,4},则A∩B=()A.{0,2} B.{0,2,4} C.{﹣1,0,2,4} D.{﹣1,0,1,2,4}2.(5分)下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是()A.y=lnx B.y=x3C.y=3x D.y=sinx3.(5分)若x∈R,则“x>1”,则“x2>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.(5分)当n=4时,执行如图所示的程序框图,输出的S值为()A.6B.8C.14 D.305.(5分)已知cosα=,α∈(﹣,0),则sin2α的值为()A.B.﹣C.D.﹣6.(5分)如图所示,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:(△ABC的角A,B,C所对的边分别记为a,b,c)①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.则一定能确定A,B间距离的所有方案的序号为()A.①②③B.②③④C.①③④D.①②③④7.(5分)已知=(1,3),=(m,2m﹣3),平面上任意向量都可以唯一地表示为=λ+μ(λ,μ∈R),则实数m的取值范围是()A.(﹣∞,0)∪(0,+∞)B.(﹣∞,3)C.(﹣∞,﹣3)∪(﹣3,+∞)D.[﹣3,3)8.(5分)已知两点M(﹣1,0),N(1,0),若直线y=k(x﹣2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是()A.[﹣,0)∪(0,]B.[﹣,0)∪(0,]C.[﹣,] D.[﹣5,5]二、填空题共6小题,每小题5分,共30分.9.(5分)已知抛物线的方程为y2=4x,则其焦点到准线的距离为.10.(5分)若=1+mi(m∈R),则m=.11.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体最长棱的棱长为cm.12.(5分)已知x,y满足则z=2x+y的最大值为.13.(5分)设函数f(x)=则f(f())=;若函数g(x)=f(x)﹣k存在两个零点,则实数k的取值范围是.14.(5分)某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,则不给予优惠;②如果一次性购物超过200元但不超过500元,则按标价给予9折优惠;③如果一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠.甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,若丙一次性购买A,B两件商品,则应付款元.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为.(Ⅰ)求f(x)的解析式及最小正周期;(Ⅱ)设α∈(0,),且f()=1,求α的值.16.(13分)已知数列{a n}是等差数列,数列{b n}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=a bn,求数列{c n}的前n项和S n.17.(14分)在三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(Ⅰ)求证:AC⊥平面PBC;(Ⅱ)求证:CM∥平面BEF;(Ⅲ)若PB=BC=CA=2,求三棱锥E﹣ABC的体积.18.(13分)为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.19.(13分)已知椭圆C1:+y2=1,椭圆C2的中心在坐标原点,焦点在y轴上,与C1有相同的离心率,且过椭圆C1的长轴端点.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设O为坐标原点,点A,B分别在椭圆C1和C2上,若=2,求直线AB的方程.20.(14分)已知函数f(x)=alnx﹣bx2,a,b∈R.(Ⅰ)若f(x)在x=1处与直线y=﹣相切,求a,b的值;(Ⅱ)在(Ⅰ)的条件下,求f(x)在[,e]上的最大值;(Ⅲ)若不等式f(x)≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,求a的取值范围.北京市东城区2015届高三上学期期末数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x∈Z|﹣1≤x≤2},集合B={0,2,4},则A∩B=()A.{0,2} B.{0,2,4} C.{﹣1,0,2,4} D.{﹣1,0,1,2,4}考点:交集及其运算.专题:集合.分析:根据集合的交集运算进行求解.解答:解:集合A={x∈Z|﹣1≤x≤2}={﹣1,0,1,2},集合B={0,2,4},则A∩B={0,2},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是()A.y=lnx B.y=x3C.y=3x D.y=sinx考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数奇偶性和单调性的定义和性质进行判断即可.解答:解:y=lnx的定义域为(0,+∞),关于原点不对称,即函数为非奇非偶函数.y=x3是奇函数,又在区间(0,+∞)上为增函数,满足条件.y=3X在区间(0,+∞)上为增函数,为非奇非偶函数,不满足条件.y=sinx是奇函数,但在(0,+∞)上不是单调函数,故选:B点评:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性.3.(5分)若x∈R,则“x>1”,则“x2>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:直接利用充要条件的判定判断方法判断即可.解答:解:因为“x>1”,则“x2>1”;但是“x2>1”不一定有“x>1”,所以“x>1”,是“x2>1”成立的充分不必要条件.故选A.点评:本题考查充要条件的判定方法的应用,考查计算能力.4.(5分)当n=4时,执行如图所示的程序框图,输出的S值为()A.6B.8C.14 D.30考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的k,s的值,当k=5>4,退出循环,输出s的值为30.解答:解:由程序框图可知:k=1,s=2k=2,s=6k=3,s=14k=4,s=30k=5>4,退出循环,输出s的值为30.故选:D.点评:本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.5.(5分)已知cosα=,α∈(﹣,0),则sin2α的值为()A.B.﹣C.D.﹣考点:二倍角的正弦.专题:计算题;三角函数的求值.分析:由已知及同角三角函数的关系式可先求sinα的值,从而有倍角公式即可代入求值.解答:解:∵cosα=,α∈(﹣,0),∴sinα=﹣=﹣=﹣,∴sin2α=2sinαcosα=2×=﹣.故选:D.点评:本题主要考查了同角三角函数的关系式,二倍角的正弦公式的应用,属于基础题.6.(5分)如图所示,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:(△ABC的角A,B,C所对的边分别记为a,b,c)①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.则一定能确定A,B间距离的所有方案的序号为()A.①②③B.②③④C.①③④D.①②③④考点:解三角形的实际应用.专题:计算题;解三角形.分析:根据图形,可以知道a,b可以测得,角A、B、C也可测得,利用测量的数据,求解A,B两点间的距离唯一即可.解答:解:对于①③可以利用正弦定理确定唯一的A,B两点间的距离.对于②直接利用余弦定理即可确定A,B两点间的距离.对于④测量a,b,B,,sinA=,b<a,此时A不唯一故选:A.点评:本题以实际问题为素材,考查解三角形的实际应用,解题的关键是分析哪些可测量,哪些不可直接测量,注意正弦定理的应用.7.(5分)已知=(1,3),=(m,2m﹣3),平面上任意向量都可以唯一地表示为=λ+μ(λ,μ∈R),则实数m的取值范围是()A.(﹣∞,0)∪(0,+∞)B.(﹣∞,3)C.(﹣∞,﹣3)∪(﹣3,+∞)D.[﹣3,3)考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:首先,根据题意,得向量,不共线,然后,根据坐标运算求解实数m的取值范围.解答:解:根据平面向量基本定理,得向量,不共线,∵=(1,3),=(m,2m﹣3),∴2m﹣3﹣3m≠0,∴m≠﹣3.故选:C.点评:本题重点考查了向量的共线的条件、坐标运算等知识,属于中档题.8.(5分)已知两点M(﹣1,0),N(1,0),若直线y=k(x﹣2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是()A.[﹣,0)∪(0,]B.[﹣,0)∪(0,]C.[﹣,] D.[﹣5,5]考点:两条直线垂直与倾斜角、斜率的关系.专题:直线与圆.分析:当k=0时,M、N、P三点共线,构不成三角形,故k≠0.△MNP是直角三角形,由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,由此能求出实数k 的取值范围.解答:解:当k=0时,M、N、P三点共线,构不成三角形,∴k≠0,如图所示,△MNP是直角三角形,有三种情况:当M是直角顶点时,直线上有唯一点P1点满足条件;当N是直角顶点时,直线上有唯一点P3满足条件;当P是直角顶点时,此时至少有一个点P满足条件.由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,则,解得﹣≤k≤,且k≠0.∴实数k的取值范围是[﹣,0)∪(0,].故选:B.点评:本题考查直线与圆的位置关系等基础知识,意在考查运用方程思想求解能力,考查数形结合思想的灵活运用.二、填空题共6小题,每小题5分,共30分.9.(5分)已知抛物线的方程为y2=4x,则其焦点到准线的距离为2.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由抛物线y2=2px的焦点为(,0),准线为x=﹣,可得抛物线y2=4x的焦点为(1,0),准线为x=﹣1,再由点到直线的距离公式计算即可得到.解答:解:抛物线y2=2px的焦点为(,0),准线为x=﹣,则抛物线y2=4x的焦点为(1,0),准线为x=﹣1,则焦点到准线的距离为2.故答案为:2.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点和准线方程,同时考查点到直线的距离的求法,属于基础题.10.(5分)若=1+mi(m∈R),则m=﹣2.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、复数相等即可得出.解答:解:∵1+mi===1﹣2i,∴m=﹣2.故答案为:﹣2.点评:本题考查了复数的运算法则、复数相等,属于基础题.11.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体最长棱的棱长为cm.考点:由三视图还原实物图.专题:空间位置关系与距离.分析:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案.解答:解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,如图:其中PA⊥平面ABCD,∴PA=3,AB=3,AD=4,∴PB=3,PC==,PD=5.该几何体最长棱的棱长为:.故答案为:.点评:本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键.12.(5分)已知x,y满足则z=2x+y的最大值为7.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,1),代入目标函数z=2x+y得z=2×3+1=6+1=7.即目标函数z=2x+y的最大值为7.故答案为:7点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.13.(5分)设函数f(x)=则f(f())=;若函数g(x)=f(x)﹣k 存在两个零点,则实数k的取值范围是(0.1].考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:直接利用分段函数求解第一个空,利用函数的图象求解第二问.解答:解:函数f(x)=则f(f())=f(﹣1)=;函数g(x)=f(x)﹣k存在两个零点,即f(x)=k存在两个解,如图:可得a∈(0,1].故答案为:;(0,1].点评:本题考查函数的零点以及分段函数的应用,考查数形结合以及计算能力.14.(5分)某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,则不给予优惠;②如果一次性购物超过200元但不超过500元,则按标价给予9折优惠;③如果一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠.甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,若丙一次性购买A,B两件商品,则应付款520元.考点:分段函数的应用.专题:应用题;函数的性质及应用.分析:单独购买A,B分别付款100元与450元,而450元是优惠后的付款价格,实际标价为450÷0.9=500元,若丙一次性购买A,B两件商品,即价值100+500=600元的商品,按规定(3)进行优惠计算即可.解答:解:甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,由于商场的优惠规定,100元的商品未优惠,而450元的商品是按九折优惠后的,则实际商品价格为450÷0.9=500元,若丙一次性购买A,B两件商品,即价值100+500=600元的商品时,应付款为:500×0.9+(600﹣500)×0.7=450+70=520(元).故答案为:520.点评:本题考查了应用函数解答实际问题的知识,解题关键是读懂题意,根据题目给出的条件,找出合适的解题途径,从而解答问题,是基础题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为.(Ⅰ)求f(x)的解析式及最小正周期;(Ⅱ)设α∈(0,),且f()=1,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)由最大值为2可求A的值,由图象相邻两条对称轴之间的距离为,得最小正周期T,根据周期公式即可求ω,从而得解;(Ⅱ)由得,由,得,从而可解得α的值.解答:(共13分)解:(Ⅰ)因为函数f(x)的最大值为2,所以A=2.由图象相邻两条对称轴之间的距离为,得最小正周期T=π.所以ω=2.故函数的解析式为.…(6分)(Ⅱ),由得.因为,所以.所以,故.…(13分)点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了周期公式的应用,属于基本知识的考查.16.(13分)已知数列{a n}是等差数列,数列{b n}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=a bn,求数列{c n}的前n项和S n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设出等差数列{a n}的公差为d,等比数列{b n}的公比为q,且q>0.由已知列式求得等差数列的公差和等比数列的公比,代入等差数列和等比数列的通项公式得答案;(Ⅱ)由c n=a bn结合数列{a n}和{b n}的通项公式得到数列{c n}的通项公式,结合等比数列的前n项和求得数列{c n}的前n项和S n.解答:解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,且q>0.由a1=2,a3=8,得8=2+2d,解得d=3.∴a n=2+(n﹣1)×3=3n﹣1,n∈N*.由b1=2,b3=8,得8=2q2,又q>0,解得q=2.∴,n∈N*;(Ⅱ)∵,∴=3×2n+1﹣n﹣6.点评:本题考查了等差数列与等比数列的通项公式,考查了等比数列的前n项和,是中档题.17.(14分)在三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(Ⅰ)求证:AC⊥平面PBC;(Ⅱ)求证:CM∥平面BEF;(Ⅲ)若PB=BC=CA=2,求三棱锥E﹣ABC的体积.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)由PB⊥底面ABC,可证AC⊥PB,由∠BCA=90°,可得AC⊥CB.又PB∩CB=B,即可证明AC⊥平面PBC.(Ⅱ)取AF的中点G,连结CG,GM.可得EF∥CG.又CG⊄平面BEF,有EF⊂平面BEF,有CG∥平面BEF,同理证明GM∥平面BEF,有平面CMG∥平面BEF,即可证明CM∥平面BEF.(Ⅲ)取BC中点D,连结ED,可得ED∥PB,由PB⊥底面ABC,故ED⊥底面ABC,由PB=BC=CA=2,即可求得三棱锥E﹣ABC的体积.解答:(共14分)证明:(Ⅰ)因为PB⊥底面ABC,且AC⊂底面ABC,所以AC⊥PB.由∠BCA=90°,可得AC⊥CB.又PB∩CB=B,所以AC⊥平面PBC.…(5分)(Ⅱ)取AF的中点G,连结CG,GM.因为AF=2FP,G为AF中点,所以F为PG中点.在△PCG中,E,F分别为PC,PG中点,所以EF∥CG.又CG⊄平面BEF,EF⊂平面BEF,所以CG∥平面BEF.同理可证GM∥平面BEF.又CG∩GM=G,所以平面CMG∥平面BEF.又CM⊂平面CMG,所以CM∥平面BEF.…(11分)(Ⅲ)取BC中点D,连结ED.在△PBC中,E,D分别为中点,所以ED∥PB.因为PB⊥底面ABC,所以ED⊥底面ABC.由PB=BC=CA=2,可得.…(14分)点评:本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,三棱锥体积公式的应用,正确做出相应的辅助线是解题的关键,考查了转化思想,属于中档题.18.(13分)为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2,列举法易得.解答:解:(Ⅰ)由题意可知,样本容量,,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030;(Ⅱ)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2.抽取的2名学生的所有情况有21种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).其中2名同学的分数都不在[90,100]内的情况有10种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).∴所抽取的2名学生中至少有一人得分在[90,100]内的概率.点评:本题考查列举法求古典概型的概率,涉及频率分布直方图,属基础题.19.(13分)已知椭圆C1:+y2=1,椭圆C2的中心在坐标原点,焦点在y轴上,与C1有相同的离心率,且过椭圆C1的长轴端点.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设O为坐标原点,点A,B分别在椭圆C1和C2上,若=2,求直线AB的方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过设椭圆C2的方程为:,由C1方程可得,计算即得结论;(Ⅱ)通过及(Ⅰ)知可设直线AB的方程为y=kx,并分别代入两椭圆中、利用,计算即可.解答:解:(Ⅰ)由C1方程可得,依题意可设椭圆C2的方程为:,由已知C1的离心率为,则有,解得a2=16,故椭圆C2的方程为;(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),由及(Ⅰ)知,O,A,B三点共线且点A,B不在y轴上,因此可设直线AB的方程为y=kx,将y=kx代入中,解得;将y=kx代入中,解得.又由,得,即,解得k=±1.故直线AB的方程为y=x或y=﹣x.点评:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.20.(14分)已知函数f(x)=alnx﹣bx2,a,b∈R.(Ⅰ)若f(x)在x=1处与直线y=﹣相切,求a,b的值;(Ⅱ)在(Ⅰ)的条件下,求f(x)在[,e]上的最大值;(Ⅲ)若不等式f(x)≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,求a的取值范围.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)求出f(x)的导数,求得切线的斜率,由题意可得f(1)=﹣,f′(1)=0,即可解得a,b的值;(Ⅱ)求出f(x)的导数,求得单调区间,即可得到最大值;(Ⅲ)由题意可得alnx﹣bx2≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥bx2对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥0对x∈(e,e2]恒成立,即对x∈(e,e2]恒成立,求得右边函数的最大值即可.解答:解:(Ⅰ).由函数f(x)在x=1处与直线相切,得即解得;(Ⅱ)由(Ⅰ)得,定义域为(0,+∞).此时=.令f'(x)>0,解得0<x<1,令f'(x)<0,得x>1.所以f(x)在(,1)上单调递增,在(1,e)上单调递减,所以f(x)在上的最大值为;(Ⅲ)若不等式f(x)≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣bx2≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥bx2对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥0对x∈(e,e2]恒成立.即对x∈(e,e2]恒成立,即a大于或等于在区间(e,e2]上的最大值.令,则,当x∈(e,e2]时,h'(x)>0,h(x)单调递增,所以,x∈(e,e2]的最大值为.即.所以a的取值范围是.点评:本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式的恒成立问题注意运用参数分离和转化为求函数的最值问题,属于中档题和易错题.。
北京市大兴区魏善庄中学2015届高三(上)期中数学试卷(文科)一.选择1.已知集合{|1}A x x =>,2{|4}B x x =<,那么AB =( )(A )(2,2)- (B )(1,2)- (C )(1,2) (D )(1,4) 2.若2log 3a =,3log 2b =,41log 3c =,则下列结论正确的是( )(A )a c b << (B )c a b << (C )b c a << (D )c b a <<3.已知31)4tan(=-πα,则α2sin 等于( )(A)32 (B)31 (C)54 (D)52 4.在等比数列{a n }中,a 2=6,a 3=﹣18,则a 1+a 2+a 3+a 4=( ) A . 26 B . 40 C . 54 D . 80 5.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .B . y =e |x|C . y=﹣x 2+3 D . y=cosx6.已知数列{a n }的前n 项和为S n ,且,则a 5( )A 、-16B 、16C 、31D 、327.向量的模为4,向量)2,0(=,若b b a ⊥+)(,则向量与的夹角的大小是( )(A)65π(B)32π (C)3π (D)6π 8.函数33x x y -=,在]2,1[-上的最大、最小值分别为( )A. )0(),1(f f -B. )2(),0(f fC.)2(),1(f f -D.)1(),2(-f f二.填空题9.向量(cos ,1),(1,3cos )a b θθ==,且b a//,则θ2cos = .10..在ABC ∆中,已知2=a ,3=b ,7=c ,则ABC ∆的面积是 . 11.已知函数()ϕω+=x x f sin )((ω>0, 20πϕ<<)的图象如图所示,则ω=____,ϕ=___.12.若sin 3θ=,(,)2θπ∈π,则tan θ= .13.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .14.已知函数122,09,(),20.x x f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 则()f x 的零点是_____;()f x 的值域是_____.三.解答题15.已知ABC △中,内角C B A ,,的对边分别为c b a ,,,且552cos =A ,10103cos =B . (Ⅰ)求()B A +cos 的值;(Ⅱ)设10=a ,求ABC △的面积.16.在等差数列{a n }中,a 2+a 7=﹣23,a 3+a 8=﹣29. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列{a n +b n }是首项为1,公比为c 的等比数列,求{b n }的前n 项和S n .17..已知函数()sin sin()3f x x x π=+-. (Ⅰ)求()f x 的周期(2)求()f x 的单调递增区间及最值18.已知函数1)(23-++=bx ax x x f 在1=x 处有极值1-. (I )求实数b a ,的值;(II )求函数错误!未找到引用源。
2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015-2016学年北京市大兴区高二(上)期末数学试卷(文科)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若命题p是假命题,命题q是真命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是假命题D.¬q是假命题2.(5分)直线x+y+1=0的倾斜角是()A.B.C.D.3.(5分)在正方体ABCD﹣A′B′C′D′中,异面直线A′B与AD′所成的角等于()A.30°B.45°C.60°D.90°4.(5分)“a=3”是“直线ax﹣2y﹣1=0与直线6x﹣4y+c=0平行”的()A.充分条件不必要B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)某几何体的三视图如图所示,该几何体的侧面积()A.5πB.4πC.3πD.2π6.(5分)原点O(0,0)与点A(﹣4,2)关于直线l对称,则直线l的方程是()A.x+2y=0B.2x﹣y+5=0C.2x+y+3=0D.x﹣2y+4=0 7.(5分)若直线x﹣y﹣m=0被圆x2+y2﹣8x+12=0所截得的弦长为,则实数m的值为()A.2或6B.0或8C.2或0D.6或88.(5分)在下列命题中,真命题的个数是()①若直线a,b和平面α满足a∥α,b∥α,则a∥b.②若直线l上有无数个点不在平面α内,则l∥α.③若平面α⊥平面β,平面β⊥平面γ,则平面α∥平面γ.④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β.A.0B.1C.2D.39.(5分)若椭圆的两个焦点是F1,F2,点P在椭圆上,且PF1⊥F1F2,那么|PF2|=()A.2B.4C.D.10.(5分)如图,正方体ABCD﹣A′B′C′D′的棱长为2,动点E,F在棱D′C′上.点G是AB的中点,动点P在棱A′A上,若EF=1,D′E=m,AP=n,则三棱锥P﹣EFG的体积()A.与m,n都有关B.与m,n都无关C.与m有关,与n无关D.与n有关,与m无关二、填空题共6小题,每小题5分,共30分.11.(5分)命题“∀x∈R,x2﹣x+1>0”的否定是.12.(5分)已知平面α∩平面β=l,a⊂β,a∥α,那么直线a与直线l的位置关系是.13.(5分)在空间直角坐标系中,点M(0,2,﹣1)和点N(﹣1,1,0)的距离是.14.(5分)双曲线的右焦点坐标是;焦点到渐近线的距离为.15.(5分)如图,当抛物线形拱桥的拱顶距水面2米时,测得水面宽4米.若水面下降0.5米,则水面宽米.16.(5分)已知曲线C:|x|+|y|=m(m>0).(1)若m=1,则由曲线C围成的图形的面积是;(2)曲线C与椭圆有四个不同的交点,则实数m的取值范围是.三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(14分)已知抛物线y2=2px的焦点为F,准线方程是x=﹣1.(I)求此抛物线的方程;(Ⅱ)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.18.(14分)已知圆C与x轴的交点分别为A(﹣1,0),B(3,0),且圆心在直线2x﹣y=0上.(I)求圆C的标准方程;(Ⅱ)求与圆C相切于点B(3,0)的切线方程;(Ⅲ)若圆C与直线y=x+m有公共点,求实数m的取值范围.19.(14分)如图,四棱锥P﹣ABCD的底面为正方形,且PA⊥底面ABCD中,AB=1,PA=2.(I)求证:BD⊥平面PAC;(Ⅱ)求三棱锥B﹣PAC的体积;(Ⅲ)在线段PC上是否存在一点M,使PC⊥平面MBD,若存在,请证明;若不存在,说明理由.20.(14分)如图,在正方形AG1G2G3中,点B,C分别是G1G2,G2G3的中点,点E,F分别是G3C,AC的中点,现在沿AB,BC及AC把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后记为G.(I)判断在四面体GABC的四个面中,哪些面的三角形是直角三角形,若是直角三角形,写出其直角(只需写出结论);(Ⅱ)请在四面体GABC的直观图中标出点E,F,并求证:EF∥平面ABG;(Ⅲ)求证:平面EFB⊥平面GBC.21.(14分)已知椭圆C:x2+3y2=4.(I)求椭圆的离心率;(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.2015-2016学年北京市大兴区高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若命题p是假命题,命题q是真命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是假命题D.¬q是假命题【解答】解:∵p是假命题,q是真命题,∴p∧q是假命题,选项A错误;p∨q是真命题,选项B错误;¬p是真命题,选项C错误;¬q是假命题,选项D正确.故选:D.2.(5分)直线x+y+1=0的倾斜角是()A.B.C.D.【解答】解:直线x+y+1=0的斜率k=﹣1,∴直线x+y+1=0的倾斜角α=.故选:C.3.(5分)在正方体ABCD﹣A′B′C′D′中,异面直线A′B与AD′所成的角等于()A.30°B.45°C.60°D.90°【解答】解:如图所示,连接CD′,AC.由正方体的性质可得A′B∥D′C.∴∠AD′C或其补角即为异面直线A′B与AD′所成的角.由正方体可得:AD′=D′C=AC,∴△AD′C是等边三角形.∴∠AD′C=60°.∴异面直线A′B与AD′所成的角为60°.故选:C.4.(5分)“a=3”是“直线ax﹣2y﹣1=0与直线6x﹣4y+c=0平行”的()A.充分条件不必要B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若“a=3”成立,则两直线的方程分别是3x﹣2y﹣1=0与6x﹣4y+c=0,当c=﹣1时,两直线重合,所以两直线不一定平行;反之,当“直线ax﹣2y﹣1=0与直线6x﹣4y+c=0平行”成立时,有,所以a=3;所以“a=3”是“直线ax﹣2y﹣1=0与直线6x﹣4y+c=0平行”的必要不充分条件,故选:B.5.(5分)某几何体的三视图如图所示,该几何体的侧面积()A.5πB.4πC.3πD.2π【解答】解:根据几何体的三视图,得该几何体是底面直径为2,高为2的圆柱,所以它的侧面积是2π××2=4π.故选:B.6.(5分)原点O(0,0)与点A(﹣4,2)关于直线l对称,则直线l的方程是()A.x+2y=0B.2x﹣y+5=0C.2x+y+3=0D.x﹣2y+4=0【解答】解:∵已知O(0,0)关于直线l的对称点为A(﹣4,2),故直线l为线段OA的中垂线.求得OA的中点为(﹣2,1),OA的斜率为=﹣,故直线l的斜率为2,故直线l的方程为y﹣1=2(x+2 ),化简可得:2x﹣y+5=0.故选:B.7.(5分)若直线x﹣y﹣m=0被圆x2+y2﹣8x+12=0所截得的弦长为,则实数m的值为()A.2或6B.0或8C.2或0D.6或8【解答】解:x2+y2﹣8x+12=0,可化为(x﹣4)2+y2=4∵直线x﹣y﹣m=0被圆x2+y2﹣8x+12=0所截得的弦长为,∴圆心(4,0)到直线x﹣y﹣m=0的距离d===,∴解得m=2或6,故选:A.8.(5分)在下列命题中,真命题的个数是()①若直线a,b和平面α满足a∥α,b∥α,则a∥b.②若直线l上有无数个点不在平面α内,则l∥α.③若平面α⊥平面β,平面β⊥平面γ,则平面α∥平面γ.④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β.A.0B.1C.2D.3【解答】解:①平行同一平面的两条直线不一定平行,故①错误,②若直线l上有无数个点不在平面α内,则l∥α或l与α相交,故②错误③垂直于同一平面的两个平面不一定平行,有可能相交,故③错误,④命题的逆否命题为α内存在直线垂直平面β,则α⊥β,则逆否命题为真命题.则原命题为真命题,故④正确,故正确的命题是④.故选:B.9.(5分)若椭圆的两个焦点是F1,F2,点P在椭圆上,且PF1⊥F1F2,那么|PF2|=()A.2B.4C.D.【解答】解:椭圆的a=,b=1,c=1,由PF1⊥F1F2,可得y P=﹣1,x P=±=±,即有|PF1|=,由题意的定义可得,|PF2|=2a﹣|PF1|=2﹣=.故选:D.10.(5分)如图,正方体ABCD﹣A′B′C′D′的棱长为2,动点E,F在棱D′C′上.点G是AB的中点,动点P在棱A′A上,若EF=1,D′E=m,AP=n,则三棱锥P﹣EFG的体积()A.与m,n都有关B.与m,n都无关C.与m有关,与n无关D.与n有关,与m无关【解答】解:连结AD1,A1D,则AD1=2,A1D⊥平面ABC1D1,∴AA1与平面ABC1D1所成的角为∠A1AD1=45°,∴P到平面ABC1D1的距离d=AP•sin45°=.∵S==.△EFG∴三棱锥P﹣EFG的体积V==.故选:D.二、填空题共6小题,每小题5分,共30分.11.(5分)命题“∀x∈R,x2﹣x+1>0”的否定是.【解答】解:∵命题“∀x∈R,x2﹣x+1>0”∵“任意”的否定为“存在”∴命题的否定为:,故答案为:12.(5分)已知平面α∩平面β=l,a⊂β,a∥α,那么直线a与直线l的位置关系是平行.【解答】解:a与b的位置关系:平行.设过a的平面γ有γ∩α=b,∵a∥α,γ∩α=b,∴a∥b,∵a⊂β,∴b∥β,∵α∩β=l,∴b∥l,∵a∥b,∴a∥l13.(5分)在空间直角坐标系中,点M(0,2,﹣1)和点N(﹣1,1,0)的距离是.【解答】解:∵点M(0,2,﹣1)和点N(﹣1,1,0),∴|MN|==,故答案为:.14.(5分)双曲线的右焦点坐标是(2,0);焦点到渐近线的距离为.【解答】解:双曲线,∴a2=1,b2=3,∴c2=a2+b2=4,∴c=2,∵双曲线的焦点在x轴上,∴双曲线的右焦点坐标是(2,0),∴双曲线的渐近线方程为y=±x,即x﹣y=0,∴焦点到渐近线的距离d==,故答案为:(2,0),15.(5分)如图,当抛物线形拱桥的拱顶距水面2米时,测得水面宽4米.若水面下降0.5米,则水面宽米.【解答】解:建立如图所示平面直角坐标系:设抛物线方程为x2=2py;根据题意知,A(2,﹣2)在抛物线上;∴4=2p•(﹣2);∴p=﹣1;∴x2=﹣2y;设B(x0,﹣2.5)在抛物线上,则:;∴;∴水面下降0.5米,则水面宽为.故答案为:.16.(5分)已知曲线C:|x|+|y|=m(m>0).(1)若m=1,则由曲线C围成的图形的面积是2;(2)曲线C与椭圆有四个不同的交点,则实数m的取值范围是2<m<3或.【解答】解:(1)若m=1,曲线C:|x|+|y|=1,表示对角线长为2的正方形,则由曲线C围成的图形的面积是2;(2)椭圆的长半轴长为3,短半轴长为2,2<m<3时,曲线C与椭圆有四个不同的交点;x>0,y>0,x+y﹣m=0与椭圆方程联立,可得13x2﹣18mx+9m2﹣36=0,∴△=(﹣18m)2﹣52(9m2﹣36)=0,∵m>0,∴m=.此时曲线C与椭圆有四个不同的交点故答案为:2,2<m<3或.三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(14分)已知抛物线y2=2px的焦点为F,准线方程是x=﹣1.(I)求此抛物线的方程;(Ⅱ)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.【解答】解:(Ⅰ)因为抛物线的准线方程为x=﹣1,所以…(2分)得p=2…(4分)所以,抛物线的方程为y2=4x…(5分)(Ⅱ)设M(x0,y0),因为点M(x0,y0)在抛物线上,且|MF|=3,由抛物线定义知|MF|=x0+=3…(8分)得x0=2…(10分)由M(2,y0)在抛物线上,满足抛物线的方程为y2=4x知y0=±2…(12分)所以△OMP的面积为|y0|==.…(14分)18.(14分)已知圆C与x轴的交点分别为A(﹣1,0),B(3,0),且圆心在直线2x﹣y=0上.(I)求圆C的标准方程;(Ⅱ)求与圆C相切于点B(3,0)的切线方程;(Ⅲ)若圆C与直线y=x+m有公共点,求实数m的取值范围.【解答】解:(Ⅰ)因为圆C的圆心在直线2x﹣y=0上,所以设圆心C(a,2a).…(1分)又因为圆C与x轴的交点分别为A(﹣1,0),B(3,0),所以a=1…(2分)故圆心C(1,2),半径为,…(4分)圆C的标准方程为(x﹣1)2+(y﹣2)2=8…(5分)(Ⅱ)因为CB与切线垂直,所以k BC•k=﹣1…(7分)因为,所以k=1…(8分)故与圆C相切于点B(3,0)的切线方程为:x﹣y﹣3=0…(10分)(Ⅲ)圆C与直线y=x+m有公共点,即圆C的圆心到直线的距离d≤r,…(11分)即,…(13分)解得﹣3≤m≤5所以圆C与直线y=x+m有公共点,则﹣3≤m≤5.…(14分)19.(14分)如图,四棱锥P﹣ABCD的底面为正方形,且PA⊥底面ABCD中,AB=1,PA=2.(I)求证:BD⊥平面PAC;(Ⅱ)求三棱锥B﹣PAC的体积;(Ⅲ)在线段PC上是否存在一点M,使PC⊥平面MBD,若存在,请证明;若不存在,说明理由.【解答】解:(Ⅰ)证明:因为PA⊥底面ABCD,DB⊂面ABCD,所以PA⊥DB.又因为四边形ABCD是正方形,所以AC⊥DB在平面PAC中,PA∩AC=A,所以DB⊥平面PAC.(Ⅱ)因为PA⊥底面ABCD,所以点P到平面ABC的距离为PA的长.又因为四边形ABCD是正方形,且AB=1,PA=2,所以=.(Ⅲ)在△PDC中,过点D作DM⊥PC,交PC于点M.由(Ⅰ)已证DB⊥平面PAC,因为PC⊂面PAC,所以DB⊥PC.因为在平面DMB中,DM∩DB=D所以PC⊥平面DMB.所以在线段PC上存在一点M,使PC⊥平面DMB.20.(14分)如图,在正方形AG1G2G3中,点B,C分别是G1G2,G2G3的中点,点E,F分别是G3C,AC的中点,现在沿AB,BC及AC把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后记为G.(I)判断在四面体GABC的四个面中,哪些面的三角形是直角三角形,若是直角三角形,写出其直角(只需写出结论);(Ⅱ)请在四面体GABC的直观图中标出点E,F,并求证:EF∥平面ABG;(Ⅲ)求证:平面EFB⊥平面GBC.【解答】解:(Ⅰ)在正方形AG1G2G3中,∠G1,∠G2,∠G3都是直角.沿AB,BC及AC把这个正方形折成四面体GABC后,此三个角度数不变.即在四面体GABC的四个面中,在△AGB中,∠AGB=90°,在△AGC中,∠AGC=90°,在△BGC中,∠BGC=90°,△ABC不是直角三角形.故分别在平面AGB,平面AGC和平面BGC的三角形是直角三角形.(Ⅱ)在四面体GABC的直观图中标出点E,F证明:因为在△AGC中,点E,F分别是GC,AC的中点,所以EF∥AG,因为EF⊄平面ABG,AG⊂平面ABG,所以EF∥平面ABG.(Ⅲ)证明:在四面体GABC中,∠AGB=90°,∠AGC=90°,即AG⊥GB,AG⊥GC,因为在平面BGC中,GB∩GC=G所以AG⊥平面BGC.由(Ⅱ)已证EF∥AG,所以EF⊥平面BGC.因为EF⊂平面EFB所以平面EFB⊥平面GBC.21.(14分)已知椭圆C:x2+3y2=4.(I)求椭圆的离心率;(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.【解答】解:(Ⅰ)由椭圆方程知a2=4,,∵a2=b2+c2,∴,则,∴椭圆的离心率为;(Ⅱ)真命题.由椭圆的对称性知,点N在x轴上,设N(t,0),①当直线AB的斜率存在时,设其方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),由得,(1+3k2)x2﹣6k2x+3k2﹣4=0.∴△=4(9k2+4)>0,,,∵以线段AB为直径的圆过点N,∴AN⊥BN,∴,则(x1﹣t)(x2﹣t)+y1y2=0,∴,∴,则,即﹣4﹣6tk2+t2+3t2k2=0,∴3tk2(t﹣2)+(t2﹣4)=0,即(t﹣2)(3tk2+t+2)=0.∴若以线段AB为直径的圆恒过点N(t,0),则t﹣2=0,即t=2,∴当直线AB的斜率存在时,存在N(2,0)使命题是真命题;②当直线AB的斜率不存在时,其方程为x=1.A(1,1),B(1,﹣1),以线段AB为直径的圆的方程为(x﹣1)2+y2=1,∵N(2,0)满足方程(x﹣1)2+y2=1,∴当直线AB的斜率不存在时,点N(2,0)也能使命题是真命题.综上①②知,存在点N(2,0),使命题是真命题.。
北京市大兴区2015届高三上学期期末数学试卷(文科)一、选择题,共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)集合M={x|x>0},集合N={x|1﹣x>0},则M∩N等于()A.(0,1)B.(﹣∞,0)C.(﹣∞,﹣1)D.(﹣∞,1)2.(5分)如图,在复平面内,复数z1和z2对应的点分别是A和B,则z1z2等于()A.﹣2+i B.﹣1+2i C.2﹣i D.1+2i3.(5分)在△ABC中,a=,b=,B=,则A等于()A.B.C.D.或4.(5分)下列函数中,在(0,+∞)上为减函数的是()A.y=log2(x+1)B.y=﹣C.y=D.y=()x﹣15.(5分)已知等比数列{a n}的公比q≠1,a3=4,a4+a5=2a3,则{a n}前5项和S5等于()A.4B.11 C.20 D.316.(5分)已知直线l⊥平面α,直线m⊂平面β,有下列四个命题:①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中,正确命题的序号是()A.①②B.③④C.①③D.②④7.(5分)已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1D.28.(5分)设双曲线C1,抛物线C2的焦点均在x轴上,C1的中心与C2的顶点均为原点,从每条曲线上至少取一个点,将其坐标记录如下:x 1 2 3y 2 2 4 2则在C1和C2上点的个数分别是()A.1,4 B.2,3 C.4,1 D.3,3二、填空题,共6小题,每题5分,共30分.9.(5分)已知f(x)=xe x,则f′(1)=.10.(5分)函数y=cos22x﹣sin22x的最小正周期是.11.(5分)若实数x,y满足,则z=2x+y的最小值为.12.(5分)已知向量=(sinθ,1),=(1,cosθ),其中0<θ<π,若⊥,则θ=.13.(5分)已知圆M:x2+y2=4,在圆M上随机取一点P,则P到直线x+y=2的距离大于2的概率为.14.(5分)定义在R上的奇函数f(x)满足f(x+4)=f(x),且在上f(x)=,则=;若方程f(x)=k在三、解答题,共6小题,共80分.15.(13分)已知cos(﹣θ)=,θ∈(,π).(Ⅰ)求cosθ的值;(Ⅱ)求函数f(x)=sinxcosx﹣sinθcos2x的增区间.16.(13分)已知数列{a n}为等差数列,a5=11,且a4+a8=26.(Ⅰ)求数列{a n}的通项;(Ⅱ)设b n=2an﹣a n,求数列{b n}的前n项和S n.17.(13分)某校2015届高三年级共有300人参加数学期2015届中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图.(Ⅰ)求样本的平均数;(Ⅱ)设该题得分大于样本的平均数为合格,根据样本数据估计该校2015届高三年级有多少名同学此题成绩合格;(Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.18.(14分)如图,已知边长为2的菱形ABCD与菱形ACEF全等,且∠FAC=∠ABC,平面ABCD⊥平面ACEF,点G为CE的中点.(Ⅰ)求证:AE∥平面DBG;(Ⅱ)求证:FC⊥BG;(Ⅲ)求三棱锥E﹣BGD的体积.19.(14分)已知椭圆C:+=1(a>b>0)的一个顶点是(0,1),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知矩形ABCD的四条边都与椭圆C相切,设直线AB方程为y=kx+m,求矩形ABCD 面积的最小值与最大值.20.(13分)定义函数G(x,y)=x y,其中,x>0,y>0.(Ⅰ)设函数f(x)=G(1,x3﹣3x),求f(x)的定义域;(Ⅱ)设函数h(x)=G(2,log2(x3+ax2+bx+1))的图象为曲线C,若存在实数b使得曲线C在x(x∈)处有斜率为﹣8的切线,求实数a的取值范围;(Ⅲ)当x∈N*,y∈N*且x<y时,试比较G(x,y)与G(y,x)的大小(只写出结论).北京市大兴区2015届高三上学期期末数学试卷(文科)参考答案与试题解析一、选择题,共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)集合M={x|x>0},集合N={x|1﹣x>0},则M∩N等于()A.(0,1)B.(﹣∞,0)C.(﹣∞,﹣1)D.(﹣∞,1)考点:交集及其运算.专题:集合.分析:利用交集的定义和不等式的性质求解.解答:解:∵集合M={x|x>0},集合N={x|1﹣x>0}={x|x<1},∴M∩N={x|0<x<1}=(0,1).故选:A.点评:本题考查交集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.2.(5分)如图,在复平面内,复数z1和z2对应的点分别是A和B,则z1z2等于()A.﹣2+i B.﹣1+2i C.2﹣i D.1+2i考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:由图可知:z1=i,z2=2﹣i.再利用复数的运算法则即可得出.解答:解:∵z1=i,z2=2﹣i.∴z1z2=i(2﹣i)=1+2i.故选:D.点评:本题考查了复数的运算法则、几何意义,属于基础题.3.(5分)在△ABC中,a=,b=,B=,则A等于()A.B.C.D.或考点:正弦定理.专题:解三角形.分析:由正弦定理可得:sinA==,由a=<b=,根据三角形中大边对大角可得A为锐角,即可求得A的值.解答:解:由正弦定理可得:sinA===,∵a=<b=,∴A为锐角,∴A=.故选:B.点评:本题主要考查了正弦定理,三角形中大边对大角等知识的应用,属于基础题.4.(5分)下列函数中,在(0,+∞)上为减函数的是()A.y=log2(x+1)B.y=﹣C.y=D.y=()x﹣1考点:函数单调性的判断与证明.专题:计算题;函数的性质及应用.分析:运用常见函数的单调性,结合函数的图象,即可得到在(0,+∞)上为减函数的函数.解答:解:对于A.y在x>﹣1上递增,则在x>0上递增,则A错误;对于B.y在x>﹣1上递增,则在x>0上递增,则B错误;对于C.由幂函数的单调性可得y在x>0上递增,则C错误;对于D.函数y在R上递减,则在x>0上递减,则D正确.故选D.点评:本题考查函数的单调性的判断,考查常见函数的单调性,考查判断能力,属于基础题.5.(5分)已知等比数列{a n}的公比q≠1,a3=4,a4+a5=2a3,则{a n}前5项和S5等于()A.4B.11 C.20 D.31考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由已知数据和等比数列的通项公式可得a1和q,代入求和公式计算可得.解答:解:∵等比数列{a n}的公比q≠1,a3=4,a4+a5=2a3,∴a3q+a3q2=2a3,∴q2+q﹣2=0,解得q=﹣2,∴a1==1,∴{a n}前5项和S5==11故选:B点评:本题考查等比数列的求和公式,求出数列的首项和公比是解决问题的关键,属基础题.6.(5分)已知直线l⊥平面α,直线m⊂平面β,有下列四个命题:①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中,正确命题的序号是()A.①②B.③④C.①③D.②④考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用线面垂直、面面平行、面面垂直的性质定理和判定定理对四个命题分别分析解答.解答:解:已知直线l⊥平面α,直线m⊂平面β,对于①,若α∥β,得到直线l⊥平面β,所以l⊥m;故①正确;对于②,若α⊥β,直线l在β内或者l∥β,则l与m的位置关系不确定;对于③,若l∥m,则直线m⊥α,由面面垂直的性质定理可得α⊥β;故③正确;对于④,若l⊥m,则α与β可能相交;故④错误;故选C.点评:本题考查了线面垂直、面面平行、面面垂直的性质定理和判定定理的运用,熟练掌握定理的题设和结论是解答的关键.7.(5分)已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1D.2考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:如图所示,由于=+,可得:PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.即可得出.解答:解:如图所示,∵=+,∴PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.∴=1.故选:C.点评:本题查克拉向量的平行四边形法则、平行四边形的性质,考查了推理能力,属于基础题.8.(5分)设双曲线C1,抛物线C2的焦点均在x轴上,C1的中心与C2的顶点均为原点,从每条曲线上至少取一个点,将其坐标记录如下:x 1 2 3y 2 2 4 2则在C1和C2上点的个数分别是()A.1,4 B.2,3 C.4,1 D.3,3考点:双曲线的简单性质;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设抛物线C2:y2=2px(p≠0),则有=2p,可知(1,2)、(2,4),(3,2)在抛物线上,可得方程;再设双曲线方程,代入点(,)、(,2),解得即可.解答:解:设抛物线C2:y2=2px(p≠0),则有=2p,据此验证5个点中有(1,2)、(2,4),(3,2)在抛物线上,易求C2:y2=8x,设C1:﹣=1,把点(,)、(,2)代入得,解得∴C1方程为x2﹣=1.故选B.点评:本题考查抛物线和双曲线的方程的求法,考查运算能力,属于基础题.二、填空题,共6小题,每题5分,共30分.9.(5分)已知f(x)=xe x,则f′(1)=2e.考点:导数的乘法与除法法则.专题:计算题.分析:先对函数求导,然后把x=1代入导函数中即可求解解答:解:由题意可得,f′(x)=e x+xe x∴f′(1)=e+e=2e故答案为:2e点评:本题主要考查了函数的导数的求导,解题的关键是利用函数的积的导数的求导法则,属于基础试题10.(5分)函数y=cos22x﹣sin22x的最小正周期是.考点:二倍角的余弦;三角函数的周期性及其求法.专题:计算题.分析:利用二倍角的余弦将y=cos22x﹣sin22x转化为y=cos4x即可求得其最小正周期.解答:解:∵y=cos22x﹣sin22x=cos4x,∴其最小正周期T==.故答案为:.点评:本题考查二倍角的余弦,考查三角函数的周期性及其求法,属于基础题.11.(5分)若实数x,y满足,则z=2x+y的最小值为1.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组表示的平面区域,由z=2x+y可得y=﹣2x+z,则z表示直线y=﹣2x+z 在y轴上的截距,截距越小,z越小,结合图象可求z的最小值.解答:解:作出不等式组表示的平面区域,如图所示的阴影部分由z=2x+y可得y=﹣2x+z,则z表示直线y=﹣2x+z在y轴上的截距,截距越小,z越小由题意可得,当y=﹣2x+z经过点C时,z最小由,可得C(0,1),此时z=1故答案为:1.点评:本题主要考查了线性目标函数在线性约束条件下的最值的求解,解题的关键是明确z的几何意义12.(5分)已知向量=(sinθ,1),=(1,cosθ),其中0<θ<π,若⊥,则θ=.考点:平面向量数量积的坐标表示、模、夹角.专题:平面向量及应用.分析:根据向量垂直与向量数量积之间的关系,建立方程即可得到结论.解答:解:∵向量=(sinθ,1),=(1,cosθ),其中0<θ<π,∴若⊥,则•=0,即sinθ+cosθ=0,即tanθ=﹣1,∴,故答案为:点评:本题主要考查平面向量的应用,利用向量垂直与向量数量积之间的关系是解决本题的关键.13.(5分)已知圆M:x2+y2=4,在圆M上随机取一点P,则P到直线x+y=2的距离大于2的概率为.考点:几何概型.专题:概率与统计.分析:利用点到直线的距离公式求出满足条件的点的弧长、几何概型的计算公式即可得出.解答:解:由点到直线的距离公式得点O到直线x+y=2的距离为,故到直线x+y=2距离为的点在直线x+y=2关于原点对称的直线AB:x+y+2=0上,满足P到直线x+y=2的距离大于2的点位于劣弧AB上,且∠AOB=90°.故概率P=.故答案为.点评:熟练掌握点到直线的距离公式及几何概型的计算公式是解题的关键.14.(5分)定义在R上的奇函数f(x)满足f(x+4)=f(x),且在上f(x)=,则=1;若方程f(x)=k在专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)直接利用三角函数的诱导公式和同角三角函数的关系式求出结果.(Ⅱ)对三角函数关系式进行恒等变换,变形成正弦型函数,进一步利用整体思想求出函数函数的单调区间.解答:(Ⅰ)解:由,得,又sin2θ+cos2θ=1,所以因为,所以(Ⅱ)===由得,所以,函数f(x)的增区间是.点评:本题考查的知识要点:同角三角恒等式的应用,三角函数关系式的恒等变换,利用整体思想求三角函数的单调区间,属于基础题型.16.(13分)已知数列{a n}为等差数列,a5=11,且a4+a8=26.(Ⅰ)求数列{a n}的通项;(Ⅱ)设b n=2an﹣a n,求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由已知条件利用等差数列的性质列出方程组,求出首项和公差,由此能求出a n=2n+1.(Ⅱ)由﹣a n=22n+1﹣(2n+1),由此利用分组求和法能求出数列{b n}的前n项和S n.解答:(本题满分13分)解:(Ⅰ)设{a n}的公差为d,则a5=a1+4d=11,a1+3d+a1+7d=26解得a1=3,d=2…(4分)所以a n=2n+1…(5分)(Ⅱ)∵﹣a n=22n+1﹣(2n+1)…(2分)S n=b1+b2+…+b n=(23+25+…+22n+1)﹣…(4分)=…(6分)=…(8分)点评:本题主要考查等差数列、等比数列等基础知识,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想.17.(13分)某校2015届高三年级共有300人参加数学期2015届中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图.(Ⅰ)求样本的平均数;(Ⅱ)设该题得分大于样本的平均数为合格,根据样本数据估计该校2015届高三年级有多少名同学此题成绩合格;(Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.考点:列举法计算基本事件数及事件发生的概率;茎叶图.专题:概率与统计.分析:(Ⅰ)直接利用公式即可;(Ⅱ)由茎叶图提供的数据可得合格率,从而可估计2015届高三年级有多少名同学此题成绩合格;(Ⅲ)利用列举法确定基本事件,即可求得结论.解答:解(Ⅰ)样本平均数是=9;(Ⅱ)由茎叶图提供的数据,在8人的样本数据中有4人分数大于(9分),所以,样本中超过(9分)的人数占样本总数的,据此估计,2015届高三年级300人中,估计有=150人超过(9分).(Ⅲ)设从8人中随机抽取男、女生各一人的得分用(x,y)表示,其中x表示男生得分,y表示女生得分,则所有不同的情况是(5,4),(5,8),(5,12),(5,13),(7,4),(7,8),(7,12),(7,13),(11,4),(11,8),(11,12),(11,13),(12,4),(12,8),(12,12),(12,13)共16种,其中,女生成绩不低于男生的有(5,8),(5,12),(5,13),(7,8),(7,12),(7,13),(11,12),(11,13),(12,12),(12,13)共10种,所以,女生得分不低于男生得分的概率.点评:本题考查由茎叶图求数据的平均数及古典概型的概率计算,熟练掌握茎叶图是解答问题的关键.18.(14分)如图,已知边长为2的菱形ABCD与菱形ACEF全等,且∠FAC=∠ABC,平面ABCD⊥平面ACEF,点G为CE的中点.(Ⅰ)求证:AE∥平面DBG;(Ⅱ)求证:FC⊥BG;(Ⅲ)求三棱锥E﹣BGD的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明AE∥平面DBG,可利用线面平行的判断,连结OG,由题意证明OG 为三角形△ACE的中位线,则结论得到证明;(Ⅱ)要证明FC⊥BG,可证明CF⊥平面BGD,由四边形ABCD是菱形,得AC⊥B D.再由平面ABCD⊥平面ACEF,利用面面垂直的性质得到BD⊥平面ACEF,进一步得到BD⊥CF,然后结合线面垂直的判断证得CF⊥平面BGD;(Ⅲ)由题知,AB=BC=AC=2,故∠ABC=60°,然后通过解三角形得到△FCA是等边三角形,得到,进一步得到S△BGD,再求出点C到面BDG的距离,利用等积法由V E﹣BDG=V A﹣BDG=V C﹣BDG得答案.解答:(Ⅰ)证明:连结OG,∵四边形ABCD是菱形,∴CO=OA,又CG=GE,∴OG为三角形△ACE的中位线,则OG∥AE.又OG⊂平面DBE,AE⊄平面DBE,∴AE∥平面DBE;(Ⅱ)证明:∵四边形ABCD是菱形,∴AC⊥BD.又平面ABCD⊥平面ACEF,且交线为AC,∴BD⊥平面ACEF,又∵FC⊂平面ACEF,∴BD⊥CF∵在菱形ACEF中,AE⊥CF,OG∥AE,∴OG⊥CF,∵BD∩OG=O,BD,OG⊂平面BGD,∴CF⊥平面BGD,则CF⊥BG;(Ⅲ)解:由题知,AB=BC=AC=2,故∠ABC=60°,在三角形DAB中,AD=AB=2,∠DAB=120°,∴BD=.又∠ABC=∠FAC,∴∠FAC=60°,则△FCA是等边三角形,∴,∴,又CF⊥面BDG,∴点C到面BDG的距离,故.点评:本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.19.(14分)已知椭圆C:+=1(a>b>0)的一个顶点是(0,1),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知矩形ABCD的四条边都与椭圆C相切,设直线AB方程为y=kx+m,求矩形ABCD 面积的最小值与最大值.考点:椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用椭圆C:+=1(a>b>0)的一个顶点是(0,1),离心率为,求出a,b,c,即可求椭圆C的方程;(Ⅱ)分类讨论,确定直线方程与椭圆方程联立,表示出面积,即可求矩形ABCD面积的最小值与最大值.解答:解:(Ⅰ)由题意,椭圆的一个顶点是(0,1),所以b=1…(1分)又,离心率为,即,a2=b2+c2解得a=2,…(3分)故椭圆C的方程是…(4分)(Ⅱ)当k=0时,椭圆的外切矩形ABCD面积为8.…(1分)当k≠0时,椭圆的外切矩形ABCD的边AB所在直线方程为y=kx+m,所以,直线BC和AD的斜率均为.由,消去y得(4k2+1)x2+8kmx+4m2﹣4=0…(2分)△=(8km)2﹣4(4k2+1)(4m2﹣4)=0化简得:m2=4k2+1…(3分)所以,直线AB方程为直线DC方程为直线AB与直线DC之间的距离为…(5分)同理,可求BC与AD距离为…(6分)则矩形ABCD的面积为由均值定理8<S≤10…(9分)仅当k2=1,即k=±1时S有最大值10.因此,当k=±1时S有最大值10;当k=0时,S有最小值8.…(10分)点评:本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.20.(13分)定义函数G(x,y)=x y,其中,x>0,y>0.(Ⅰ)设函数f(x)=G(1,x3﹣3x),求f(x)的定义域;(Ⅱ)设函数h(x)=G(2,log2(x3+ax2+bx+1))的图象为曲线C,若存在实数b使得曲线C在x(x∈)处有斜率为﹣8的切线,求实数a的取值范围;(Ⅲ)当x∈N*,y∈N*且x<y时,试比较G(x,y)与G(y,x)的大小(只写出结论).考点:函数的最值及其几何意义;函数的定义域及其求法.专题:计算题;函数的性质及应用.分析:(Ⅰ)化简f(x)=G(1,x3﹣3x)=1,则有x3﹣3x>0;从而求函数的定义域;(Ⅱ)化简h(x)=G(2,log2(x3+ax2+bx+1))=x3+ax2+bx+1;从而可得x3+ax2+bx>0;求导h′(x)=3x2+2ax+b=﹣8得b=﹣3x2﹣2ax﹣8,从而化为存在x∈使﹣2x3﹣ax2﹣8x>0,从而化为最值问题.(Ⅲ)由定义写出当x∈N*,y∈N*,x≤2时,x=1,y=2,或x=2,y=3时,G(x,y)<G(y,x);x≥3时,G(x,y)>G(y,x).解答:解:(Ⅰ)因为G(x,y)=x y,x,y∈(0,+∞)由f(x)=G(1,x3﹣3x),则有x3﹣3x>0;所以函数的定义域为;(Ⅱ)因为G(x,y)=x y,x,y∈(0,+∞),所以,log2(x3+ax2+bx+1)>0,得x3+ax2+bx+1>1.即x3+ax2+bx>0,因为g′(x)=3x2+2ax+b=﹣8,得b=﹣3x2﹣2ax﹣8.所以x3+ax2+bx=x3+ax2+x(﹣3x2﹣2ax﹣8)=﹣2x3﹣ax2﹣8x>0;存在x∈使﹣2x3﹣ax2﹣8x>0.所以2x2+ax+8<0,存在x∈使a<﹣2x﹣,所以,由于在x∈上单调递减,所以当x=4时,有最大值为﹣10.所以,a的取值范围是(﹣∞,﹣10).(Ⅲ)当x∈N*,y∈N*,x≤2时,x=1,y=2,或x=2,y=3时,G(x,y)<G(y,x);x≥3时,G(x,y)>G(y,x).点评:本题考查了抽象函数的应用及存在性问题的应用,同时考查了多元函数的应用,属于中档题.。