高中统计部分(单元测试题)
- 格式:doc
- 大小:162.00 KB
- 文档页数:7
高中统计测试题及答案一、选择题(每题3分,共30分)1. 以下哪项是描述数据集中趋势的统计量?A. 方差B. 标准差C. 中位数D. 众数答案:C2. 统计学中,用于衡量数据离散程度的指标是:A. 平均数B. 中位数C. 众数D. 方差答案:D3. 如果一组数据的均值为50,标准差为10,则这组数据的变异系数为:A. 0.2B. 0.5C. 1D. 2答案:A4. 在统计学中,以下哪个选项不是数据的类型?A. 定类数据B. 定序数据C. 定比数据D. 定距数据答案:C5. 以下哪个选项表示的是概率分布?A. 正态分布B. 泊松分布C. 二项分布D. 所有以上选项答案:D6. 统计学中,以下哪项是描述数据位置的统计量?A. 方差B. 标准差C. 均值D. 极差答案:C7. 以下哪个选项是统计学中用于描述数据分布形状的术语?A. 均值B. 中位数C. 偏度D. 众数答案:C8. 在统计学中,以下哪个选项不是数据的收集方法?A. 观察法B. 实验法C. 调查法D. 推断法答案:D9. 以下哪个选项是统计学中用于描述数据集中趋势的术语?A. 方差B. 标准差C. 均值D. 极差答案:C10. 在统计学中,以下哪个选项是用于估计总体参数的样本统计量?A. 总体均值B. 总体标准差C. 样本均值D. 样本方差答案:C二、填空题(每题2分,共20分)1. 统计学中,用来衡量数据集中趋势的三个主要指标是均值、中位数和______。
答案:众数2. 在一组数据中,如果超过一半的数据都集中在某个数值附近,则这个数值被称为______。
答案:众数3. 标准差是方差的______。
答案:平方根4. 变异系数是标准差与______的比值。
答案:均值5. 在统计学中,数据的类型包括定类、定序、定距和______。
答案:定比6. 正态分布是最常见的概率分布,其图形呈______形状。
答案:钟形7. 在统计学中,数据的离散程度可以通过方差、标准差和______来描述。
高中数学-打印版第二章统计单元测试题1(人教A 版必修3)第I 卷(选择题,共42分)一.选择题(共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现从80件产品中随机抽出10件进行质量检验,下列说法正确的是( )A.80件产品是总体B.10件产品是样本C.样本容量是80D.样本容量是102.为了了解某校1252名中学生对某一电视节目的喜好,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( ) A.2 B.3 C.4 D.53. 要从已编号(1~50)的50枚最新研制的奥运会特型烟花中随机抽取5枚来进行燃放试验。
用每部分选取的号码间隔一样的系统抽样的方法确定所选取的5枚烟花的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,324.某工厂生产某种产品,用传送带将产品送至下一工序,质量员每隔10分钟在传送带某一位置取一件产品进行检验,这种抽样的方法为( )A .分层抽样 B.简单随机抽样 C .系统抽样 D .其它抽样方式 5.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的( ) A.124 B.136 C.160 D.166.在频率分布直方图中,各个长方形的面积表示( )A.落在相应各组内的数据的频数B.相应各组的频率C.该样本可分的组数D.该样本的样本容量 7.一个容量为20的样本数据,数据的分组与各组内频数如下:(](](](](](]10,20,2;20,30,3;30,40,4;40,50,5;50,60,4;60,70,2。
则样本在(]10,50上的频率为( )A .90% B.70% C.50% D.25%8.由小到大排列的一组数据12345,,,,x x x x x ,其中每个数据都小于1-,则对于样本123451,,,,,x x x x x --的中位数是( )A .312x + B. 212x x - C. 512x + D. 342x x + 9.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有:高中数学-打印版A.a b c >>B.b c a >>C.c a b >>D.c b a >>10. 一个容量为32的样本,已知某组的频率为0.125,则该组的频数为( )A.2B.4C.6D.811.下列两个变量不是相关关系的是( ) A .人的身高和体重 B .降雪量和交通事故发生率C .匀速行驶的车辆的行驶距离和时间D .每亩施用肥料量和粮食亩产量12. 右图所示茎叶统计图表示某城市一台自动售货机的销售额情况,那么这组数据的极差是:A.9B.39C.41D.50 13. 为了解某校高二学生的视力情况,随机地抽查了该校100名高二学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则,a b 的值分别为A .2.7,78B .2.7,83C .0.27,78D .0.27,8314.对于线性回归方程ˆˆˆy bx a =+,下列说法中不正确...的是( )A .直线必经过点(,)x yB .x 增加一个单位时,y 平均增加ˆb个单位 C .样本数据中0x =时,可能有ˆy a= D .样本数据中0x =时,一定有ˆy a= 参考公式:回归直线方程中公式 1221ˆni ii ni i x y nx ybx nx==-=-∑∑,ˆˆay bx =-543212 81 23 80 2 3 70 2 89第Ⅱ卷(非选择题,共58分)二 填空题(共4道小题,每题4分,共16分. 把答案填在题中横线上.)15.为了了解1200名在校就餐的学生对学校食堂饭菜质量的意见,打算从中抽取一个容量为30的样本,采取选取的号码间隔一样的系统抽样的方法来确定所选取的样本,则抽样的间隔应该是k = 40 。
第二章 必修三统计单元测试一、选择题(本大题共12小题,每小题5分,共60分) 1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( )A .1 000名学生是总体B .每个被抽查的学生是个体C .抽查的125名学生的体重是一个样本D .抽取的125名学生的体重是样本容量2.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( ) A.12(1+x 2) B.12(x 2-x 1) C.12(1+x 5) D.12(x 3-x 4) 3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,174.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( ) A .变量x 与y 正相关,u 与v 正相关 B .变量x 与y 正相关,u 与v 负相关 C .变量x 与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关5.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数,方差分别是( )A .2,13B .2,1C .4,23D .4,36.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( ) A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7.下列有关线性回归的说法,不正确的是( )A .相关关系的两个变量不一定是因果关系B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程8.已知施肥量与水稻产量之间的回归直线方程为y^=4.75x+257,则施肥量x=30时,对产量y的估计值为( )A.398.5 B.399.5 C.400 D.400.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3 10.某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而高一高二高三跑步a b c登山x y z其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二参与跑步的学生中应抽取( )A.36人 B.60人 C.24人 D.30人11.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为( )A.19,13 B.13,19 C.20,18D.18,2012.从一堆苹果中任取了20个,并得到它们的质量(单位:克)分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数1231031A.题号123456789101112答案二、填空题(13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x及其标准差s如下表所示,则选送决赛的最佳人选应是14.一组数据23,27,20,18x是________.15.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)平均支出________线性相关关系.16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得回归直线方程y=b x+a中b=-2,据此预测当气温为5℃时,用电量的度数约为______.三、解答题(本大题共6小题,共70分)17.(10分)一批产品中,有一级品100个,二级品60个,三级品40个,用分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程.18.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?19.(12分)为了研究三月下旬的平均气温(x)与四月棉花害虫化蛹高峰日(y)的关系,某地区观察了已知x 与y 之间具有线性相关关系,据气象预测该地区在2010年三月下旬平均气温为27℃,试估计2010年四月化蛹高峰日为哪天?20.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y .(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)21.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm) 甲:9,10,11,12,10,20 乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.22.(12分)从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.第二章 统 计1.C [在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A 、B 错误,样本容量应为125,故D 错误.]2.C [由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).] 3.B [因27∶54∶81=1∶2∶3,16×36=6,26×36=12,36×36=18.]4.C [由点的分布知x 与y 负相关,u 与v 正相关.]5.D [因为数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,所以x =2,15∑5i =1 (x i -2)2=13,因此数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数为: 15∑5i =1 (3x i -2)=3×15∑5i =1x i -2=4, 方差为:15∑5i =1 (3x i -2-x )2=15∑5i =1 (3x i -6)2=9×15∑5i =1 (x i -2)2=9×13=3.]6.D [因为这24只白鼠要从4个饲养房中抽取,因此要用分层抽样决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需白鼠.C 虽然用了分层抽样,但在每个层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有表明是否具有随机性,故选D.]7.D [根据两个变量具有相关关系的概念,可知A 正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B 、C 正确.只有线性相关的数据才有回归直线方程,所以D 不正确.]8.B [成线性相关关系的两个变量可以通过回归直线方程进行预测,本题中当x =30时,y ^=4.75×30+257=399.5.]9.D [由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合.乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合.丙地中中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合.故丁地符合.]10.A [由题意知高一、高二、高三的人数分别为667,667,666. 设a =2k ,b =3k ,c =5k ,则a +b +c =35×2 000,即k =120.∴b =3×120=360.又2 000人中抽取200人的样本,即每10人中抽取一人,则360人中应抽取36人,故选A.]11.A [分别将甲、乙两名运动员的得分从小到大排列,中间位置的分数则为中位数.]12.B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.]13.乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 14.2215.13 正 16.40解析 ∵x =14(14+12+8+6)=10,y =14(22+26+34+38)=30,∴a ^=y -b ^x =30+2×10=50.∴当x =5时,y ^=-2×5+50=40. 17.解 分层抽样方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号,二级品有60个,产品按00,01,…,59编号,三级品有40个,产品按00,01,…,39编号.因总体个数∶样本容量为10∶1,故用简单随机抽样的方法,在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就可得到一个容量为20的样本.18.解 (1)∵前三组的频率和为2+4+1750=2350<12,前四组的频率之和为2+4+17+1550=3850>12,∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08,又∵频率=第二小组频数样本容量,∴样本容量=频数频率=120.08=150.(3)由图可估计所求良好率约为:17+15+9+32+4+17+15+9+3×100%=88%.19.解 由题意知:x ≈29.13,y =7.5,∑6i =1x 2i =5 130.92, ∑6i =1x i y i =1 222.6, ∴b ^=∑6i =1x i y i -6x y ∑6i =1x 2i -6x 2≈-2.2,a ^ =y -b ^x ≈71.6,∴回归方程为y ^=-2.2x +71.6.当x =27时,y ^ =-2.2×27+71.6=12.2,据此,可估计该地区2010年4月12日或13日为化蛹高峰日.20.解(1)散点图如下:(2)x=3+4+5+64=4.5,y=2.5+3+4+4.54=3.5,∑4i=1x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∑4i=1x2i=32+42+52+62=86,∴b^=∑4i=1x i y i-4x y∑4i=1x2i-4x2=66.5-4×3.5×4.586-4×4.52=0.7,a^=y-b^x=3.5-0.7×4.5=0.35.∴y^=0.7x+0.35.∴所求的回归直线方程为y^=0.7x+0.35. (3)现在生产100吨甲产品用煤y^=0.7×100+0.35=70.35,∴90-70.35=19.65.∴生产能耗比技改前降低约19.65吨标准煤.21.解(1)茎叶图如图所示:(2)x甲=9+10+11+12+10+206=12,x乙=8+14+13+10+12+216=13,s2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67,s2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x甲<x乙,所以乙种麦苗平均株高较高,又因为s2甲<s2乙,所以甲种麦苗长的较为整齐.22.解(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形框的中间值的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,∴中位数应位于第四个小矩形内.设其底边为x,高为0.03,∴令0.03x=0.2得x≈6.7,故中位数约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点值乘以每个小矩形的面积即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)≈74.。
第一章统计单元基础测试题一、单选题1.某小区12户居民5月份的用电量(单位:千瓦时)如茎叶图所示,则这组数据的中位数为( )A .40B .41C .42D .452.若回归直线的方程为ˆ2 1.5yx =-,则变量x 增加一个单位时 ( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位3.清源学校高一、高二、高三年级学生的人数之比为5:4:3,为了了解学校学生对数学学科的喜爱程度,现用分层抽样的方法从该校高中三个年级中抽取一个容量为120的样本,则应该从高三年级中抽取()名学生. A .30B .40C .50D .604.如图记录了某校高一年级6月第一周星期一至星期五参加乒乓球训练的学生人数.通过图中的数据计算这五天参加乒乓球训练的学生的平均数和中位数后,教练发现图中星期五的数据有误,实际有21人参加训练.则实际的平均数和中位数与由图中数据星期得到的平均数和中位数相比,下列描述正确的是( )A .平均数增加1,中位数没有变化B .平均数增加1,中位数有变化C .平均数增加5,中位数没有变化D .平均数增加5,中位数有变化5.某班50名学生中有女生20名,按男女比例用分层抽样的方法,从全班学生中抽取部分学生进行调查,已知抽到的女生有4名,则本次调查抽取的人数是( ) A .8B .10C .12D .156.某科研型企业,每年都对应聘入围的大学生进行体检,其中一项重要指标就是身高与体重比,其中每年入围大学生体重y (单位:kg )与身高x (单位:cm )基本都具有线性相关关系,根据今年的一组样本数据()()1,,2,,50i i x y i =,用最小二乘法建立的回归方程为ˆ0.8385.71yx =-,则下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(),x yC .若某应聘大学生身高增加1cm ,则其体重约增加0.83kgD .若某应聘大学生身高为170cm ,则可断定其体重必为55.39kg7.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( ) A .10B .11C .12D .168.有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下: 甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8则下列判断正确的是( ) A .甲射击的平均成绩比乙好 B .乙射击的平均成绩比甲好C .甲射击的成绩的众数小于乙射击的成绩的众数D .甲射击的成绩的极差大于乙射击的成绩的极差9.从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为( )(注:表为随机数表的第1行与第2行)A 24B 36C 46D 4710.某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么:M N 为( ) A .40:41B .41:40C .2:1D .1:111.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,,n x x x ⋅⋅⋅,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .12,,,n x x x ⋅⋅⋅的平均数B .12,,,n x x x ⋅⋅⋅标准差C .12,,,n x x x ⋅⋅⋅的最大值D .12,,,n x x x ⋅⋅⋅的中位数12.我国2015年以来,第x 年(2015年为第一年)的国内生产总值y (万亿元),数据如下:由散点图分析可知y 与x 线性相关,若由表中数据得到y 关于x 的线性回归方程是7.7y x a =+,则实数a 的值为( )A .61.3B .60.5C .59.9D .59.6二、填空题13.若样本数据128,,,x x x ⋅⋅⋅的标准差为1,则数据121x -,221x -,⋅⋅⋅,821x -的标准差为_______.14.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n 人中,抽取80人进行问卷调查,已知高二被抽取的人数为30,那么n =_____________.15.下表是x ,y 之间的一组数据:且y 关于x 的回归方程为 3.2 3.6y x =+,则表中的c =______.16.已知一组数据123,,a a a ,…,n a 的平均数为a ,极差为d ,方差为2S ,则数据121,a +221,a +321a +,…,21n a +的方差为___________.三、解答题17.在2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩: 甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8; 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;(1)用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;(2)分别计算两个样本的平均数x 和标准差s ,并根据计算结果估计哪位运动员的成绩比较稳定.18.(本小题满分12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差19.某高级中学共有学生3000名,各年段男、女学生人数如下表高一年高二年高三年女生523 x Y男生487 490 z已知在全校学生中随机抽取1名,抽到高二女生的概率为0.17,(1)问高二年段女生有多少名?(2)现对各年段采用分层抽样的方法,在全校抽取300名学生,问应在高三年段抽取多少名学生20.(本小题满分13分)从万州二中高二年级文科学生中随机抽取60名学生,将其月考的政治成绩(均为整数)分成六段:,,…,后得到如下频率分布直方图.(Ⅰ)求分数在内的频率;(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.21.我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.(Ⅰ)完成样本的频率分布表;画出频率分布直方图.(Ⅱ)估计成绩在85分以下的学生比例;(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程ˆˆˆybx a =+ (3)试预测加工10个零件需要多少小时?参考答案1.B 【分析】根据茎叶图计算中位数即可. 【详解】 由图知:中位数为4240412+=. 故选:B 【点睛】本题主要考查根据茎叶图求数据的中位数,属于简单题. 2.C 【分析】根据回归直线方程 1.52ˆyx =-+的斜率为负,可得出正确选项. 【详解】由于回归直线方程为 1.52ˆyx =-+,其斜率为 1.5-,故变量x 增加一个单位时,y 平均减少1.5个单位.故选C. 【点睛】本小题主要考查对回归直线方程系数的理解,考查直线的斜率,属于基础题. 3.A 【分析】根据分层抽样的抽取比例相同,可得答案. 【详解】312030543⨯=++,故选:A. 【点睛】本题考查抽样方法,属于基础题. 4.B 【分析】先求出平均数应增加1,再求出中位数有变化,即得解. 【详解】实际星期五的数据为21人,比原来星期五的数据多了21165-=人,平均数应增加51 5 =.原来从星期一至星期五的数据分别为20,26,16,22,16.按从小到大的顺序排列后,原来的中位数是20,实际从星期一至星期五的数据分别为20,26,16,22,21.按从小到大的顺序排列后,实际的中位数是21.所以中位数有变化.故选:B.【点睛】本题主要考查平均数和中位数的计算,意在考查学生对这些知识的理解掌握水平.5.B【解析】试题分析:因为50名学生中有女生20名,按男女比例用分层抽样的方法,抽到的女生有4名,所以本次调查抽取的人数是4501020⨯=,故选B.考点:分层抽样的应用.6.D【分析】根据线性回归方程分析,x的系数为正则正相关;线性回归方程必过样本中心点;利用线性回归方程分析数据时只是估计值,与真实值存在误差.【详解】由于线性回归方程中x的系数为0.83,因此y与x具有正的线性相关关系,故A正确;线性回归方程必过样本中心点(),x y,故B正确;由线性回归方程中系数的意义知,x每增加1cm,其体重约增加0.83kg,故C正确;当某大学生的身高为170cm时,其体重估计值是55.39kg,而不是具体值,故D不正确.故选:D【点睛】本题考查两变量间的相关关系、线性回归方程,属于基础题.7.D由题计算出抽样的间距为13,由此得解.【详解】由题可得,系统抽样的间距为13,则31316+=在样本中.故选D【点睛】本题主要考查了系统抽样知识,属于基础题.8.D【解析】由题意得,甲射击的平均成绩为7+8+10+9+8+8+6==87x甲,众数为8,极差为4;乙射击的平均成绩为9+10+7+8+7+7+8==87x乙,众数为7,极差为3,故甲射击的平均成绩等于乙射击的平均成绩,甲射击的成绩的众数大于乙射击的成绩的众数,甲射击的成绩的极差大于乙射击的成绩的极差,故选D.9.A【分析】按要求两个数字为一个号,不大于50且前面未出现的数,依次写出即可【详解】由题知,从随机数表的笫1行第5列和第6列数字开始,由表可知依次选取43,36,47,46,24.故选A【点睛】本题考查随机数表法,属于简单题10.D【分析】根据平均值的概念即可求出.【详解】根据题意可知,原来的40个分数总和为40M,因此4041M MN M+==.【点睛】本题主要考查平均值的概念的理解和应用,属于基础题. 11.B 【分析】利用平均数、标准差、最大值、中位数的定义和意义直接解题. 【详解】标准差能反映一组数据的稳定程序.故选B. 平均数能反映一组数据的平均水平;中位数是把一组数据从小到大或从大到小排列, 若该组数据的个数为奇数,则取中间的数据,若该组数据的个数为偶数,则取中间两个数据的平均数. 平均数和中位数都能反映一组数据的集中趋势, 标准差和方差都能反映一组数据的稳定程度. 故选:B. 【点睛】本题考查数据稳定程度的判断,要认真审题,注意平均数、标准差、中位数的意义合理应用,属于基础题. 12.B 【分析】先求解,x y ,结合线性回归直线一定经过点(),x y 可求实数a 的值. 【详解】 由表可知()11234535x =++++=,()1697583929983.65y =++++=, 因为7.7y x a =+经过点()3,83.6,所以83.67.73a =⨯+,解得60.5a =. 故选:B. 【点睛】本题主要考查回归直线的性质,利用线性回归直线必过中心点(),x y 可求解此题,侧重考查数学运算的核心素养.13.2 【分析】若一组数据1x ,2x ,3x ,,n x 的方差为2s ,则数据1ax b +,2ax b +,3ax b +,,n ax b +的方差为22a s .【详解】若样本数据128,,,x x x ⋅⋅⋅的标准差为1,则其方差也为1,所以数据121x -,221x -,⋅⋅⋅,821x -的方差为4,标准差为2.故答案为:2. 14.1000 【分析】由分层抽样的性质列出方程,能求出结果. 【详解】解:采用分层抽样的方法从高一1000人、高二1200人、高三n 人中,抽取80人进行问卷调查,已知高二被抽取的人数为30,分层抽样是按比例抽样, 则由分层抽样的性质得:1200803010001200n⨯=++,解得:1000n =. 故答案为:1000. 【点睛】本题考查分层抽样的应用,解题时要认真审题,注意分层抽样的性质的合理运用. 15.11 【分析】根据回归直线经过样本中心点(),x y 求解. 【详解】∵回归直线经过样本中心点(),x y ,0123425x ++++==,∴ 3.22 3.610y =⨯+=,∴57819105c ++++=,解得11c =. 故答案为:C 【点睛】本题主要考查回归方程的概念与性质,属于基础题. 16.24S 【分析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果. 【详解】解: ∵数据123,,a a a ,…,n a 的方差为2S ,∴数据121,a +221,a +321a +,…,21n a +的方差是22224S S ⨯=, 故答案为:24S . 【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系. 17.(1)见解析;(2)见解析 【解析】试题分析:(1)由已知中的数据,我们可将其整数部分表示茎,小数部分表示叶,易绘制出所求的茎叶图,并根据茎叶图中数据的形状,分析出甲乙两名运动员的成绩稳定性; (2)根据已知中两名射击运动员甲、乙在比赛中打出的成绩,代入数据的平均数公式及标准差公式,比较两组数据的方差,根据标方差小的运动员的成绩比较稳定,即可得到答案. 试题解析:(1)如图所示,茎表示成绩的整数环数,叶表示小数点后的数字.由上图知,甲中位数是9.05,乙中位数是9.15,乙的成绩大致对称,可以看出乙发挥稳定性好,甲波动性大. (2)解:(3)x 甲=110×(9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.8)=9.11 S 甲=()()()22219.49.118.79.11...10.89.1110⎡⎤-+-++-⎣⎦=1.3 x 乙=110×(9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1)=9.14 S 乙=()()()22219.19.148.79.14...9.19.1410⎡⎤-+-++-⎣⎦=0.9 由S 甲>S 乙,这说明了甲运动员的波动大于乙运动员的波动,所以我们估计,乙运动员比较稳定.18.乙班平均身高高于甲班 57 【解析】(1)由茎叶图可知,在160~179之间的身高数据显示乙班平均身高应高于甲班,而其余数据可直接看出身高的均值是相等的,因此乙班平均身高应高于甲班. (2)由题意知甲班样本的均值为x ==170,故甲班样本的方差为[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2. 19.(1)510人;(2)99人. 【分析】(1)根据公式求解;(2)根据抽样比求解. 【详解】 (1)即高二年段有510名女生.(2),抽样比:故高三年级应该抽取人.【点睛】这个题目考查了抽样比的概念以及分层抽样的概念的应用,属于基础题.20.(Ⅰ)0.3 (Ⅱ)【解析】试题分析:(Ⅰ)根据每个小矩形的面积表示该范围的频率且各频率和为1,可求得所求频率.(Ⅱ)根据频数等于总数乘以频率分别求和分数段的人数.由分层抽样先确定各组应抽取的人数.根据古典概型概率公式可求得所求概率.试题解析:解析:(Ⅰ)分数在内的频率为:5分(Ⅱ)由题意,分数段的人数为:人分数段的人数为:人;6分∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,∴分数段抽取5人,分数段抽取1人,因为从样本中任取2人,其中恰有1人的分数不低于90分,则另一人的分数一定是在分数段,所以只需在分数段抽取的5人中确定1人.设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件,.13分考点:1频率分布直方图;2排列组合;3古典概型概率.21.(Ⅰ)频率分布表分组频数频率[40,50) 2 0.04[50,60) 3 0.06[60,70) 10 0.2 [70,80) 15 0.3 [80,90) 12 0.24 [90,100] 8 0.16 合计50 1频率分布直方图(Ⅱ)成绩在85分以下的学生比例:72%(Ⅲ)众数为75、中位数约为76.67、平均数为76.2【分析】(1)根据“每小组的频率等于每小组频数除以样本容量”这个公式,求出每小组的频率.计算出每小组的“频率除以组距”的值,然后画出每小组的矩形.(2)求成绩在85分以下的学生比例,我们可以先求出成绩不低于85分学生的比例,然后100%减去这个比例,即可求出.(3)在频率分布直方图中,最高矩形的中点就是众数的估计值;利用中位数左边和右边的直方图的面积相等,可以求出中位数的估计值;利用频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,可以求出平均数的估计值.【详解】(1)因为每小组的频率等于每小组频数除以样本容量,所以每小组的频率计算如下:以[40,50)这一小组为例:频率=20.04;同理可以求出其他小组的频率,如下表:画频率分布直方图关键是求每小组频率除以组距这个数值,然后画出矩形,以第一小组[40,50)为例,频率除以组距等于0.004,画出小矩形,以此类推,完整的频率分布直方图如下图:(2)成绩不低于85分学生的分布在[80,90)和[90,100],这两段,85正好是[80,90)这个小组的平均数,所以成绩不低于85分学生的频数为0.12+0.16=0.28,也就是成绩不低于85分学生的比例为28%,所以成绩在85分以下的学生比例为100%-28%=72%;(3)在频率分布直方图中,最高矩形的中点就是众数的估计值,显然小组[70,80),矩形最高,这个小组的矩形底边中点是75,因此众数为75;因为所有小矩形的面积之和为1,我们找中位数就要找把面积一分为二的那条线.[40,50)这个小组的小矩形面积为0.04;[50,60) 这个小组的小矩形面积为0.06;[60,70) 这个小组的小矩形面积为0.2,所以[40,70)这个组的小矩形面积之和为0.3,而[70,80) 这个小组的小矩形面积为0.3,显然中位数落在这个小组内,面积还差0.2而这段矩形的高为0.03,设底边长x,则有202 0.030.2633 x x=⇒==,中位数的估计值为70+6.67=76.67;平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,即平均数估计值=450.04550.06+650.2+750.3+850.24+950.16=76.2⨯+⨯⨯⨯⨯⨯.所以众数为75、中位数约为76.67、平均数为76.2.22.(1)(2)(3)8.05【解析】试题分析:(1)由题意描点作出散点图;(2)由表中数据求得b=0.7,a=3.5﹣0.7×3.5=1.05,从而解得;(3)将x=10代入回归直线方程,y=0.7×6+1.05=5.25(小时).试题解析:解:(1)散点图如图.(2)由表中数据得:4i ii1x y=∑=52.5,¯=3.5,¯=3.5,42ii1x=∑=54,∴ˆb=0.7,∴ˆa=1.05,∴ˆy=0.7x+1.05,回归直线如图所示.(3)将x=10代入回归直线方程,得ˆy=0.7×10+1.05=8.05,∴预测加工10个零件需要8.05小时.。
一、选择题1.随机调查某学校50名学生在学校的午餐费,结果如表: 餐费(元) 6 7 8 人数102020这50个学生的午餐费的平均值和方差分别是( )A .7.2元,0.56元2B .7.2元,0.56元C .7元,0.6元2D .7元,0.6元2.若一组数据12,,,n x x x 的方差为1,则1224,24,,24n x x x +++的方差为( )A .1B .2C .4D .83.某高中一年级两个数学兴趣小组平行对抗赛,满分100分,每组20人参加,成绩统计如图:根据统计结果,比较甲、乙两小组的平均成绩及方差大小( )A .x x <甲乙,22S S >甲乙 B .x x >甲乙,22S S <甲乙 C .x x <甲乙,22S S <甲乙D .x x >甲乙,22S S >甲乙4.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200400300100,,,件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取( )件. A .24B .18C .12D .65.下列说法:①若线性回归方程为35y x =-,则当变量x 增加一个单位时,y 一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程y bx a =+必过点(),x y ;④抽签法属于简单随机抽样;其中错误的说法是( ) A .①③B .②③④C .①D .①②④6.已知一组样本数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列,则这组数据的方差为 A .25B .50C .125D .2507.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A .63、64、66B .65、65、67C .65、64、66D .64、65、648.为参加CCTV 举办的中国汉字听写大赛,某中学举行了一次大型选拔活动,随机统计了甲、乙两班各6名学生的汉字听写的成绩如图所示,设甲、乙两班数据的平均数依次为1x ,2x ,标准差依次为s 1,s 2,则 ( )A .12x x >,s 1>s 2B .12x x >,s 1<s 2C .12x x =,s 1>s 2D .12x x =,s 1<s 29.改革开放40多年来,城乡居民生活从解决温饱的物质需求为主逐渐转变到更多元化的精神追求,消费结构明显优化.下图给出了1983~2017年部分年份我国农村居民人均生活消费支出与恩格尔系数(恩格尔系数是食品支出总额占个人消费支出总额的比重)统计图.对所列年份进行分析,则下列结论错误..的是( )A .农村居民人均生活消费支出呈增长趋势B .农村居民人均食品支出总额呈增长趋势C .2011年至2015年农村居民人均生活消费支出增长最快D .2015年到2017年农村居民人均生活消费支出增长比率大于人均食品支出总额增长比率 10.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A.随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B.2012年以来,国家财政性教育经费的支出占GDP比例持续7年保持在4%以上C.从2010年至2018年,中国GDP的总值最少增加60万亿D.从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年11.某体校甲、乙两个运动队各有6名编号为1,2,3,4,5,6的队员进行实弹射击比赛,每人射击1次,击中的环数如表:学生1号2号3号4号5号6号甲队677877乙队676797则以上两组数据的方差中较小的一个为2s()A.16B.13C.12D.1第II卷(非选择题)请点击修改第II卷的文字说明参考答案12.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从第1行的第5列和第6列数字开始由左往右依次选取两个数字,则选出来的第5个个体的编号为()A .01B .02C .14D .1913.如图,是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若由直方图得到的众数,中位数和平均数(同一组中的数据用该组区间的中点值为代表)分别为,,a b c ,则( )A .b a c >>B .a b c >>C .2a cb +> D .2b ca +> 二、解答题14.某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照()[)[]0,2,2,4,,14,16⋅⋅⋅分成8组,制成了如图1所示的频率分布直方图.(1)试估计100户居民每月用水量的平均数和中位数;(2)如图2是该市居民李某2019年1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x =+,若李某2019年1~7月份水费总支出为294.6元,试估计张某7月份的用水吨数.15.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率; (2)写出新养殖法的箱产量的众数;(3)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法 新养殖法P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.8282()()()()()n ad bc K a b c d a c b d -=++++16.随着电子商务的发展,人们的购物习惯也在改变,几乎所有的需求都可以通过网络购物来解决,同时顾客的评价也成为电子商铺的“生命线”.某电商平台从其旗下的所有电商中随机抽取了100个电子商铺,对电商的顾客评价,包括商品符合度、物流服务、服务态度、快递包装等方面进行调查,并把调查结果转化为顾客的评价指数x,得到了如下的频率分布表:评价指数x[)0,20[)20,40[)40,60[)60,80[)80,100频数510154030(1)画出这100个电子商铺顾客评价指数的频率分布直方图;(2)现将评价指数6080x≤≤的商铺评为“合格商铺”,将评价指数80x≥的电子商铺评为“金牌商铺”,现从这100个商铺中任意抽取两个,记其中合格商铺的个数为η,金牌商铺的个数为ξ,求ηξ-的分布列和期望.17.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:分组频数频率[]25,3030.12(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.18.自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:(1)现随机抽取1名顾客,试估计该顾客年龄在[30,50)且未使用自由购的概率; (2)从被抽取的年龄在[50,70]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[50,60)的概率;(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?19.某中学团委组织了“纪念抗日战争胜利73周年”的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段[)40,50,[)50,60,…,[]90,100后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四组的频率,并补全这个频率分布直方图;(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)20.某单位共有10名员工,他们某年的收入如下表: 员工编号 12 3 4 5 6 7 8 9 10 年薪(万元)44.5656.57.588.5951(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆybx a =+中系数计算公式分别为:()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-,其中x 、y 为样本均值. 21.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中4a b =.(I )求,a b 的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从[)50,60,[)60,70中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[)50,60的概率.22.为了了解学生考试时的紧张程度,现对100名同学进行评估,打分区间为[]50,100,得到频率分布直方图如下,其中,,a b c 成等差数列,且0.01a =.(1)求,b c 的值;(2)现采用分层抽样的方式从紧张度值在[60,70),[)70,80中共抽取5名同学,再从这5名同学中随机抽取2人,求至少有一名同学是紧张度值在[60,70)的概率.23.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间X 服从正态分布()2N μσ,,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若()2~,,X N μσ令X Y μσ-=,则()~0,1Y N ,且()a P X a P Y μσ-⎛⎫≤=≤ ⎪⎝⎭.利用直方图得到的正态分布,求()10P X ≤.(ii)从该高校的学生中随机抽取20名,记Z 表示这20名学生中每周阅读时间超过10小时的人数,求()2PZ ≥(结果精确到0.0001)以及Z 的数学期望.参考数据:1940178,0.77340.00763≈≈.若()~0,1Y N ,则()0.750.7734P Y ≤=. 24.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N (μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.(1)计算这10名学生的成绩的均值和方差;(2)给出正态分布的数据:P (μ﹣σ<X <μ+σ)=0.6826,P (μ﹣2σ<X <μ+2σ)=0.9544. 由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.25.为了普及法律知识,达到“法在心中”的目的,某市法制办组织了一次普法知识竞赛.统计局调查队从甲、 乙两单位中各随机抽取了5名职工的成绩,如下表所示: 甲单位职工的成绩(分) 87 88 91 91 93 乙单位职工的成绩(分)8589919293根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定?26.为了了解高一(1)班53名同学的牙齿健康状况,需从中抽取5名同学做医学检验,现已对53名同学编号为00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为____________.随机数表如下: 0154 3287 6595 4287 5346 7953 2586 5741 3369 8324 4597 7386 5244 3578 6241【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用平均数公式与方差公式求解即可. 【详解】先计算这50个学生午餐费的平均值是()16107208207.250x =⨯⨯+⨯+⨯=, 所以方差是()()()222211067.22077.22087.20.5650S ⎡⎤=⨯⨯-+⨯-+⨯-=⎣⎦,故选A .【点睛】本题主要考查平均数公式与方差公式的应用,属于基础题. 样本数据的算术平均数公式:12n 1(++...+)x x x x n=;样本方差公式:2222121[()()...()]n s x x x x x x n =-+-++-.2.C解析:C 【解析】 若12,,,n x x x 的方差为2s ,则1ax b +,2ax b +,n ax b +的方差为22a s ,故可得当12,,,n x x x 的方差为1时,1224,24,,24n x x x +++的方差为2214⨯=,故选C.3.A解析:A 【分析】由茎叶图可得甲乙两个小组中的20个数据,利用平均数公式求解x 甲与x 乙并比较大小,再由茎叶图的集中程度比较2S 甲与2S 乙的大小,则答案可求.【详解】由茎叶图可得甲小组中的20个数据分别为:45,49,51,58,61,63,71,73,76,76,77,77,77,80,82,83,86,86,90,93.x 甲=120(45+49+51+58+61+63+71+73+76+76+77+77+77+80+82+83+86+86+90+93)=72.7.由茎叶图可得乙小组中的20个数据分别为: 53,63,66,71,72,74,75,75,75,77,78,78,78,79,81,84,85,86,93,94.x 乙=120(53+63+66+71+72+74+75+75+75+77+78+78+78+79+81+84+85+86+93+94)=76.85. 则x x <甲乙,再由茎叶图可知,甲小组的数据比较分散,乙小组的数据集中在茎7上,相对集中,故22S S >甲乙.故选:A . 【点睛】本题考查茎叶图,考查学生读取图表的能力及运算能力,考查平均数与方差的求解,是基础题.4.B解析:B 【分析】根据分层抽样列比例式,解得结果. 【详解】根据分层抽样得应从丙种型号的产品中抽取30060=18200+400+300+100⨯,选B.【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .5.C解析:C 【分析】根据线性回归方程与方差的求法,随机抽样的知识,对选项中的命题判断正误即可. 【详解】解:对于①,回归方程中,变量x 增加1个单位时,y 平均增加3个单位,不是一定增加,∴①错误;对于②,将一组数据中的每个数据都加上或减去同一个常数后,均值改变,方差不变,∴②正确;对于③,线性回归方程必经过样本中心点,∴③正确; 对于④,∴抽签法属于简单随机抽样;④正确. 综上,错误的命题是①. 故选:C . 【点睛】本题考查了线性回归方程与的应用问题,是基础题.6.B解析:B 【分析】先计算数据平均值,再利用方差公式得到答案. 【详解】数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列331245+++x x x x x +5x x ==2222221050510505s ++++==故答案选B 【点睛】本题考查了数据的方差的计算,将平均值表示为3x 是解题的关键,意在考查学生的计算能力.7.B解析:B 【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和. 【详解】解:由频率直方图可知,众数=60+70=652; 由100.03+50.04=0.5⨯⨯,所以面积相等的分界线为65,即中位数为65; 平均数=550.3+650.4+750.15+850.1+950.05=67⨯⨯⨯⨯⨯.故选B . 【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式.8.C解析:C 【分析】分别求出甲、乙两班数据的平均数和标准差,然后比较大小即可得到答案 【详解】()1138625120213031401356x =⨯⨯++⨯+⨯+⨯+=()21297852120213031401356x =⨯⨯+++++⨯+⨯+=()()222222211124790331063s ⎡⎤=⨯-+-++++=⎣⎦()()222222221863047296s ⎡⎤=⨯-+-++++=⎣⎦12x x ∴=,12s s >故选C 【点睛】本题主要考查了平均数和标准差,根据计算方法分别求出结果作出比较,较为基础.9.D解析:D 【分析】根据图表数据进行判断,求增长速度,增长率,进行判断. 【详解】从图中可以看出,农村居民人均生活消费支出呈增长趋势,故A 正确;根据“农村居民人均食品支出总额=农村居民人均生活消费支出⨯恩格尔系数”,计算可得农村居民人均食品支出总额呈增长趋势,故B正确;2015年到2017年农村居民人均生活消费支出增长比率为9050748620.892%7486-==,人均食品支出7486总额增长比率为90500.4374860.4223.771%74860.42⨯-⨯==⨯,故D错误.故选:D.【点睛】考查统计图的应用,考查学生“读图识图”的能力和从统计图中提取数据的能力. 10.C解析:C【分析】观察图表,判断四个选项是否正确.【详解】由表易知A、B、D项均正确,2010年中国GDP为1.4670413.55%≈万亿元,2018年中国GDP为3.6990904.11%=万亿元,则从2010年至2018年,中国GDP的总值大约增加49万亿,故C项错误.【点睛】本题考查统计图表,正确认识图表是解题基础.11.B解析:B【解析】【分析】观察两组数据的波动性大小判断方差大小,再利用平均数公式计算平均数,利用方差公式求方差的值.【详解】甲组数据为:6,7,7,8,7,7, 乙组数据为:6,7,6,7,9,7, 所以甲组数据波动较小,方差也较小, 甲组数据的平均数为()167787776x =⨯+++++=, 方差为(22211s [1)0010063⎤=⨯-+++++=⎦,故选B . 【点睛】本题考查了平均数与方差的计算问题,是基础题.算术平均数公式12n 1(++...+)x x x x n=;样本方差公式()()()2222121...n s x x x x x x n ⎡⎤=-+-++-⎣⎦. 12.A解析:A 【解析】从随机数表第一行的第五列和第六列数字开始由左到右依次选取两个数字中小于20的和编号依次为08,02,14,19,14,01,其中第三个和第五个都是14,重复.可知对应的数值为08,02,14,19, 01,则第五个个体的编号为01. 故选A.13.B解析:B 【分析】根据频率分布直方图读出众数a ,计算中位数b ,平均数c ,再比较大小. 【详解】由频率分布直方图可知:众数7080752a +==; 中位数应落在70-80区间内,则有:0.01100.015100.015100.03(70)0.5b ⨯+⨯+⨯+⨯-=,解得:22017333b ==; 平均数4050506060700.01100.015100.01510222c +++=⨯⨯+⨯⨯+⨯⨯+ 70808090901000.03100.025100.00510222+++⨯⨯+⨯⨯+⨯⨯ =4.5+8.25+9.75+22.5+21.25+4.75=71 所以a b c >> 故选:B 【点睛】从频率分布直方图可以估计出的几个数据:(1)众数:频率分布直方图中最高矩形的底边中点的横坐标; (2)平均数:频率分布直方图每组数值的中间值乘以频率后相加;(3)中位数:把频率分布直方图分成两个面积相等部分的平行于y 轴的直线横坐标. 【分析】设样本数据l x 的均值为x ,方程为2s ,标准差为s ,由已知得新样本2i i y x m =+的均值为2x m +,方差为222s ,标准差为2s ,代入可得选项. 【详解】设样本数据l x 的均值为x ,方程为2s ,标准差为s ,则新样本2i i y x m =+的均值为2x m +,方差为222s ,标准差为2s ,所以24y x m m =+=+,28s =,所以标准差为s =22s =⨯=故选:B. 【点睛】本题考查均值、方差、标准差的性质,属于中档题.二、解答题14.(1)平均数为7.96,中位数为283t =吨;(2)13吨. 【分析】(1)由频率分布直方图中平均数与中位数的计算方法计算即可;(2)根据样本中心点过回归方程得前6个月水费的平均数为40y =,进而得7月份的水费为54.6元,再根据居民月用水量t 吨与相应的水费()f t 元之间的函数关系式()4,012,6.631.2,1214,7.848,146,t t f t t t t t <≤⎧⎪=-<≤⎨⎪-<≤⎩即可得张某7月份的用水吨数.【详解】(1)可估计全市民用水价格的平均数的平均数为()10.0230.0450.0870.190.13110.08130.03150.0227.96⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=,由于前4组的频率之和为0.040.080.160.20.48+++=, 前5组的频率之和为0.040.080.160.20.260.74++++=,故中位数在第5组中,设中位数为t 吨,则有()80.130.02t -⨯=,所以2813t = 即所求的中位数为283t =吨; (2)设李某2019年1~6月份的月用水费y (元)与月份x 的对应点为(),1,2,3,4,5,6i i x y i =,它们的平均值分别为,x y ,则126216x x x x ++⋯+==, 又点(),x y 在直线233y x =+上, 所以40y =,因此116240y y y ++⋯+=, 所以7月份的水费为294.624054.6-=元, 设居民月用水量为t 吨,相应的水费为()f t 元,则()()()4,012,4812 6.6,1214,61.2147.8,1416,t t f t t t t t ⎧<≤⎪=+-⨯<≤⎨⎪+-⨯<≤⎩即()4,012,6.631.2,1214,7.848,1416,t t f t t t t t <≤⎧⎪=-<≤⎨⎪-<≤⎩当13t =时,() 6.61331.254.6f t =⨯-=, 所以李某7月份的用水吨数约为13吨. 【点睛】本题考查频率分布直方图计算平均数,中位数,根据回归直方图估计样本数据.本题第二问解题的关键在于先根据样本中心点过回归直线方程得前6个月水费的平均数为40y =,进而得7月份的水费为54.6元,再结合居民月用水量t 吨与相应的水费()f t 元之间的函数关系式即可求解,是中档题.15.(1)0.62;(2)52.5(kg );(3)列联表答案详见解析,有99%的把握认为箱产量与养殖方法有关. 【分析】(1) 由频率近似概率值,计算可得旧养殖法的箱产量低于50kg 的频率为0.62.据此,事件A 的概率估计值为0.62.(2)新养殖法在频率分布直方图中取最高的小长方形底边的中点可得箱产量众数. (3) 由题意完成列联表,计算K 2的观测值k =()22006266343810010096104⨯⨯-⨯⨯⨯⨯≈15.705>6.635,则有99%的把握认为箱产量与养殖方法有关. 【详解】(1)旧养殖法的箱产量低于50kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62.(2)新养殖法在频率分布直方图中取最高的小长方形底边的中点可得箱产量的众数为52.5(kg).(3)根据箱产量的频率分布直方图得列联表箱产量<50kg 箱产量≥50kg 旧养殖法 6238新养殖法34 66k =()22006266343810010096104⨯⨯-⨯⨯⨯⨯≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关. 【点睛】本题考查了频率分布直方图的应用及事件概率的求解,考查了独立性检验的应用,属于中档题.16.(1)答案见解析;(2)分布列答案见解析,期望为:15. 【分析】(1)根据题目所给数据画出100个电子商铺顾客评价指数的频率分布直方图. (2)先求得ηξ-的所有可能取值,然后计算出分布列和数学期望. 【详解】(1)频率分布直方图如图;(2)设M ηξ=-,由题M 可能的值有2-,1-,0,1,2,()2302100292330C P M C =-==;()11303021002111C C P M C =-==; ()211304030221001001090330C C C P M C C ==+=;()11403021008133C C P M C ===; ()2402100262165C P M C ===.所以分布列为:所以()()()()2101233011330331655E E M ηξ-==-⨯+-⨯+⨯+⨯+⨯=. 【点睛】本小题主要考查频率分布直方图,考查离散型随机变量分布列和数学期望.17.(1)17n =,22n =,10.28f = ,20.08f =;(2)详见解析;(3)0.5904. 【详解】试题分析:(1)根据题干中的数据以及频率分布表中的信息求出1n 、2n 、1f 和2f 的值;(2)根据频率分布表中的信息求出各组的频率组距的值,以此为相应组的纵坐标画出频率分布直方图;(3)先确定所取的4人中日加工零件数了落在区间(]30,35的人数所服从的相应的概率分布(二项分布),然后利用独立重复试验与对立事件求出题中事件的概率. 试题(1)由题意知17n =,22n =,170.2825f ∴== ,220.0825f ==; (2)样本频率分布直方图为:(3)根据样本频率分布直方图,每人的日加工零件数落在区间(]30,35的概率0.2, 设所取的4人中,日加工零件数落在区间(]30,35的人数为ξ,则()~4,0.2B ξ,,所以4人中,至少有1人的日加工零件数落在区间(]30,50的概率约为0.5904. 【考点定位】本题考查频率分布直方图以及独立性重复试验,考查频率分布直方图的绘制与应用,以及解决相关事件概率的计算,属于中等题. 18.(1)17100.(2)25;(3)2200个 【分析】(1)直接计算概率得到答案.(2)列出所有情况,包含15个基本事件,满足条件的共有6个基本事件,计算得到概率. (3)按照比例关系计算得到答案. 【详解】(1)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人, 所以随机抽取一名顾客,该顾客年龄在[30,50)且未参加自由购的概率估计为17100P =. (2)设事件A 为“这2人年龄都在[50,60)”.被抽取的年龄在[50,60)的4人分别记为a 1,a 2,a 3,a 4, 被抽取的年龄在[60,70]的2人分别记为b 1,b 2, 从被抽取的年龄在[50,70]的自由购顾客中随机抽取2人 共包含15个基本事件,分别为a 1a 2,a 1a 3,a 1a 4,a 1b 1,a 1b 2,a 2a 3,a 2a 4,a 2b 1,a 2b 2,a 3a 4, a 3b 1,a 3b 2,a 4b 1,a 4b 2,b 1b 2, 事件A 包含6个基本事件,分别为a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,则()62155P A ==; (3)随机抽取的100名顾客中,使用自由购的有3+12+17+6+4+2=44人, 所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=. 【点睛】本题考查了概率的计算,总体估计,意在考查学生的计算能力和应用能力.19.(1)0.3 (2)75%;71【分析】(1)利用频率分布直方图中的各组的频率和等于1,求出第四小组的频率,求出纵坐标,补全这个频率分布直方图即可.(2)求出60及以上的分数所在的第三、四、五、六组的频率和;利用组中值估算抽样学生的平均值为各组的中点乘以各组的频率和为平均值.【详解】解:(1)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.3p =-+⨯++⨯=,频率分布直方图第四小组的纵坐标是:0.30.0310=, 则频率分布直方图如下图所示:(2)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.0150.030.0250.005)100.75+++⨯=,所以,抽样学生成绩的合格率是75%,利用组中值估算抽样学生的平均分为:123456455565758595p p p p p p ⋅+⋅+⋅+⋅+⋅+⋅450.1550.15650.15750.3850.25950.0571=⨯+⨯+⨯+⨯+⨯+⨯=,所以估计这次考试的平均分是71.【点睛】本题考查频率分布直方图、等可能事件的概率等.在频率分布直方图中,数据的平均值等于各组的中点乘以各组的频率之和;频率等于纵坐标乘以组距;属于基础题.20.(1)平均值为11万元,中位数为7万元(2)预测该员工年后的年薪收入为10.9万元【分析】(1)直接利用平均数和中位数的定义计算得到答案.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,利用公式直接计算得到回归方程 1.4 2.5y x =+,代入数据计算得到答案.【详解】(1)平均值为4+4.5+6+5+6.5+7.5+8+8.5+9+511110= 万元,中位数为7万元. (2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,则 2.5x =,6y =,()4212.250.250.25 2.255ix x -=+++=∑ ()()41 1.5(2)(0.5)(0.5)0.50 1.5 2.57iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑ ()()()127ˆ 1.45ni ii i x x y y b x x =--===-∑,ˆˆ6 1.4 2.5 2.5a y bx =-=-⨯= 由线性回归方程: 1.4 2.5y x =+,6x =时,10.9y =可预测该员工年后的年薪收入为10.9万元.【点睛】本题考查了线性回归方程的应用,意在考查学生的计算能力和应用能力.21.(Ⅰ)0.024,0.006a b ==(Ⅱ) 平均数74.9,众数75.14,中位数75;(Ⅲ)()1328P A =【分析】(I )根据频率之和为1列方程,结合4a b =求出,a b 的值.(II )利用各组中点值乘以频率然后相加,求得平均数.利用中位数是面积之和为0.5的地方,列式求得中位数.以频率分布直方图最高一组的中点作为中位数.(III )先计算出从[)50,60,[)60,70中分别抽取2人和6人,再利用列举法和古典概型概率计算公式,计算出所求的概率.【详解】解:(I)依题意得(0.0080.0270.035)101a b ++++⨯=,所以0.03a b +=,又4a b =,所以0.024,0.006a b ==.(Ⅱ)平均数为550.08650.24750.35850.27950.0674.9⨯+⨯+⨯+⨯+⨯= 中位数为0.50.080.247075.140.035--+≈ 众数为7080752+= (Ⅲ)依题意,知分数在[)50,60的市民抽取了2人,记为,a b ,分数在[)60,70的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:()()()()()()()()()()()()(),,,1,,2,,3,,4,,5,,6,,1,,2,,3,,4,,5,,6a b a a a a a a b b b b b b , ()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6共28种,其中满足条件的为()()()()()()()()()()(),,,1,,2,,3,,4,,5,,6,,1,,2,,3,,4a b a a a a a a b b b b ,()(),5,,6b b 共13种,设“至少有1人的分数在[)50,60”的事件为A ,则()1328P A =【点睛】本小题主要考查求解频率分布直方图上的未知数,考查利用频率分布直方图估计平均数、中位数和众数的方法,考查利用古典概型求概率.属于中档题.22.(1) 0.02;0.03.b c == (2)710. 【分析】(1)直接利用图中数据及,,a b c 成等差数列列方程组,解方程组即可.(2)根据分层抽样[)60,70中抽2人记为11,a b ,[)70,80中抽3人记为,,A B C ,可列出基本事件总数为10种,“至少有一名在[)60,70的同学”事件包含7个基本事件,利用古典概型概率计算公式计算得解.【详解】(1)由题可得:0.110100.250.1510.012b c c b ++++=⎧⎨+=⎩解得0.02,0.03b c ==.(2)根据分层抽样[)60,70中抽2人记为11,a b ,[)70,80中抽3人记为,,A B C 共有10种本事件:11111111,,,,,,,,,AB AC Aa Ab BC Ba Bb Ca Cb a b ,记M 事件为:至少有一名在[)60,70的同学,该事件包含7个基本事件,所以至少有一名同学是紧张度值在[60,70)的概率710P =【点睛】本题主要考查了频率分布直方图知识,考查了等差数列的定义,还考查了古典概型概率计算公式,属于中档题.23.(1)9,1.78(2) (i )0.7734(ii )见解析【分析】(1)直接由平均数公式及方差公式求解;(2)(i )由题知9μ=,2 1.78σ=,则()9,1.78X N ~,求出σ,结合已知公式求解()10P X ≤.(ⅱ)由(i )知()(10)1100.2266P X P X >=-≤=,可得()20,0.2266Z B ~,由()()()2101P Z P Z P Z ≥=-=-=求解()2P Z ≥,再由正态分布的期望公式求Z 的数。
2019年高中数学单元测试试题统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.1 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07 C.02 D.012.某校共有学生2000名,各年级男、女学生人数如右表示,已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三年级中抽取的学生人数为▲ .3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样(2005湖北理) [答案] D[解析] 因为③为系统抽样,所以选项A 不对;因为②为分层抽样,所以选项B 不对;因为④不为系统抽样,所以选项C 不对.故选D.第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1——160编号。
一、选择题1.随机调查某学校50名学生在学校的午餐费,结果如表: 餐费(元) 6 7 8 人数102020这50个学生的午餐费的平均值和方差分别是( )A .7.2元,0.56元2B .7.2元,0.56元C .7元,0.6元2D .7元,0.6元2.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .400,40B .200,10C .400,80D .200,203.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③4.若一组数据12,,,n x x x 的方差为1,则1224,24,,24n x x x +++的方差为( )A .1B .2C .4D .85.下列说法正确的个数是( )①一组数据的标准差越大,则说明这组数据越集中;②曲线221:1259x y C +=与曲线222:1(09)259x y C k k k+=<<--的焦距相等;③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;④已知椭圆22341x y +=,过点()1,1M 作直线,当直线斜率为34-时,M 刚好是直线被椭圆截得的弦AB的中点.A.1 B.2 C.3 D.46.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A.63、64、66 B.65、65、67C.65、64、66 D.64、65、647.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4750元,则该教师2018年的旅行费用为()A.21250元B.28000元C.29750元D.85000元8.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,189.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为()A.120 B.40 C.30 D.2010.随着2020年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中不正确的是( )A .2013年至2018年,中国雪场滑雪人次逐年增加B .2013年至2015年,中国雪场滑雪人次和同比增长率均逐年增加C .2018年与2013年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等D .2018年与2016年相比,中国雪场滑雪人次增长率约为30.5%11.采用简单随机抽样的方法,从含有6个个体的总体中抽取1个容量为2的样本,则某个个体被抽到的概率为( ) A .12B .13C .15D .1612.甲、乙两名同学在5次数学考试中,成绩统计图用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用x 甲、x 乙表示,则下列结论正确的是( )A .x x >甲乙,且甲比乙成绩稳定B .x x >甲乙,且乙比甲成绩稳定C .x x <甲乙,且甲比乙成绩稳定D .x x <甲乙,且乙比甲成绩稳定13.在发生某公共卫生事件期间,我国有关机构规定:该事件在一段时间没有发生规模群体感染的标志为“连续10天每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地总体均值为3,中位数为4 B .乙地总体均值为2,总体方差大于0 C .丙地中位数为3,众数为3D .丁地总体均值为2,总体方差为3二、解答题14.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题: 分组人数频率[39.5,49.5)a0.10[49.5,59.5)9x[59.5,69.5)b0.15[69.5,79.5)180.30[79.5,89.5)15y[89.5,99.5]30.05a b x y的值,并补全频率分布直方图;(1)分别求出,,,(2)估计这次环保知识竞赛平均分;(3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?15.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?16.某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[]0,2,(]2,4,(]4,6,(]6,8,(]8,10,(]10,12.估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.()20P K k ≥0.10 0.05 0.010 0.005 0k2.7063.8416.6357.879附:()()()()()22n ad bcKa b c d a c b d-=++++.17.对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:分组频数频率[)10,15150.30[)15,2029n[)20,25m p[)25,302t合计M1(1)求出表中M,p及图中a的值;(2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间[)10,15内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[)25,30内的概率.18.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000的这段应抽取多少人? 19.某单位共有10名员工,他们某年的收入如下表: 员工编号1 2 3 4 5 6 7 8 9 10 年薪(万元)44.5656.57.588.5951(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆybx a =+中系数计算公式分别为:()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-,其中x 、y 为样本均值. 20.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,通过抽样,得到100位员工每人手机月平均使用流量L (单位:M )的数据,其频率分布直方图如图.(1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M 的概率;(2)据了解,某网络运营商推出两款流量套餐,详情如下:套餐名称月套餐费(单位:元)月套餐流量(单位:M)A20700B301000流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?21.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)25n[20,25)m p[25,30)20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.22.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率; (2)估计本次考试的中位数;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率. 23.某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成[4050),,[5060),,[6070),,[7080),,[8090),,[90100],六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:(1)求分数[7080),内的频率,并补全这个频率分布直方图; (2)从频率分布直方图中,估计本次考试成绩的中位数;(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.24.节能减排以来,兰州市100户居民的月平均用电量(单位:度),以[)[)[)[)[)[)[]160180180200200220220240240260260280280300,,,,,,,,,,,,,分组的频率分布直方图如图.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3估计用电量落在[),中的概率是多少?22030025.青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率20.04[50,60)80.16[60,70)10[70,80)[80,90)140.28[90,100]合计1.00(1)填写答题卡上频率分布表中的空格,并补全频率分布直方图; (2)试估计该年段成绩在[70,90)段的有多少人? (3)请你估算该年段的平均分.26.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm ),得到以下频率分布直方图.(1)求直方图中a 的值及众数、中位数; (2)若树高185cm 及以上是可以移栽的合格树苗. ①求合格树苗的平均高度(结果精确到个位);②从样本中按分层抽样方法抽取20株树苗作进一步研究,不合格树苗、合格树苗分别应抽取多少株?参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用平均数公式与方差公式求解即可. 【详解】先计算这50个学生午餐费的平均值是()16107208207.250x =⨯⨯+⨯+⨯=,所以方差是()()()222211067.22077.22087.20.5650S ⎡⎤=⨯⨯-+⨯-+⨯-=⎣⎦,故选A .【点睛】本题主要考查平均数公式与方差公式的应用,属于基础题. 样本数据的算术平均数公式:12n 1(++...+)x x x x n=;样本方差公式:2222121[()()...()]n s x x x x x x n =-+-++-.2.A解析:A 【分析】由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数. 【详解】用分层抽样的方法抽取4%的学生进行调查, 样本容量为:(350045002000)4%400++⨯=, 抽取的高中生近视人数为:20004%50%40⨯⨯=, 故选A. 【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.3.B解析:B 【解析】分析:由题意逐一考查所给的说法是否正确即可. 详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误; ③西部地区学生小刘被选中的概率为100124001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误;综上可得,正确的说法是①③. 本题选择B 选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】 若12,,,n x x x 的方差为2s ,则1ax b +,2ax b +,n ax b +的方差为22a s ,故可得当12,,,n x x x 的方差为1时,1224,24,,24n x x x +++的方差为2214⨯=,故选C.5.B解析:B 【分析】对每个命题分别进行判断后可得结论. 【详解】标准差或方差反映数据的集中度,标准差越小,数据越集中,①错;曲线221:1259x y C +=中225916c =-=,4c =,曲线222:1(09)259x y C k k k+=<<--中21(25)(9)16c k k =---=,14c =,焦距相等,②正确;在频率分布直方图中,估计的中位数是频率为0.5对应的点,在它的两边直方图的频率(面积)相等,③正确;椭圆22341x y +=,过点()1,1M 作直线,设直线与椭圆的交点为1122(,),(,)A x y B x y ,但由于椭圆22341x y +=上的点(,)x y 满足3x ≤,12y ≤,点(1,1)M 在椭圆外,M 不可能是AB 的中点,④错误. 正确命题有2个. 故选:B . 【点睛】本题考查命题的真假判断,解题时要对每个命题进行判断.本题考查了标准差的概念,考查了中位数的意义,考查椭圆的几何性质和椭圆的中点弦问题.其中椭圆的中点弦问题要注意,如果仅仅用“点差法”计算确实求得直线AB 斜率是34-,就认为④正确,没有检验只有点在椭圆内部时,才可能成为椭圆弦的中点,从而得出错误结论.6.B解析:B 【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和. 【详解】解:由频率直方图可知,众数=60+70=652;由100.03+50.04=0.5⨯⨯,所以面积相等的分界线为65,即中位数为65; 平均数=550.3+650.4+750.15+850.1+950.05=67⨯⨯⨯⨯⨯.故选B . 【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式.7.C解析:C 【分析】由题意首先求得2017年的就医花费,然后由2018年的就医花费结合条形图可得2018年的旅行费用. 【详解】由题意可知,2017年的就医花费为8000010%8000⨯=元, 则2017年的就医花费为8000475012750+=元, 2018年的旅行费用为12750352975015⨯=元. 故选C . 【点睛】本题主要考查统计图表的识别与应用,属于中等题.8.A解析:A 【分析】利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数. 【详解】样本容量为:(150+250+400)×30%=240, ∴抽取的户主对四居室满意的人数为:15024040%18.150250400⨯⨯=++故选A . 【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.9.B解析:B 【分析】根据分层抽样的定义即可得到结论. 【详解】假设抽取一年级学生人数为n . ∵一年级学生400人∴抽取一个容量为200的样本,用分层抽样法抽取的一年级学生人数为4002000200n=∴40n =,即一年级学生人数应为40人, 故选B . 【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即::i i n N n N =.10.C解析:C 【分析】根据图中条形统计图和折线图的实际意义分析逐个判定即可. 【详解】由2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图可知: 对于A ,由条状图可知,2013年至2018年,中国雪场滑雪人次逐年增加,故A 正确; 对于B ,2013年至2015年,中国雪场滑雪人次和同比增长率均逐年增加,故B 正确; 对于C ,2018年与2013年相比,中国雪场滑雪人次的同比增长率近似相等,但是同比增长人数也不相等,2018年比2013年增长人数多,故C 错误; 对于D ,2018年与2016年相比,中国雪场滑雪人次增长率约为1970-1510100%30.5%1510⨯≈故D 正确. 故选:C . 【点睛】本题考查统计图表的应用,考查学生的数据分析能力,属于基础题.11.B解析:B 【解析】 【分析】根据每个个体被抽到的概率相等,所以每个个体被抽到的概率是样本容量和总体数量的比值. 【详解】由于每个个体被抽到的概率相等,所以每个个体被抽到的概率是21=63. 故选:B 【点睛】本题考查了简单随机抽样每个个体被抽到的概率相等,考查了学生概念理解,数学运算的能力,属于基础题.12.A解析:A 【分析】利用茎叶图求出甲、乙两位同学的平均成绩和方差,分别比较这两个数的大小,可得出结论. 【详解】由茎叶图可知,甲同学成绩的平均数为8889909192905x ++++==甲,方差为24101425S ++++==甲,乙同学成绩的平均数为8388898991885x ++++==乙,方差为22508198.65S ++++==乙,则x x >甲乙,22S S <甲乙,因此,x x >甲乙,且甲比成绩稳乙定,故选A . 【点睛】本题考查茎叶图,考查平均数和方差的计算,在求解有关茎叶图中数据的计算时,先将数据由小到大或由大到小排列,结合相关公式进行计算, 考查计算能力,属于中等题.13.D解析:D 【分析】通过举反例可判断ABC 选项的正误;假设108x ≥,利用方差公式推出矛盾,可判断D 选项合乎要求. 【详解】对于A 选项,反例:0、0、1、1、4、4、4、4、4、8,满足中位数为4,均值为3,与题意矛盾,A 选项不合乎题意;对于B 选项,反例:0、1、1、1、1、1、1、2、4、8,满足均值为2,方差大于0,与题意矛盾,B 选项不合乎题意;对于C 选项,反例:0、1、1、3、3、3、3、3、3、8,满足中位数为3,众数为3,与题意矛盾,C 选项不合乎要求;对于D 选项,将10个数由小到大依次记为1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 、9x 、10x ,假设108x ≥,若均值为2,则方差为()()1022102122 3.61010ii x x s =--=≥=∑,矛盾,故108x <,假设不成立,故丙地没有发生规模群体感染,D 选项合乎要求. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下两点: (1)在判断选项不成立时,可通过举反例来推导;(2)在判断D 选项时,可假设108x ≥,利用反证法来进行推导.二、解答题14.(1)6a =,9b =,0.15x =,0.25y =(2)70.5(3)0.75 【分析】(1)根据频率分布表的相关计算即可求出,,,a b x y 的值,再作出频率分布直方图. (2)用组中给出的数据代入相应的公式即可估计平均分(3)本题考察的是某一组的概率问题,先求出满足条件的本次竞赛及格率,用样本估计总体,每个人被抽到的概率相同,故可以求出抽到的学生成绩几个的概率. 【详解】(1)6a =,9b =,0.15x =,0.25y =(2)用组中值估计平均分:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯=(3)本次竞赛及格率为:0.015100.025100.03100.005100.75⨯+⨯+⨯+⨯=, 用样本估计总体,每个人被抽到的概率相同, ∴从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率为0.75. 考点:(1)互斥事件的概率加法公式(2)频率分布表 15.(1)()3800,19,y 5005700,19,x x N x x ≤⎧=∈⎨->⎩;(2)19;(3) 购买1台机器的同时应购买19个易损零件. 【解析】试题分析:(Ⅰ)分x ≤19及x >19,分别求解析式;(Ⅱ)通过频率大小进行比较;(Ⅲ)分别求出n=19,n=20时所需费用的平均数来确定. 试题 (Ⅰ)当时,3800y =;当时,3800500(19)5005700y x x =+-=-,所以与的函数解析式为3800,19,{()5005700,19,x y x N x x ≤=∈->. (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1(380070430020480010)4000100⨯⨯+⨯+⨯=. 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯⨯+⨯=. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【考点】函数解析式、概率与统计【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题. 16.(1)90;(2)0.75;(3)见解析. 【分析】(1)根据男女生的比例可计算得解; (2)由12(0.0250.100-⨯+)可得解;(3)先由题中数据得到列联表,计算得2K 的值,参考概率表下结论即可. 【详解】(1)男生10500人,女生4500人,比例为7:3,所以抽到的300位学生中女生应为3300=9010⨯ 人. (2)超过4小时的区间有(]4,6,(]6,8,(]8,10,(]10,12, 由频率分布直方图得频率为:12(0.0250.100=0.75-⨯+), 所以该校学生每周平均体育运动时间超过4小时的概率估计值为0.75.(3)由(2)知,300为学生中有3000.75225⨯=(人)的每周平均运动时间超过4小时,75人每周平均运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均运动时间与性别的列联表如下:男生 女生 总计 每周运动时间不超过4小时 453075每周运动时间超过4小时 165 60 225 总计21090300计算得:2300(456016530)1004.762 3.841752252109021K ⨯⨯-⨯==≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 【点睛】本题主要考查了概率分布直方图的应用,独立性检验的应用,属于基础题. 17.(1)50M =,0.08P =,0.116a =;(2)150;(3)1415. 【分析】(1)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值;(2)该校高三学生有500人,分组[)10,15内的频率是030,可估计该校高三学生参加社区服务的次数在此区间内的人数;(3)设在区间[)20,25内的人为1a ,2a ,3a ,4a ,在区间[)25,30内的人为1b ,2b ,写出任选2人的所有基本事件,利用对立事件求得答案. 【详解】(1)由分组[)10,15内的频数是15,频率是0.30知,150.3M=,∴50M =. ∵频数之和为50,∴1529250m +++=,4m =,40.08p M==. ∵a 是对应分组[)15,20的频率与组距的商,∴290.116505a ==⨯; 故50M =,0.08P =,0.116a =;(2)因为该校高三学生有500人,分组[)10,15内的频率是0.30, ∴估计该校高三学生参加社区服务的次数在此区间内的人数为150人. (3)这个样本参加社区服务的次数不少于20次的学生共有26m +=人, 设在区间[)20,25内的人为1a ,2a ,3a ,4a ,在区间[)25,30内的人为1b ,2b . 则任选2人共有()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,()23,a a ,()24,a a ,()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 15种情况,而两人都在[)25,30内只能是()12,b b 一种,∴所求概率为11411515P =-=. 【点睛】本题以图表为背景,考查从图表中提取信息,同时在统计的基础上,考查古典概型的计算,考查基本数据处理能力.18.(1)0.15;(2)2400;(3)25 【分析】(1)根据频率=小矩形的高⨯组距来求;(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可;(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案. 【详解】解:(1)月收入在[)3000,3500的频率为0.00035000.15⨯=; (2)从左数第一组的频率为0.00025000.1⨯=; 第二组的频率为0.00045000.2⨯=; 第三组的频率为0.00055000.25⨯=;∴中位数位于第三组,设中位数为2000x +,则0.00050.50.10.20.2x ⨯=--=,400x ∴=.∴中位数为2400(元)(3)月收入在[)2500,3000的频数为0.25100002500⨯=(人), 抽取的样本容量为100.∴抽取比例为100110000100=, ∴月收入在[)2500,3000的这段应抽取1250025100⨯=(人). 【点睛】本题考查了频率分布直方图,分层抽样方法,是统计常规题型,解答此类题的关键是利用频率分布直方图求频数或频率.19.(1)平均值为11万元,中位数为7万元(2)预测该员工年后的年薪收入为10.9万元 【分析】(1)直接利用平均数和中位数的定义计算得到答案.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,利用公式直接计算得到回归方程 1.4 2.5y x =+,代入数据计算得到答案. 【详解】 (1)平均值为4+4.5+6+5+6.5+7.5+8+8.5+9+511110= 万元,中位数为7万元.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,则 2.5x =,6y =,()421 2.250.250.25 2.255i x x -=+++=∑()()411.5(2)(0.5)(0.5)0.50 1.52.57iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑()()()127ˆ 1.45niii i x x y y bx x =--===-∑,ˆˆ6 1.4 2.5 2.5ay bx =-=-⨯= 由线性回归方程: 1.4 2.5y x =+,6x =时,10.9y = 可预测该员工年后的年薪收入为10.9万元.【点睛】本题考查了线性回归方程的应用,意在考查学生的计算能力和应用能力. 20.(1)0.9;(2) 企业选择A 套餐更经济 【分析】(1)首先根据频率分布直方图小长方形的面积和也即频率之和为1列方程,由此求得a 的值.然后计算出流量不超过900M 的概率.(2)分别计算选择套餐A 和套餐B ,每月使用流量的平均费用,由此确定该企业选择A 套餐更经济. 【详解】 (1)由题意知()0.00200008000250003500008100100022a a +++++⨯=⇒=...... 所以100位员工每人手机月平均使用流量不超过900M 的概率为()1000020000810009-+⨯=....(2)若该企业选择A 套餐,则100位员工每人所需费用可能为20元,30元,40元, 每月使用流量的平均费用为()()()20008022300.25+0.354000800228⨯++⨯+⨯+=....,若该企业选择B 套餐,则100位员工每人所需费用可能为30元,40元,每月使用流量的平均费用为()3000802202503540002302⨯++++⨯=......, 所以该企业选择A 套餐更经济. 【点睛】本小题主要考查频率分布直方图的知识运用,考查利用频率分布直方图求解实际生活中的应用问题,属于基础题. 21.(1)0.125;(2)5;(3)710【分析】 (1)由频率=频数总数,能求出表中M 、p 及图中a 的值.(2)由频数与频率的统计表和频率分布直方图能求出参加社区服务的平均次数.(3)在样本中,处于[20,25)内的人数为3,可分别记为A ,B ,C ,处于[25,30]内的人数为2,可分别记为a ,b ,由此利用列举法能求出至少1人参加社区服务次数在区间[20,25)内的概率. 【详解】(1)由分组[10,15)内的频数是10,频率是0.25知,,所以M=40. 因为频数之和为40,所以. 因为a 是对应分组[15,20)的频率与组距的商,所以.(2)因为该校高三学生有360人,分组[15,20)内的频率是0.625,所以估计该校高三学生参加社区服务的次数在此区间内的人数为360×0.625=225人.。
第二章统计单元测试4一、选择题(每题3分,共36分)1、抽签法中确保样本代表性的关键是A.制签B.搅拌均匀C.逐一抽取D.抽取不放回2、从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A.36%B.72%C.90%D.25%3、在用样本频率估计总体分布的过程中,下列说法中正确的是A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确4、问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会. 方法:Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ5、在频率分布直方图中,小矩形的高表示A.频率/样本容量B.组距×频率C.频率D.频率/组距6、一个容量为20的样本数据,分组后组距与频数如下表.则样本在区间(-∞,50)上的频率为A.0.5B.0.25C.0.6D.0.77、有关线性回归的说法,不正确的是A.相关关系的两个变量不是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归方程8、回归方程yˆ=1.5x-15,则下列结论正确的是A.y =1.5x -15B.15是回归系数aC.1.5是回归系数aD.x =10时,y =09、已知样本:12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么频率为0.25的样本的范围是A.[5.5,7.5)B.[7.5,9.5)C.[9.5,11.5)D.[11.5,13.5)10、某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取一个容量为45的样本,那么高一、高二、高三各年级抽取人数分别为 A.15,5,25B.15,15,15C.10,5,30D.15,10,2011、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为A.40B.30C.20D.1212、甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的个数为①甲队的技术比乙队好 ②乙队发挥比甲队稳定 ③乙队几乎每场都进球 ④甲队的表现时好时坏A.1B.2C.3D.4 二、填空题(每题4分,共16分)13、从50个产品中抽取10个进行检查,则总体个数为_______,样本容量为______. 14、五个数1,2,3,4,a 的平均数是3,则a=____,这五个数的标准差是_________. 15、已知一个样本方差为[]21022212)4()4()4(101-++-+-=x x x s ,则这个样本的容量是____________,平均数是____________.16、一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是______________. 三、解答题(共48分)17、(共10分)某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示.为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类中各应抽选出多少份?18、(共10分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.19、(共14分)有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5), 6; [15.5,18.5), 16; [18.5,21.5), 18; [21.5,24.5), 22;[)[24.5,27.5), 20; [27.5,30.5), 10; 30.5,33.5,, 8(1)列出样本的频率分布表;(2)画出频率分布直方图和频率折线图;(3)由直方图确定样本的中位数。
高一数学必修第二册第九章《统计》单元练习题卷4(共22题)一、选择题(共10题)1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法2.根据如图给出的2000年至2016年我国实际利用外资情况,以下结论正确的是实际利用外资规模实际利用外资同比增速( )A.2000年以来我国实际利用外资规模与年份负相关B.2010年以来我国实际利用外资规模逐年增加C.2008年我国实际利用外资同比增速最大D.2010年我国实际利用外资同比增速最大3.某学校组织部分学生参加体能测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是18人,则参加体能测试的学生人数是( )A.45B.48C.50D.604.下列调查方式中,可用普查的是( )A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查某校七年级一班的男女同学的比例D.调查某型号炮弹的射程5.某县共有小学生4400名,初中生3600名,高中生2000名,为了解该县学生的视力情况,计划按学段采用分层抽样法,抽取一个容量为100的样本,则应在这三个学段抽取学生的人数分别为( )A.34,55,11B.56,34,10C.55,30,10D.44,36,206.从某中学抽取100名学生进行周课余锻炼时长(单位:min)的调查,发现他们的锻炼时长都在50∼350min之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,则直方图中x的值为( )A.0.0040B.0.0044C.0.0048D.0.00527.为全面地了解学生对任课教师教学的满意程度,特在某班开展教学调查.采用简单随机抽样的办法,从该班抽取20名学生,根据他们对语文、数学教师教学的满意度评分(百分制),绘制茎叶图如图.设该班学生对语文、数学教师教学的满意度评分的中位数分别为a,b,则( )A.a<b B.a>b C.a=b D.无法确定8.已知一组数据1,2,3,4,5,那么这组数据的方差为( )A.√2B.2C.√3D.39.某学校为了了解高一年级、高二年级、高三年级这三个年级的学生对学校有关课外活动内容与时间安排的意见,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.随机数法C.分层抽样法D.不能确定10.甲、乙、丙三名学生在一项集训中的40次测试分数都在[50,100]内,将他们的测试分数分别绘制成频率分布直方图,如图所示,记甲、乙、丙的分数标准差分别为s1,s2,s3,则它们的大小关系为( )A.s1>s2>s3B.s1>s3>s2C.s3>s1>s2D.s3>s2>s1二、填空题(共6题)11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.12.已知样本x1,x2,⋯,x2019的平均数和方差分别是1和4,若y i=ax i+b(i=1,2,⋯,2019)的平均数和方差也是1和4,则a b=.13.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)则这堆苹果中质量频数1231031不小于120克的苹果数约占苹果总数的%.14. 一个单位共有职工 200 人,其中不超过 45 岁的有 120 人,超过 45 岁的有 80 人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为 25 的样本,应抽取超过 45 岁的职工 人.15. 常用的百分位数(1)四分位数: , , .(2)其它常用的百分位数:第 1 百分位数, ,第 95 百分位数, .16. 思考辨析,判断正误.在分层随机抽样时,每层可以不等可能抽样.( )三、解答题(共6题)17. 为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了 6 次测试,测得他们的最大速度(单位:m/s )的数据如下:甲273830373531乙332938342836(1) 根据这两组数据你能获得哪些信息;(2) 估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.18. 试构造由 10 个正数组成的一组数据,使该组数据的平均数比中位数大 10.19. 某校从高二年级学生中随机抽取 60 名学生,将期中考试的政治成绩(均为整数)分成六段:[40,50),[50,60),[60,70),⋯,[90,100] 后得到如下频率分布直方图.(1) 根据频率分布直方图,分别求 a ,众数,中位数; (2) 估计该校高二年级学生期中考试政治成绩的平均数;(3) 用分层抽样的方法在各分数段的学生中抽取一个容量为 20 的样本,则在 [70,90) 分数段抽取的人数是多少?20. 某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群 13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1) 甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?(2) 乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?21.为了创建“和谐平安”校园,某校决定在开学前将学校的电灯电路使用情况进行检查,以便排除安全隐患,该校应该怎样进行调查?22.共享单车入驻某市一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段、使用频率、满意度等三个方面的信息,在全市范围内发放5000份调查问卷,回收到有效问卷3125份,现从中随机抽取80份,分别对使用者的年龄段、26∼35岁使用者的使用频率、26∼35岁使用者的满意度进行汇总,得到如下三个表格:表(一)使用者年龄段25岁以下26岁∼35岁36岁∼45岁45岁以上人数20401010表(二)使用频率0∼6次/月7∼14次/月15∼22次/月23∼31次/月人数510205表(三)满意度非常满意(9∼10)满意(8∼9)一般(7∼8)不满意(6∼7)人数1510105(1) 依据上述表格完成下列三个统计图:(2) 某城区现有常住人口30万,请用样本估计总体的思想,试估计年龄在26岁∼35岁之间,每月使用共享单车在7∼14次的人数.答案一、选择题(共10题)1. 【答案】D【解析】总体(1000名学生)中的个体(男、女学生)有明显差异,应采用分层抽样法.【知识点】分层抽样2. 【答案】C【解析】从图表中可以看出,2000年以来我国实际利用外资规模基本上是逐年上升的,因此实际利用外资规模与年份正相关,选项A错误;我国实际利用外资规模2012年比2011年少,所以选项B错误;从图表中的折线可以看出,2008年实际利用外资同比增速最大,所以选项C正确;2008年实际利用外资同比增速最大,所以选项D错误;故选:C.【知识点】频率分布直方图3. 【答案】D【解析】低于60分的人数是18人,由频率分布直方图得低于60分的频率为:(0.005+0.010)×20=5.3.所以参加体能测试的学生人数n=180.5=60.故选:D.【知识点】频率分布直方图4. 【答案】C【解析】选项A,调查市场占有率,要求时效性,而普查时间较长,不适合普查;选项B,调查对象较多,在人力、物力、财力上很难实现,且结果要保证时效性,不适合普查;选项C,调查对象较少,且容易实现,适合普查;选项D,调查过程具有破坏性,不适合普查.【知识点】简单随机抽样5. 【答案】D【解析】由题意得,应在这三个学段抽取学生的人数分别为440010000×100=44,360010000×100=36,200010000×100=20.【知识点】分层抽样6. 【答案】B【解析】依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得 x =0.0044. 【知识点】频率分布直方图7. 【答案】A【解析】由茎叶图得 a =75+762=75.5,b =75+772=76,所以 a <b .【知识点】样本数据的数字特征8. 【答案】B【解析】由题可得 x =1+2+3+4+55=3;所以这组数据的方差 s 2=15[(1−3)2+(2−3)2+(3−3)2+(4−3)2+(5−3)2]=2. 【知识点】样本数据的数字特征9. 【答案】C【解析】由于研究对象是三个年级学生的意见,故应按分层抽样法来抽取,故选C . 【知识点】分层抽样10. 【答案】B【解析】比较三个频率分布直方图知,甲为“双峰”直方图,两端数据最多,最分散,方差最大; 乙为“单峰”直方图,数据最集中,方差最小;丙为“单峰”直方图,但数据分布相对均匀,方差介于甲、乙之间. 综上可知 s 1>s 3>s 2.【知识点】样本数据的数字特征、频率分布直方图二、填空题(共6题) 11. 【答案】6【知识点】分层抽样12. 【答案】 1【解析】因为 x 1,x 2,⋯,x 2019 的平均数为 1,所以 y i =ax i +b (i =1,2,⋯,2019) 的平均数为 a ×1+b =1. 因为 x 1,x 2,⋯,x 2019 的方差为 4,所以 y i =ax i +b (i =1,2,⋯,2019) 的方差为 4a 2=4, 所以 {a 2=1,a +b =1,解得 {a =1,b =0 或 {a =−1,b =2.所以 a b =1.【知识点】样本数据的数字特征13. 【答案】70【解析】由表中可知这堆苹果中,质量不小于 120 克的苹果数为 20−1−2−3=14,故约占苹果总数的 1420=0.70,即 70%. 【知识点】频率分布直方图14. 【答案】 10【解析】因为超过 45 岁的职工为 80 人,占比例为 80200=25, 所以抽取的 25 人中超过 45 岁的职工为 25×25=10 人.【知识点】分层抽样15. 【答案】第 25 百分位数;第 50 百分位数;第 75 百分位数;第 5 百分位数;第 99 百分位数【知识点】样本数据的数字特征16. 【答案】 ×【知识点】分层抽样三、解答题(共6题) 17. 【答案】(1) 可以看出,甲、乙两人的最大速度都是均匀分布的,只是甲的最大速度的中位数是 33,乙的最大速度的中位数是 33.5,因此从中位数看乙的情况比甲好. (2) x 甲=16(27+38+30+37+35+31)=33,x 乙=16(33+29+38+34+28+36)=33, 所以他们的最大速度的平均数相同,再看方差 s 甲2=16[(−6)2+⋯+(−2)2]=473,s 乙2=16(02+⋯+32)=383,则 s 甲2>s 乙2,故乙的最大速度比甲稳定,所以派乙参加比赛更合适. 【知识点】样本数据的数字特征18. 【答案】不妨设平均数为 0,则中位数为 −10,为方便可取从小到大排列的 10 个数据的第 5个数和第 6 个数都是 −10.于是可构造 10 个数据如下(它们的和为 0):−14,−13,−12,−11,−10,−10,11,12,13,34.现将上面的每个数都加15,就得满足条件的10个正数:1,2,3,4,5,5,26,27,28,49.(结果不唯一)【知识点】样本数据的数字特征19. 【答案】(1) 由题意可得,(0.01+0.015×2+a+0.025+0.005)×10=1,解得a=0.03.根据频率分布直方图可知[70,80)分数段的频率最高,因此众数为75.又由频率分布直方图可知[40,70)分数段的频率为0.1+0.15+0.15=0.4,因为[70,80)分数段的频率为0.3,所以,中位数为70+13×10=2203.(2) 估计该校高二年级学生政治成绩的平均数为(45×0.01+55×0.015+65×0.015+ 75×0.03+85×0.025+95×0.005)×10=71.(3) 因为总体共60名学生,样本容量为20,因此抽样比为2060=13,又在[70,90)分数段共有60×(0.3+0.25)=33(人),因此,在[70,90)分数段抽取的人数是33×13=11.【知识点】样本数据的数字特征、频率分布直方图、分层抽样20. 【答案】(1) 甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2) 乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁),中位数为5.5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.【知识点】样本数据的数字特征21. 【答案】由于一个学校的电灯电路数目不算大,且对创建“和谐平安”校园来说,必须排除任一潜在或已存在的安全隐患,故必须用普查的方式.【知识点】数据的收集22. 【答案】(1)(2) 由表(一)可知:年龄在26岁∼35岁之间的有40人,占总抽取人数的一半,用样本估计总体的思想可知,某城区30万人口中年龄在26岁∼35岁之间的约有30×12=15(万人);又年龄在26岁∼35岁之间每月使用共享单车在7∼14次之间的有10人,占总抽取人数的14,用样本估计总体的思想可知,城区年龄在26岁∼35岁之间每月使用共享单车在7∼14次之间的约有15×14=154(万人),所以年龄在26岁∼35岁之间,每月使用共享单车在7∼14次之间的人数约为154万人.【知识点】简单随机抽样、频率分布直方图。
统计考试题目及答案高中一、选择题(每题2分,共20分)1. 下列哪项是描述数据集中趋势的统计量?A. 方差B. 均值C. 标准差D. 极差答案:B2. 在统计学中,以下哪个术语用于描述数据的离散程度?A. 均值B. 方差C. 众数D. 标准差答案:B3. 以下哪个选项是正态分布的特点?A. 所有数据都集中在均值附近B. 均值、中位数和众数相同C. 数据分布是对称的D. 所有数据都远离均值答案:B4. 以下哪个统计图最适合展示数据随时间的变化趋势?A. 条形图C. 散点图D. 线形图答案:D5. 相关系数的取值范围是多少?A. -1到1B. 0到1C. -1到0D. 1到无穷大答案:A6. 以下哪个统计量用于衡量数据的集中趋势?A. 方差B. 均值C. 标准差D. 极差答案:B7. 以下哪项是描述数据分布形状的统计量?A. 均值B. 方差C. 偏度D. 峰度答案:C8. 在统计学中,以下哪个术语用于描述数据的相对位置?B. 中位数C. 众数D. 方差答案:B9. 以下哪个选项是描述数据分布中心位置的统计量?A. 方差B. 均值C. 标准差D. 极差答案:B10. 以下哪个统计图最适合展示部分与整体的关系?A. 条形图B. 饼图C. 散点图D. 线形图答案:B二、填空题(每题2分,共20分)1. 在统计学中,数据的_________是指数据的平均水平。
答案:均值2. 标准差是衡量数据_________的统计量。
答案:离散程度3. 正态分布的图形是_________对称的。
答案:左右4. 线形图主要用于展示数据的_________变化。
答案:趋势5. 相关系数的计算公式是_________。
答案:协方差除以两个变量的标准差乘积6. 众数是指数据集中出现次数_________的数值。
答案:最多7. 偏度是描述数据分布_________的统计量。
答案:偏斜方向8. 箱线图可以展示数据的_________和异常值。
高中统计部分单元测试题
一、选择题
1.为了了解所加工的一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( )
A.总体
B.个体
C.总体的一个样本
D.样本容量
2.为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本是( )
A.8
B.400
C.96
D.96名学生的成绩
3.在简单随机抽样中,某一个个体被抽到的可能性( )
A.与第n次有关,第一次可能性最大
B.与第n次有关,第一次可能性最小
C.与第n次无关,与抽取的第n个样本有关
D.与第n次无关,每次可能性相等
4.有50件产品编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的编号为( )
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50
5.用样本频率分布估计总体频率分布的过程中,下列说法正确的是( )
A.总体容量越大,估计越精确
B.总体容量越小,估计越精确
C.样本容量越大,估计越精确
D.样本容量越小,估计越精确
6.对于两个变量之间的相关系数,下列说法中,正确的是( ) A.r 越大,相关程度越大
B.()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大
C.1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小
D.以上说法都不对
7.容量为100的样本数据,按从小到大的顺序分为8组,如下表所示:
第三组的频数和频率分别是( ) A.14和0.14
B.0.14和14
C.
14
1
和0.14 D.31和
14
1 8.数据70,71,72,73的标准差是( )
9.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b]是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则
=-||b a ( )
A.
h
m B.hm C.
m
h D.m h +
二、填空题
1.一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是________.
2.若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,编号后应均分为_________段,每段有_________个个体.
3.从10个篮球中任取一个,检验其质量,则应采用的抽样方法为_____.
4.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,个体a 前两次未被抽到,第三次被抽到的概率为_____________________.
5.一个容量为20的样本数据,分组后组距与频数如下表所示:
组距 [)20,10
[)30,20
[)40,30
[)50,40
[)60,50
[)70,60
频数
2
3
4
5
4
2
则样本在区间(),50-∞上的频率为__________________
6.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,3000的频率为_________.
三、解答题
1.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:[)10.75,10.853;[)10.85,10.959;[)10.95,11.0513;[)11.05,11.1516;
[)11.15,11.2526;[)11.25,11.3520;[)11.35,11.457;[)11.45,11.554;[)11.55,11.652.
(1)列出频率分布表(含累积频率);
(2)画出频率分布直方图以及频率分布折线图;
(3)据上述图表,估计数据落在[)10.95,11.35范围内的可能性是百分之几?
(4)数据小于11.20的可能性是百分之几?
2.以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为2
150m时的销售价格.
3.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?
4.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图为如图所示.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差.
参考答案
一、选择题
1.C
2.D
3.D
4.D
5.C
6.C
7.A
8.C
9.A
二、填空题
1.系统抽样
2.5 35 47
3.简单随机抽样
4.1
10
5.0.7
6.0.3
三、解答题
1.解:画出频率分布表
[11.45,11.55) 4 0.04 0.98 [11.55,11.65)
2 0.02 1.00 合计
100
1.00
(2)
(3)由上述图表可知数据落在[)10.95,11.35范围内的频率为0.870.120.7575%-==,即数据落在[)10.95,11.35范围内的可能性是75%.
(4)数据小于11.20的可能性即数据小于11.20的频率,也就是数据在11.20处的累积频率.设为x ,则:()()()()0.4111.2011.150.670.4111.2511.15x -÷-=-÷-, 所以0.410.130.54x x -=⇒=,从而估计数据小于11.20的可能性是54%. 2.解:(1)数据对应的散点图如图所示:
(2)1095151==∑=i i x x ,1570)(2
51=-=∑=x x l i i xx ,308))((,2.235
1
=--==∑=y y x x l y i i i xy
设所求回归直线方程为a bx y +=)
,则
1962.01570308≈==xx xy l l b , 8166.11570
308
1092.23≈⨯
-=-=x b y a . 故所求回归直线方程为8166.11962.0+=x y ). (3)据(2)可知,当2150x m =时,销售价格的估计值为:
2466.318166.11501962.0=+⨯=y )
(万元)
3.解:74)7090708060(51=++++=甲x ,73)7580706080(5
1=++++=乙x ,
104416461451222222=++++=)(甲s ,562731375
1222222
=++++=)(乙s ,
∵2
2乙甲乙甲,s s x x >>,
∴甲的平均成绩较好,乙的各门功课发展较平衡.
4.解:(1)由茎叶图可知:甲班身高集中于160179:之间,而乙班身高集中于
170180:之间.因此乙班平均身高高于甲班;
(2)158162163168168170171179179182
17010
x +++++++++=
=
甲班的样本方差为()()()()222221[(158170)16217016317016817016817010
-+-+-+-+- ()()()()()22222
170170171170179170179170182170]57+-+-+-+-+-=.。