利用三视图求体积表面积
- 格式:ppt
- 大小:458.50 KB
- 文档页数:38
立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。
4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。
二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。
[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。
[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。
[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。
[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。
第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCDA1B1C1C1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCDEFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。
高中数学必修二空间几何体的三视图如何求其表面积和体积【教学目标】一、知识目标熟练掌握已知空间几何体的三视图如何求其表面积和体积。
二、能力目标先介绍由空间三视图求其表面积和体积,然后引导学生讨论和探讨问题。
三、德育目标1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力。
2.通过研究性学习,培养学生的整体性思维。
【教学重点】观察、实践、猜想和归纳的探究过程。
【教学难点】如何引导学生进行合理的探究。
【教学方法】电教法、讲述法、分析推理法、讲练法【教学用具】多媒体、实物投影仪【教学过程】[投影]本节课的教学目标1.熟练掌握已知空间几何体的三视图如何求其表面积和体积。
【学习目标完成过程】一、复习提问1.如何求空间几何体的表面积和体积(例如:球、棱柱、棱台等)?2.三视图与其几何体如何转化?二、新课讲解[设置问题]例1:(如下图1),这是一个奖杯的三视图,试根据奖杯的三视图计算出它的表面积和体积(尺寸如图1,单位:cm,π取314,结果精确到1cm3)。
[提出问题]1.空间几何体的表面积和体积分别是什么?2.怎样运用柱体、锥体、台体、球体的表面积与体积的公式计算几何体的表面积和体积?[学生思考、总结板书]空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清楚,然后再代公式进行计算。
[承转过渡]求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那请同学们动脑筋想一想,假设没有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积?在例1有没有给出几何体的直观图?[学生讨论、总结板书]例1没有直接给出几何体的直观图,只是给出实物几何体的三视图,要求该几何体的表面积和体积,应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算。
[设问]请问例1的三视图转化为实物几何体是由那几个部分构成?怎样求出该几何体的表面积和体积?[讨论、板书]该实物几何体是由一个球体、一个四棱柱和一个四棱台构成;应先分别求出一个球体、一个四棱柱和一个四棱台的表面积和体积。
由三视图求表面积和体积一、方法与技巧二、常见几何体1.(2016•益阳模拟)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.60 B.54 C.48 D.24【解答】解:由三视图知:几何体是一个侧面向下放置的直三棱柱,侧棱长为4,底面三角形为直角三角形,直角边长分别为3,4,斜边长为5.∴几何体的表面积S=S棱柱侧+S底面=(3+4+5)×4+2××3×4=48+12=60.故选:A.2.(2016•凉山州模拟)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6 B.12 C.24 D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选B3.(2016•衡水校级一模)已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.27﹣3πD.18﹣3π【解答】解:由三视图可知,该几何体为放到的直四棱柱,且中间挖去半个圆柱,由三视图中的数据可得:四棱柱的高为3,底面为等腰梯形,梯形的上、下底边分别为2、4,高为2,圆柱的高为3,圆柱底面的半径都是1,∴几何体的体积V==,故选:B.4.(2016•广元二模)一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3【解答】解:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4 体积V=Sh==48cm3故选A5.(2016•江门模拟)一个几何体的三视图及其尺寸如下,则该几何体的表面积为()A.12πB.15πC.24πD.36π【解答】解:由三视图可知该几何体为一个圆锥,底面直径为6,母线长为5,底面圆的面积S1=π×()2=9π.侧面积S2=π×3×5=15π,表面积为S1+S2=24π.故选C.6.(2016•安康二模)一空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:三视图复原的几何体是三棱锥,底面是底边长为2,高为2的等腰三角形,三棱锥的一条侧棱垂直底面,高为2.三棱锥的体积为:==.故选D.7.(2016•杭州模拟)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.8.(2016•呼伦贝尔一模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.若该几何体的体积为V,并且可以用n个这样的几何体拼成一个棱长为4的正方体,则V,n的值是()A.V=32,n=2 B.C.D.V=16,n=4【解答】解:由三视图可知,几何体为底面是正方形的四棱锥,所以V=,边长为4的正方体V=64,所以n=3.故选B9.(2016•广东模拟)一空间几何体的三视图如图所示,则该几何体的体积为()A.12 B.6 C.4 D.2【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2,故选D.10.(2016•延边州模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C. D.4【解答】解:由题意知三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是2×=,∴侧视图的面积是2.故选A.11.(2016•江西校级一模)如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是()A.π+24 B.π+20 C.2π+24 D.2π+20【解答】解:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,s1=6×2×2﹣π×12=24﹣π,s2==2π,故s=s1+s2=π+24故选:A.12.(2016•太原二模)某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:所以该几何体的体积为23﹣×22×1=.故选A.13.(2016•太原校级二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.14.(2016•河西区模拟)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B. C.D.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.15.(2016•岳阳二模)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.【解答】解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,所以四棱锥的体积为:,所以h=.故选B.16.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选B.17.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.【解答】解:由三视图可知该几何体是如图所示的三棱锥:PO⊥平面ABC,PO=4,AO=2,CO=3,BC⊥AC,BC=4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为V=.故选D.18.(2016•揭阳一模)已知某空间几何体的三视图如图所示,则该几何体的体积是48.【解答】解:由三视图可知原几何体如图所示,可看作以直角梯形ABDE为底面,BC为高的四棱锥,由三棱锥的体积公式可得V=××(2+6)×6×6=48,故答案为:48.三、常见几何体的组合体19.(2016•佛山模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C. D.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.20.(2016•乐山模拟)一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.64【解答】解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,棱柱的体积为4×4×4=64;棱锥的体积为×4×4×3=16;则此几何体的体积为80;故选B.四、常见几何体的切割体21.(2016•茂名一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.22.(2016•威海一模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()A.7 B.C.D.【解答】解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.23.(2016•张掖校级模拟)某几何体的三视图如图所示,则该几何体的体积为26【解答】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.24.(2016•商洛模拟)已知一个几何体的三视图是三个全等的边长为l的正方形,如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体是正方体削去一个角,体积为1﹣=1﹣=.故选:D.25.(2016•银川校级一模)如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为54+18.【解答】解:由三视图可知正方体边长为6,截去部分为三棱锥,作出几何体的直观图如图所示:∴被截去的几何体的表面积S=+×(6)2=54+18.故答案为54+18.26.(2016•哈尔滨校级二模)一个空间几何体的三视图如图所示,则这个几何体的体积为.【解答】解:根据已知中的三视图,可得几何体的直观图如下图所示:该几何是由一个以俯视图为底面的四棱锥,切去两个棱锥所得的组合体,四棱柱的体积为:×(2+4)×4×4=48,四棱锥F﹣EHIJ的体积为:×(2+4)×4×2=8,中棱锥F﹣HGJ的体积为:=,故组合体的体积V=,故答案为:4.(2011•北京模拟)已知一个几何体的三视图如所示,则该几何体的体积为()A.6 B.5.5 C.5 D.4.5【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积可以做出,高是3,做出截去得到三棱锥的体积,长方体的体积也可以做出.【解答】解:由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积是×1×1=,高是3,∴截去得到三棱锥的体积是2××=1,长方体的体积是3×2×1=6∴几何体的体积是6﹣1=5故选C.。
简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ABCD 与三棱锥E FBC 的体积之和,而四棱锥E ABCD 的体积等于13×(5×2)×3=10,三棱锥E FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。
第十二单元空间几何体的结构特征考点一根据三视图求简单多面体、切割体等的体积或表面积1.(2017年全国Ⅰ卷)某多面体的三视图如图所示,其中正(主)视图和侧(左)视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为().A.10B.12C.14D.16【解析】观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边边长为2的等腰直角三角形,高为2,如图所示.因此该多面体的各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2××(2+4)×2=12.故选B.【答案】B2.(2017年全国Ⅱ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为().A.90πB.63πC.42πD.36π【解析】由几何体的三视图可知,该几何体是一个圆柱被一个平面截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于上部分圆柱体积的加上下部分圆柱的体积,所以该几何体的体积V=π×32×4+π×32×6×=63π.故选B.【答案】B3.(2016年全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是().A.17πB.18πC.20πD.28π【解析】由几何体的三视图可知,该几何体是一个球体去掉上半球的,得到的几何体如图.设球的半径为R,则πR3-·πR3=π,解得R=2.因此它的表面积为·4πR2+πR2=17π.故选A.【答案】A4.(2015年全国Ⅰ卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正(主)视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=().A.1B.2C.4D.8【解析】如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=·4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.【答案】B5.(2016年北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为().A. B. C. D.1【解析】通过三视图可还原几何体为如图所示的三棱锥P-ABC,通过侧(左)视图得高h=1,底面积S=×1×1=,所以体积V=Sh=××1=.【答案】A6.(2016年全国Ⅱ卷)如图所示的是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为().A.20πB.24πC.28πD.32π【解析】由三视图可知圆柱的底面直径为4,母线长(高)为4,所以圆柱的侧面积为2π×2×4=16π,底面积为π×22=4π;圆锥的底面直径为4,高为2,所以圆锥的母线长为=4,所以圆锥的侧面积为π×2×4=8π.所以该几何体的表面积为S=16π+4π+8π=28π.【答案】C7.(2016年全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为().A.18+36B.54+18C.90D.81【解析】由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则该几何体的表面积为(3×3+3×6+3×3)×2=54+18.故选B.【答案】B考点二简单几何体的内切球或外接球的有关问题8.(2017年全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为().A.πB.C.D.【解析】设圆柱的底面半径为r,球的半径为R,且R=1,由圆柱两个底面的圆周在同一个球的球面上可知,r,R及圆柱的高的一半构成直角三角形.∴r=-=.∴圆柱的体积V=πr2h=π×1=.故选B.【答案】B9.(2015年全国Ⅱ卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O 的表面积为().A.36πB.64πC.144πD.256π【解析】如图,设球的半径为R,∵∠AOB=90°,∴S△AOB=R2.∵V O-ABC=V C-AOB,而△AOB的面积为定值,∴当点C到平面AOB的距离最大时,V O-ABC最大,∴当C为与球的大圆面AOB垂直的直径的端点时,体积V O-ABC最大,最大值为·R2·R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.【答案】C10.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解析】设正方体的棱长为a,则6a2=18,∴a=.设球的半径为R,则由题意知2R==3,∴R=.故球的体积V=R3=×=.【答案】高频考点:三视图还原几何体,求空间几何体的体积、表面积,几何体外接球、内切球的体积和表面积.命题特点:一般是两个小题,选择题或填空题,常常是一个考查三视图,另一个考查球的组合体,题目注重空间想象能力的考查,属中档题.§12.1空间几何体的三视图及其应用一空间几何体的结构特征1.简单多面体的结构特征(1)棱柱的侧棱都,上下底面是的多边形.(2)棱锥的底面是任意多边形,侧面都是有一个的三角形.(3)棱台可由于棱锥底面的平面截棱锥得到,其上下底面是的多边形.2.旋转体的结构特征(1)圆柱由绕其所在直线旋转而成.(2)圆锥由绕其所在直线旋转而成.(3)圆台由绕其所在直线旋转而成.二空间几何体的三视图几何体的三视图包括:、、,分别是从几何体的、、观察到的几何体的正投影图.三表面积和体积1.圆柱、圆锥、圆台的表面积S圆柱=;S圆锥=;S圆台=.2.柱体、锥体、台体的体积(1)柱体:.(2)锥体:.(3)台体:.☞左学右考判断下列结论是否正确,正确的在括号里画“√”,错误的画“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)圆锥的三视图中,三个视图均相同.()(4)锥体的体积等于底面面积与高之积.()某几何体的正(主)视图是三角形,则该几何体不可能是().A.圆柱B.圆锥C.四面体D.三棱柱圆台一个底面周长是另一个底面周长的3倍,母线长为15,若圆台的侧面积为420π,求圆台较小底面的半径.知识清单一、1.(1)平行且相等全等(2)公共顶点(3)平行相似2.(1)矩形一边(2)直角三角形任一直角边(3)直角梯形直角腰二、正(主)视图侧(左)视图俯视图正前方正左方正上方三、1.2πr(r+h)πr(r+l)π(r2+rl+Rl+R2)2.(1)V=Sh(2)V=Sh(3)V=(S'++S)h基础训练1.【解析】(1)错,因为两个共底面的棱柱叠放时就不一定是棱柱.(2)错,各侧面三角形必须共顶点.(3)错,圆锥的三个视图不相同.(4)错,还应该乘以.【答案】(1)×(2)×(3)×(4)×2.【解析】圆柱无论如何摆放,其正(主)视图都不可能是三角形.【答案】A3.【解析】设圆台较小底面半径为r,则另一个底面半径为3r,由S=π(r+3r)·15=420π,解得r=7.题型一由空间几何体的直观图判断三视图【例1】某几何体的直观图如图所示,下列给出的四个俯视图中正确的是().【解析】几何体的俯视图轮廓是矩形,几何体的上部分的棱都是可以看见的线段,所以C,D不正确;几何体的上部分中间的棱与正(主)视图方向垂直,所以A不正确.故选B.【答案】B此类题目比较简单,解题的关键是选准视点,弄清楚轮廓线,看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示.【变式训练1】将正方体(如图①)截去两个三棱锥,得到如图②所示的几何体,则该几何体的侧(左)视图为().【解析】还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.【答案】B题型二根据给出的三视图还原几何体【例2】一个几何体的三视图如图所示,则组成该几何体的简单几何体为().A.圆柱与圆台B.圆柱与四棱台C.四棱柱与四棱台D.四棱柱与圆台【解析】由三视图可得该几何体是一个组合体,由几何体上部的三视图均为矩形可知上部是四棱柱,由下部的三视图中有两个梯形可得下部是四棱台,故组成该几何体的简单几何体为四棱柱与四棱台,故选C.【答案】C由三视图还原几何体,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.【变式训练2】(1)如图所示的是一个几何体的三视图,则据此可知该几何体的直观图是().(2)如图所示的是一个简单几何体的三视图,则其对应的几何体是().【解析】(1)由三视图知该组合体的上面是锥体,下面是圆柱.(2)对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正(主)视图的矩形中,对角线是虚线,故不符合题意;对于C,该几何体的正(主)视图的矩形中,对角线是从左上到右下的方向,故不符合题意;对于D,该几何体的侧(左)视图的矩形中,对角线是虚线,故不符合题意.故选A.【答案】(1)D(2)A题型三根据三视图求几何体的表面积【例3】某几何体的三视图如图所示,则它的表面积为().A.2+πB.2+πC.2+(1+)πD.2+π【解析】由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,圆锥的母线长为,∴所求几何体的表面积S=S底面+S侧面=×π×12+×2×2+×π×1×=2+π.故选A.【答案】A组合体的表面积是组成它的简单几何体的表面积之和减去公共部分的面积的两倍,要注意重叠的面的面积不能算.【变式训练3】(1)如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为().A.36+3B.36+6C.54D.27(2)如图所示的是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8的矩形,则该几何体的表面积是().A.20+8B.24+8C.8D.16【解析】(1)由三视图可得该几何体是一个以正(主)视图为底面的四棱柱,其底面积为×(2+4)×3=9,底面周长为2+4+2=6+2,高h=3,故棱柱的表面积S=2×9+(6+2)×3=36+6,故选B.(2)此几何体是一个三棱柱,且高为=4,因为底面是一个等腰直角三角形,直角边长为2,所以其面积为×2×2=2,故其侧面积为(2+2+2)×4=16+8,表面积为2×2+16+8=20+8.故选A.【答案】(1)B(2)A题型四根据三视图求几何体的体积【例4】某几何体的三视图如图所示,则该几何体的体积为().A.+8πB.+8πC.+16πD.+16π【解析】由三视图可得该几何体是一个三棱锥与半圆柱的组合体.半圆柱的底面半径为2,高为4,故其体积为×π×22×4=8π;三棱锥的底面积为×4×2=4,高为2,故其体积为.所以所求组合体的体积V=+8π,故选A.【答案】A求组合体的体积时,关键是弄清楚几何体是由哪几种简单几何体组合而成的,然后由相应几何体的体积公式得出.【变式训练4】如图所示的是某几何体的三视图,则这个几何体的体积是().A.2+B.2+C.4+D.4+【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱柱组成的几何体.这个几何体的体积V=×π×12×1+×()2×2=2+.故选B.【答案】B方法一空间几何体表面积的求法多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.已知三视图求几何体的表面积时,首先根据三视图还原出几何体,此时需要利用线与线的位置关系以及线与面的位置关系分析表面的相对位置关系,然后根据三视图中数据确定对应线段的长度,进而求出表面积.【突破训练1】(2017大石桥学业考试)下图为某几何体的三视图,则该几何体的表面积为().A.32B.16+16C.48D.16+32【解析】由几何体的三视图,得该几何体是底面边长为4,高为2的正四棱锥,所以该四棱锥的斜高为=2.所以该四棱锥的侧面积为4××4×2=16,底面积为4×4=16,所以几何体的表面积为16+16.故选B.【答案】B方法二空间几何体体积的求法1.求简单几何体的体积.若所给的几何体是柱体、锥体或台体,则可直接利用公式求解.2.求组合体的体积.若所给的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等方法进行求解,特别是三棱锥的体积常用等体积法求解.3.求以三视图为背景的几何体的体积,应先根据三视图得到几何体的直观图,然后根据条件求解.【突破训练2】(2017枝江模拟)某几何体的三视图如图所示,则该几何体的体积为().A.+B.1+C.+D.1+【解析】根据已知条件可得该几何体是一个四分之一圆锥与三棱柱的组合体.四分之一圆锥的底面半径为1,高为1,故其体积为××1=;三棱柱的底面是两直角边分别为1和2的直角三角形,高为1,故其体积为×1×2×1=1,故组合体的体积V=1+,选B.【答案】B1.(2017西安一模)某几何体的三视图如图所示,且该几何体的体积是3,则正(主)视图中的x的值是().A.2B.C.D.3【解析】根据三视图判断该几何体为四棱锥,其直观图如图所示,∵V四棱锥=××2×x=3,∴x=3.【答案】D2.(2017洛阳二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为().A.B.C.D.3【解析】由三视图可知,该几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A-BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED=×1×1=,S△ABC=S△ABE=×1×=,S△ACD=×1×=,故选B.【答案】B3.(2017楚雄州一模)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为().A.96B.80+4πC.96+4(-1)πD.96+4(2-1)π【解析】由三视图可知该几何体是由边长为4的正方体挖去一个圆锥得到的,圆锥的底面半径为2,高为2,∴圆锥的母线长为2.∴几何体的表面积为6×42-π×22+π×2×2=96-4π+4π.故选C.【答案】C4.(2017江西二模)圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是().A.2πa2B.4πa2C.πa2D.3πa2【解析】若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍.因为圆锥的底面半径为a,所以圆锥的母线长为2a,故圆锥的侧面积S=2πa2.【答案】A5.(2017福建模拟)某三棱锥的三视图是三个边长相等的正方形及对角线,如图所示,若该三棱锥的体积是,则它的表面积是().A.1B.2C.2D.2【解析】如图所示,该三棱锥是正方体的面对角线构成的正三棱锥.设正方体的棱长为a,则几何体的体积是a3-4××a3=a3=,∴a=1,∴三棱锥的棱长为,因此该三棱锥的表面积S=4××2=2,故选D.【答案】D6.(2017西宁二模)某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是().A.8B.C.4D.【解析】由三视图可知,该四棱锥是一个底面为正方形的四棱锥,且一条侧棱垂直于底面.由题意知底面正方形对角线的长为2,面积S=×22=2,四棱锥的高h=2,所以它的体积是×2×2=,故选D.【答案】D7.(2017山东二模)已知一几何体的三视图如图所示,俯视图由一个直角三角形和一个半圆组成,则该几何体的体积为().A.6π+12B.6π+24C.12π+12D.24π+12【解析】由三视图可知该几何体为半圆柱与直三棱柱的组合体,V=×π×22×3+×2×4×3=6π+12,故选A.【答案】A8.(2017商丘二模)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为().A. B.3 C.D.4【解析】如图所示,由三视图可知该几何体为四棱锥P-ABCD,连接BD,其体积V=V B-PAD+V B-PCD=××1×3×3+××1×3×3=3.故选B.【答案】B9.(2017大理州一模)某几何体的三视图如图所示,则它的体积是().A.8+B.8+C.8+D.【解析】根据三视图可知,该几何体是组合体,下面是正方体,棱长为2,体积为8;上面是斜高为2,底面边长为2的正四棱锥,所以底面积为4,高为-=,体积为.所以该几何体的体积为8+.故选A.【答案】A10.(2017湘西州模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为().A.40B.C.D.【解析】由几何体的三视图得,该几何体是三棱柱BCE-AGF割去一个三棱锥A-BCD所得的图形,如图所示.∴V几何体×4=.故选B.CDEFGA=×4×4×4-××【答案】B11.(2017合肥一模)一个几何体的三视图如图所示(其中正(主)视图的弧线为四分之一圆周),则该几何体的表面积为().A.72+6πB.72+4πC.48+6πD.48+4π【解析】由三视图,可得该几何体是一个以正(主)视图为底面的柱体,其底面积为4×4-2×2+π×22=12+π,底面周长为4+4+2+2+×2×π×2=12+π,柱体的高为4,故柱体的表面积S=(12+π)×2+(12+π)×4=72+6π.【答案】A12.(2017沈阳三模)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):底面ABCD 为矩形,棱EF∥AB.在此几何体中,AB=4,EF=2,△ADE和△BCF都是边长为2的等边三角形,则此几何体的表面积为().A.8B.8+8C.6+2D.8+6+2【解析】过点F作FO⊥平面ABCD,垂足为O,取BC的中点P,连接PF,OP,过点F作FQ⊥AB,垂足为Q,连接OQ.∵△ADE和△BCF 都是边长为2的等边三角形,∴OP=(AB-EF)=1,PF=,OQ=BC=1,∴OF=-=,FQ==,∴S梯形EFBA=S梯形EFCD=×(2+4)×=3.又S△BCF=S△ADE=×22=,S矩形ABCD=4×2=8,∴该几何体的表面积S=3×2+×2+8=8+8.【答案】B13.(2017衡水一模)某几何体的三视图如图所示,则该几何体的体积为().A. B.C.D.【解析】该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S1=×1×2=1,高为1,故三棱柱的体积V1=1×1=1.三棱锥的底面是等腰直角三角形,其面积S2=×1×2=1,高为1,故三棱锥的体积V2=×1×1=.故该几何体的体积V=V1+V2=.【答案】A14.(2017贵阳二模)某几何体的三视图如图所示,则该几何体的体积为().A.16π-B.16π-C.8π-D.8π-【解析】由三视图可知,该几何体为一个半圆柱挖去一个倒立的四棱锥.∴该几何体的体积V=×π×22×4-×42×2=8π-.故选D.【答案】D15.(2017临翔区校级三模)某三棱锥的三视图如图所示,则该三棱锥的表面积为().A.4+8+2B.4+8+4C.8+8+4D.8+8+2【解析】由三视图可知该三棱锥底面是边长为4的正三角形,面积为4,两个侧面是全等的三角形,三边分别为2,2,4,面积之和为4,另一个侧面为等腰三角形,面积是×4×4=8,该三棱锥的表面积为4+8+4.【答案】B§12.2球的体积与表面积一球的结构、球的体积与表面积1.球由绕其直径所在直线旋转一周而成.2.球的体积与表面积公式(1)球的体积公式.(2)球的表面积公式.二球体的截面的特点球既是中心对称的几何体,又是对称的几何体,它的任何截面均为,它的三视图都是.☞左学右考一个球的表面积是16π,则它的体积是.三棱锥P-ABC三条侧棱两两垂直,三个侧面的面积分别为,,,则该三棱锥的外接球表面积为().A.4πB.6πC.8πD.10π知识清单一、1.半圆面2.(1)V=πR3(2)S=4πR2二、轴圆面圆基础训练1.【解析】由4πR2=16π得R=2,所以球的体积为V=πR3=.【答案】2.【解析】三棱锥P-ABC的三条侧棱PA、PB、PC两两垂直,它的外接球就是其扩充为长方体的外接球,设PA=a,PB=b,PC=c,则ab=,bc=,ca=,解得a=,b=1,c=.故长方体的体对角线的长为=.所以球的直径是,半径R=,则球的表面积S=4πR2=6π.【答案】B题型一柱体的外接球【例1】已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=,DE垂直于平面ABCD交球O于点E,则棱锥E-ABCD的体积为.【解析】如图所示,BE过球心,∴DE=--=2,∴V E-ABCD=×3××2=2.【答案】2棱柱的外接球半径的求法:明确球心、球的半径与棱柱底面的外接圆半径的关系是解决问题的关键.【变式训练1】体积为8的正方体的顶点都在同一球面上,则该球面的表面积为().A.8πB.πC.12πD.4π【解析】正方体的体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以球的半径为,所以球的表面积为4π×()2=12π.故选C.【答案】C题型二锥体的外接球【例2】已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,BC⊥CD,AC⊥平面BCD,且AC=2,BC=CD=2,则球O的表面积为().A.4πB.8πC.16πD.2π【解析】∵AC⊥平面BCD,BC⊂平面BCD,∴AC⊥BC,∵BC⊥CD,AC∩CD=C,∴BC⊥平面ACD,∴三棱锥A-BCD可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为该长方体的体对角线,∴4R2=AC2+BC2+CD2=16,∴R=2,∴球O的表面积为4πR2=16π.【答案】C抓住棱锥的线面关系是解决棱锥的外接球问题的关键,三条侧棱两两垂直或对棱相等的三棱锥可放入正方体(或长方体)中考【变式训练2】(2017广西模拟)某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为().A.50πB.50πC.40πD.40π【解析】由三视图可得,该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以俯视图为底面的三棱柱的外接球,由底面三边长为3,4,5,得底面外接圆的半径r=,球心到底面的距离d=,故球的半径R=,故该三棱锥外接球的表面积S=4πR2=50π.【答案】A题型三多面体的内切球【例3】(2016年全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是().A.4πB.C.6πD.【解析】由题意知,底面三角形的内切圆直径为4,三棱柱的高为3,所以球的最大直径为3,即V的最大值为.【答案】B通过三棱柱底面三角形的内切圆直径与三棱柱的高比较来确定球的最大直径.【变式训练3】已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为的球体与棱柱的所有面均相切,则这个三棱柱的表面积是().A.6B.12C.18D.24【解析】由球的体积公式,得πR3=,∴R=1.∴正三棱柱的高h=2R=2.设正三棱柱的底面边长为a,则其内切圆的半径为×a=1,∴a=2.∴该正三棱柱的表面积为3a×2R+2×a2=18.【答案】C方法球中的最值问题求几何体外接球体积、表面积的最值的问题,主要考查二次函数的配方法和基本不等式的运用.【突破训练】(1)(2017南昌月考)已知矩形ABCD的周长为18,把它沿图中的虚线折成正四棱柱(线段BC四等分),则这个正四棱柱外接球的表面积的最小值为.【解析】设正四棱柱的底面边长为x,高为y,则8x+2y=18,即4x+y=9,0<x<,正四棱柱的外接球半径为=-,当且仅当x=2时,半径的最小值为,∴外接球的表面积的最小值为9π.【答案】9π1.(2017乌鲁木齐期末)球的表面积与它的内接正方体的表面积之比是().A.B.C.D.π【解析】设正方体的边长为a,则球的半径为,所以球的表面积S1=4πR2=4π×a2=3πa2,而正方体的表面积S2=6a2,所以比值=.【答案】C2.(2017江西二模)一个几何体的三视图如图所示,则该几何体的外接球的表面积为().A.36πB.8πC.D.【解析】由几何体的三视图得,该几何体是底面为等腰直角三角形,高为2的直三棱锥,如图所示.该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,∵底面是等腰直角三角形,∴底面外接圆的半径为1,∴R2=1+1=2,∴外接球的表面积是4πR2=8π.故选B.【答案】B3.(2016天津期末)直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB⊥AC,AA1=12,AB=3,AC=4,则球O的半径为().A.B.2C.D.3【解析】因为三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,AB=3,AC=4,AB⊥AC,AA1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直,侧面B1BCC1经过球的球心,且球的直径是其对角线的长.因为AB=3,AC=4,所以BC=5,所以BC1=13,所以球的半径为.故选C.【答案】C4.(2017宝清县一模)一个几何体的三视图如图所示,其中正(主)视图是一个正三角形,则这个几何体的外接球的表面积为().A.B.C.4D.2π【解析】由三视图知,该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图所示.这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,故这个几何体的外接球的半径R=PD=.所以这个几何体的外接球的表面积为S=4πR2=4π×=.【答案】A5.(2016安康三模)一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为().A.B.C.D.3【解析】正三棱柱的两个底面的中心的连线的中点就是外接球的球心,球心与顶点的连线长就是半径,所以r==.故选A.【答案】A6.(2017郑州三模)四面体ABCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体ABCD外接球的表面积为().A.50πB.100πC.200πD.300π【解析】由题意可采用构造法,考虑到四面体ABCD的四个面为全等的三角形,故构造一个长、宽、高分别x、y、z的长方体,使得过同一顶点的三个面的面对角线长分别为10,2,2,则三棱锥A-BCD为长方体中的一个内嵌三棱锥,如图所示,所以x2+y2=100,x2+z2=136,y2+z2=164,设外接球的半径为R,则有(2R)2=x2+y2+z2=200,所以4R2=200,所以外接球的表面积为S=4πR2=200π.故选C.【答案】C7.(2017福建模拟)已知三棱锥P-ABC的三条侧棱两两垂直,且AB=,BC=,AC=2,则此三棱锥的外接球的体积为().A.B.C.D.【解析】∵AB=,BC=,AC=2,∴PA=1,PC=,PB=2.以PA、PB、PC为过同一顶点的三条棱,作长方体如图所示,则长方体的外接球同时也是三棱锥P-ABC的外接球.∵长方体的体对角线长为=2,∴球的直径为2,半径R=.因此,三棱锥P-ABC的外接球的体积是R3=×()3=,故选B.【答案】B8.(2017张家口模拟)已知一个空间几何体的三视图如图所示,这个空间几何体的顶点均在同一个球面上,则此球的体积与表面积之比为().A.1∶3B.3∶1C.4∶1D.3∶2【解析】由三视图知几何体是一个正四棱锥,四棱锥的底面是一个边长为的正方形.因为四棱锥的高为1,所以球心在高所在的直线上,易知球心在底面四边形的中心,故此几何体外接球的半径为1,故球的体积为×π×13=,表面积为4×π×12=4π,所以球的体积与表面积之比为1∶3,故选A.【答案】A9.(2017江南十校联考)一个正方体削去一个角所得到的几何体的三视图如图所示,则该几何体外接球的体积为.。
..高一直观图三视图及体积面积计算学校:___________姓名:___________班级:___________考号:___________一、选择题1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为【答案】D【解析】试题分析:左视图是指从几何体的左边看几何体的投影,如图A的投影为D,E的投影为G,B的投影为C,线段AF的投影为DF,故选D.考点:三视图2.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥 B.三棱锥C.三棱柱 D.三棱台【答案】C【解析】试题分析:该几何体的主视图和俯视图都为矩形,左视图为三角形,可以得到该几何体是一个横着放的三棱柱。
考点:三视图的还原图3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()【答案】D【解析】试题分析:由正视图和侧视图知,几何体可能是两个圆柱的组合体时,俯视图为A,几何体是圆柱与正四棱柱的组合时,俯视图为B,几何体是圆柱与底面为等腰直角三角形的直三棱柱的组合时,俯视图为C,如果俯图是D,正视图和侧视图不可能相同.故选D.考点:三视图.4.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8 C.2+.2+【答案】B【解析】试题分析:根据题目给出的直观图的形状,画出对应的原平面图形的形状,求出相应的边长,则问题可求.作出该直观图的原图形,因为直观图中的线段C′B′∥x′轴,所以在原图形中对应的线段平行于x轴且长度不变,点C和B′在原图形中对应的点C和B的纵坐标是O′B′的2倍,则OB OC=3,则四边形OABC的长度为8.故选B.考点:平面图形的直观图5.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()试卷第2页,总20页..【答案】A 【解析】试题分析:根据斜二测画法知, 平行于x 轴的线段长度不变,平行于y 的线段变为原来的12,∵O ′C ′=1,O ′A ′,∴OC=O ′C ′=1,OA=2O ′A ′= 由此得出原来的图形是A . 考点:斜二测画法6.一个四面体的三视图如图所示,则该四面体的表面积是A.1+.2+.1+.【答案】B 【解析】试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面PAC ⊥平面ABC,PA PC PD AC ==⊥,且1PD =,BA BA ==,所以112AB CAP S S ∆∆===,PAB ∆与PBC ∆,所以1sin 6022PAB PBC S S ∆∆==︒=,故该三棱锥的表面各为12222⨯+⨯=+B .试卷第4页,总20页AC考点:1.三视图;2.多面体的表面积与体积.7.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【解析】试题分析:设正方体棱长为1,由题意得,剩余几何体为一个正方体被一个平面截去一个角,其截去体积为211111326⨯⨯⨯=,因此剩余部分体积为15166-=,比值为15,选D .考点:三视图,三棱锥体积8.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112 【答案】C 【解析】试题分析:根据三视图可该几何体为三棱锥与立方体的组合,如下图所示,故所求体积314443803V =+⨯⨯⨯=,故选C ...考点:1.三视图;2.空间几何体的体积计算.9.已知某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .83πB .32πC .8π D. 【答案】C 【解析】何体的外接球的表面积248S r ππ== ,故答案为:C .考点:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,求出其外接球的半径,代入表面积公式,可得答案.10.一个几何体的三视图如图,则该几何体的体积为( )A .πB .2πC .3πD .6π 【答案】D试卷第6页,总20页【解析】试题分析:由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为21111236ππ⨯⨯⨯⨯=,故选D . 考点:空间几何体的三视图.11. 三棱锥S ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( )A .B .C .D .【答案】A 【解析】试题分析:由三视图知,在三棱锥S ABC 中,SC平面ABC ,AB=BC=4,SC=4,所以.故选A .考点:三视图的应用. 12.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 ( )ABD【答案】A 【解析】试题分析::∵边长为1=∴侧视图的底边长为故所求的面积为:12S ==考点:三视图13.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是 ( )..A .2B .4C .6D .12 【答案】B 【解析】试题分析:由三视图可知此棱锥是底面为直角梯形,高为2的四棱锥.所以()112422432V ⎡⎤=⨯+⨯⨯=⎢⎥⎣⎦.故B 正确.考点:三视图. 14.一个棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是( )A 、13BD【答案】D【解析】试题分析:由三视图可得四棱锥的底面是边长为1的正方形,四棱锥的高为h =,且底面积111S =⨯=,所以11133V Sh ==⨯=,故选D . 考点:三视图.15.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( )A .24-32π B .24-3π C .24-π D .24-2π 【答案】A试卷第8页,总20页【解析】试题分析:该几何体是棱柱,棱柱的高为3,底面为长4宽2的矩形去掉半径为1的半圆,因此底面积为21241822s ππ=⨯-⨯=-,所以体积为3242V sh π==-考点:三视图与棱柱体积16.一个体积为A .36B .8C .38D .12 【答案】A 【解析】试题分析:设棱柱的高为h,由左视图可知,底面的正三角形高为角形的边长为4,所以底面积为142⨯⨯=以有13h ⨯=3h =,可得左视图的面积为3=,故选择A考点:三视图17.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .31cm B .32cm C .33cm D .36cm 【答案】A 【解析】试题分析:该三棱锥的体积是313212131cm V =⨯⨯⨯⨯=. 考点:三视图18.已知几何体的三视图(如图),则该几何体的体积为 ( )..A .34B .4C .324D .334【答案】C【解析】=2的正方形,故体积为21233⨯=选C . 考点:三视图19.如图是一个四棱锥的三视图,则该几何体的体积为( )(A )403 (B )323 (C )163 (D )283【答案】A【解析】试题分析:由三视图得到其直观图(上图所示),则体积为1140[(14)4]4323⨯+⨯⨯=,故选A .考点:三视图.试卷第10页,总20页20.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3【答案】B 【解析】试题分析:由三视图可知原几何体如图所示:故几何体的体积1004)3421(31636=⨯⨯⨯⨯-⨯⨯=V ,答案选B . 考点:空间几何体的三视图与体积21.一个几何体的三视图如图所示,已知这个几何体的体积为h =( )AC..【答案】B 【解析】试题分析:根据题中所给的三视图,可知该几何体为底面为边长为5和6的长方形,顶点在底面上的摄影是左前方的顶点,所以有1563V h =⋅⋅⋅=,解得h =选B .考点:根据所给的几何体的三视图,还原几何体,求其体积及其他量. 22.某几何体的三视图如图所示,则它的体积是.A .283π-B .83π-C .82π-D .23π 【答案】A【解析】试题分析:此几何体是正方体挖了一个圆锥,所以体积ππ32821312222-=⨯⨯-⨯⨯=V .考点:1.三视图;2.几何体的体积.23.如图是正方体的平面展开图,则在这个正方体中N MFE DCB A①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 是异面直线以上四个结论中,正确结论的序号是( )A .①②③B .②④C .③④D .①③④ 【答案】C 【解析】试题分析:把展开图还原为正方体,由图可知:①BM 与ED 是异面直线,所以错误;②CN 与BE 是平行直线,所以错误; ③连接图中AN ,AC 知三角形ANC 是等边三角形,所以AN 与CN 夹角为︒60,所以CN 与BM 所成角也为︒60,正确;④因为CN 与AF 垂直,所以DM 与BN 是异面直线.考点:线面位置关系、空间想象能力、异面直线所成的角. 24.(2014•未央区二模)已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A. B. C.D.【答案】B【解析】试题分析:利用俯视图与正视图,由三视图的画法可判断三棱锥的侧视图.解:由俯视图可知三棱锥的底面是个边长为2的正三角形,由正视图可知三棱锥的一条侧棱垂直于底面,且其长度为2故其侧视图为直角边长为2和的直角三角形,故选B.点评:本题主要考查空间几何体的直观图,以及学生的空间想象能力,是个基础题.二、填空题25.水平放置的某三角形的直观图是直角边为2的等腰直角三角形,如图,则原三角形的面积是.【答案】【解析】试题分析:根据斜二测画法的规则,分别判断原三角形对应的边长关系,即可求出三角形的面积.解:∵三角形的直观图是直角边为2的等腰直角三角形,∴根据斜二测画法的规则可知,原三角形为直角三角形,直角边分别为2,4,∴面积为=4,故答案为:..点评:本题主要考查斜二测画法的应用,熟练掌握斜二测画法的基本原则,灵活应用其中的数量关系..26.三棱柱的三视图如图所示,则该棱柱的体积等于.【答案】3【解析】试题分析:由三视图可知,此三棱柱是直三棱柱,其高为3,底面是底边长2,底边上的高为1的等腰三角形,所以该棱柱的体积等于12133创?.2考点:三视图27.已知某几何体的三视图如右,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 cm3.1【答案】6【解析】试题分析:由三视图可知该几何体是三棱锥,底面三角形是等腰三角形,底边为1,高为1,棱锥的高为1,因此体积为61 考点:三视图及棱锥体积28.设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为________3m【答案】4 【解析】试题分析:由三视图可知几何体为三棱锥,底面积63421=⨯⨯=S ,高2=h ,因此体积431==Sh V ,故答案为4. 考点:几何体的体积.29.如图是某几何体的三视图(单位:cm ),则该几何体的表面积是__ ___cm 2,体积为_ __ cm 3.【答案】14+ 【解析】试题分析:解:根据三视图得出:该几何体是三棱锥,2354AB BC DB CD ====,,,,AB ⊥面BCD ,BC ⊥CD ,∴几何体的表面积是.34325124141112222⨯⨯+⨯⨯+⨯⨯+⨯=+其体积:1113424332S CBD AB ⨯⨯=⨯⨯⨯⨯=,故答案为:14+. 考点:空间几何体的三视图.30.如图,网格纸上正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 .【解析】试题分析:该多面体为一个三棱锥ABCD,如图,其中12AB BC CD BD AD ===,,考点:三视图31.某三棱锥的主视图与俯视图如图所示,则其左视图的面积为___________.【答案】2 【解析】试题分析:三棱锥左视图为三角形,由三棱锥的主视图可知:三棱锥的高为2,所以左视图的高为2,三棱锥的俯视图宽为为2,所以左视图三角形的底面边长为2 所以左视图的面积22221=⨯⨯=s ,所以选A 考点: 三视图32.某几何体的三视图(单位:cm )如图所示,则该几何体最长棱的棱长为 cm .【答案】34【解析】由三视图还原成如图所示的几何体,该几何体为四棱锥,其中,底面是边长为3与4的矩形,且⊥1VC 平面1111D C B A ,31=VC ,由图形,可知1VA 最长,在11C VA Rt ∆中,344332221=++=VA .11B 1考点:三视图.33.一个几何体的三视图如图所示,其中正视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的表面积为________________ .正(主)视图俯视图侧(左)视图.【答案】()21533+ 【解析】试题分析:由条件知原几何体是正六棱锥,底面是边长为1的正六边形,侧棱长为2,h ==,一个侧面面积为1112S =⨯=,∴表面积01(11sin 60)662S =⨯⨯⨯⨯+=.考点:三视图.34.下图是一个几何体的三视图,根据图中数据可得 该几何体的表面积是_________;【答案】251π【解析】试题分析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,<br />其表面为S=25142322)23()23(422ππππ=⨯⨯+⨯⨯+⨯ 故答案为:251π.考点:由三视图求面积、体积.三、解答题35.一个多面体的直观图及三视图如图所示,其中 M ,N 分别是 AF 、BC 的中点(1)求证:MN ∥平面CDEF ; (2)求多面体A-CDEF 的体积.【解析】试题分析:由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且底面是一个直角三角形,由三视图中所标数据易计算出三棱柱中各棱长的值.(1)取BF 的中点G ,连接MG 、NG ,利用中位线的性质结合线面平行的充要条件,易证明结论(2)多面体A-CDEF 的体积是一个四棱锥,由三视图易求出棱锥的底面面积和高,进而得到棱锥的体积. 试题解析:解(1)证明:由三视图知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且AB=BC=BF=4,DE=CF=,90CBF ∠=︒ ,连结BE ,M 在BE 上,连结CEEM=BM ,CN=BN ,所以MN ∥,CE CE CDEF ⊂面,所以//MN 平面CDEF (2)取DE 的中点H . ∵AD=AE ,∴AH ⊥DE , 在直三棱柱ADE-BCF 中, 平面ADE ⊥平面CDEF ,平面ADE∩平面CDEF=DE .∴AH ⊥平面CDEF .36.如图,某多面体的直观图及三视图如图所示: E,F 分别为PC,BD 的中点.(1)求证:PAD EF 平面// (2)求证:PAD PDC 平面平面⊥ (3)求此多面体的体积【答案】(1)四棱锥ABCD P -的底面是边长为2的正方形,侧面PAD 是等腰三角形,2==PD PA ,且ABCD PAD 平面平面⊥.连结AC ,则F 是AC 的中点。