三视图及其表面积体积
- 格式:doc
- 大小:962.50 KB
- 文档页数:12
三视图及表面积、体积由三视图还原几何体的方法:也可以根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.常见的有以下几类:(1)三视图为三个三角形,对应的几何体为三棱锥;(2)三视图为两个三角形,一个四边形,对应的几何体为四棱锥;(3)三视图为两个三角形,一个圆,对应的几何体为圆锥;(4)三视图为一个三角形,两个四边形,对应的几何体为三棱柱;(5)三视图为三个四边形,对应的几何体为四棱柱;(6)三视图为两个四边形,一个圆,对应的几何体为圆柱;1.【2017·全国卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B 2.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .12+πB .32+πC .123+πD .323+π3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .23B .32C .22D .2【答案】B4.【2016·全国卷Ⅱ】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .π20B .π24C .π28D .π32【答案】C5.【2016·北京卷】某三棱锥的三视图如图所示,则该三棱锥的体积为A .61B .31C .21D .1【答案】A6.【2015·陕西卷】一个几何体的三视图如图所示,则该几何体的表面积为A .π3B .π4C .42+πD .43+π【答案】D7.【2016·全国卷Ⅲ】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A .53618+B .51854+C .90D .81【答案】B8.【2015·全国卷Ⅱ】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .81B .71C .61D .51 【答案】D9.【2016·山东卷】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .π3231+B .π3231+C .π6231+D .π621+ 【答案】C10.【2014·全国卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A .26B .24C .6D .4【答案】B11.【2015·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cmB .312cmC .3332cmD .3340cm 【答案】C12.【2015·重庆卷】某几何体的三视图如图所示,则该几何体的体积为A .π+31B .π+32C .π231+D .π232+ 【答案】A13.【2014·安徽卷】一个多面体的三视图如图所示,则该多面体的表面积为A .321+B .318+C .21D .18【答案】A 14.【2014·湖北卷】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是)2,0,0(,)0,2,2(,)1,2,1(,)2,2,2(,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和② 【答案】D15.【2015·北京卷】某三棱锥的三视图如图所示,则该三棱锥的表面积是11俯视图侧(左)视图21A .52+B .54+C .522+D .5 【答案】C16.【2016·四川卷】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是__________.正视图331【答案】3317.【2016·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______2cm ,体积是______3cm .【答案】72 3218.【2016·天津卷】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ), 则该四棱锥的体积为_______3m .【答案】219.【2015·天津卷】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_______3m . 1侧视图俯视图11112111111【答案】π3820.【2017·全国卷Ⅲ】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .π43C .2πD .4π21.【2017·全国卷Ⅱ】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A .π90B .π63C .π42D .π36【答案】B22.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_______. 【答案】π29 23.【2016·全国卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是π328,则它的表面积是 A .π17B .π18C .π20D .π28【答案】A 24.【2014·北京卷】如图,正方体1111D C B A ABCD -的棱长为2,动点E 、F 在棱11B A 上,动点P 、Q 分别在棱AD 、CD 上.若1=EF ,x E A =1,y DQ =,z DP =(x ,y ,z 大于零),则四面体EFQ P -的体积A .与x ,y ,z 都有关B .与x 有关,与y ,z 无关C .与y 有关,与x ,z 无关D .与z 有关,与x ,y 无关25.【2014·湖南卷】一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于A .1B .2C .3D .4【答案】B 26.【2015·山东卷】在梯形ABCD 中,2π=∠ABC ,BC AD //,222===AB AD BC .将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为A .32π错误!未指定书签。
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。
[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。
[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。
[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。
[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。
第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCDA1B1C1C1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCDEFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。
立体几何和三视图一、知识点回顾1、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
▲长对正,高平齐 ,宽相等2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V S h r h π==圆柱 13V S h=锥 h r V 231π=圆锥'1()3V S S h =+台'2211()()33V S S h r rR R h π=++=++圆台二、专题讲解1、空间角问题(1)直线与直线所成的角 ①两平行直线所成的角:规定为 0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为 0。
②平面的垂线与平面所成的角:规定为90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
三视图及其表面积体积一、选择题1.一只蚂蚁从正方体1111ABCD A B C D 的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A.①②B.①③C.③④D.②④2.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )A .38B .π34C .π12D .π338 3.某空间几何体的三视图如图所示,该空间几何体的体积是( )#A.320 B. 10 C. 340 D. 350 4.已知某锥体的正视图和侧视图如图,其体积为233,则该锥体的俯视图可以是( )A .B .C .D .5.若某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.π23B.3+πC.323+πD.325+π 6.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为( ) (A .126+πB .246+πC .1212+πD .1224+π 7.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是( ) A .圆柱 B .圆锥 C .棱锥 D .棱柱8.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为A .8π3+B .8π23+C .8π83+ D .8π163+ 9.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( ) }A .320 B .316C .68π-D .38π-10.一个三棱锥的三视图如图所示,则该三棱锥的表面积为( )A .22514++B .16214+C .8214+D .814+ 11.已知某几何体的三视图如图所示,则该几何体的表面积为( )D.252034%12.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是( ) A .圆柱 B .圆锥 C .棱锥 D .棱柱13.已知某棱锥的三视图如图所示,则该棱锥的表面积为( )A .25+B .532+C .522+ D .35+ 14.已知几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分別为( )A.2324,12cm cm ππ B.2315,12cm cm ππC.2324,36cm cm ππ D.以上都不正确·15.正方体ABCD ﹣A 1B 1C 1D 1中E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )A .B .C .D .16.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是( )A.82cmB.432cm C.122cm D.4432cm{17.已知某三棱锥的三视图如图所示,则该三棱锥的体积为()A.8 B.24 C.325D.96518.三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.211B.163C.38D.4219.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A.球B.三棱锥C.正方体D.圆柱20.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()¥21.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;俯视图主视图左视图④菱形的直观图是菱形. 以上结论正确的是( )A .①②B .①C .③④D .①②③④$评卷人 得分二、解答题22.已知平面五边形ADCEF 是轴对称图形(如图1),BC 为对称轴,AD ⊥CD ,AD=AB=1,3CD BC ==,将此五边形沿BC 折叠,使平面ABCD ⊥平面BCEF ,得到如图2所示的空间图形,对此空间图形解答下列问题.【(1)证明:AF ∥平面DEC ;(2)求二面角E AD B --的余弦值.23.一个几何体的三视图如图所示(单位长度为:cm )(1)求该几何体的体积; (2)求该几何体的表面积. 评卷人 得分¥三、填空题24.已知正的边长为a ,那么的平面直观图C B A '''∆的面积为 .参考答案、1.D【解析】试题分析:最短距离是正方体侧面展开图,即矩形111ABCC B A A 的对角线1AC (经过1BB )、或矩形11ABCC D DA 的对角线1AC (经过CD ),故视图为②④.考点:最短距离. 2.C 【解析】试题分析:由三视图可知该几何体为四棱锥,底面为正方形,边长为2,有一侧棱垂直于底面,侧棱为2,因此外切球直径为r =2412S r ππ==考点:三视图与几何体体积 3.C 【解析】 ;试题分析:此几何体是 三棱锥,底面是直角三角形面积为104521=⨯⨯=S ,三棱锥的高是4,所以几何体的体积34041031=⨯⨯=V ,故选C. 考点:三视图4.C 【解析】试题分析:选项C 的体积1122323V =⨯⨯⨯=,故选C. 考点:1、三视图;2、锥体的体积.【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐 (简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体的面积公式. 5.C 【解析】试题分析: 由三视图可知该几何体为一个半圆锥,即由一个圆锥沿中轴线切去一半面得11222S =⨯ \132122πππ⨯+⨯⨯=+故选C.考点:1、三视图;2、表面积.【方法点晴】本题主要考查三视图和表面积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐 (简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握球 和锥体的表面积公式. 6.A 【解析】试题分析:由三视图可知,该几何体为一组合体,它由半个圆柱和一个底面是直角三角形的直棱柱组成,故该几何体的体积2112324361222V ππ=⨯⨯⨯+⨯⨯⨯=+,故选A. 考点:1.三视图;2.多面体与旋转体的体积.7.B 【解析】试题分析:当棱锥和棱柱分别为正四棱锥和正四棱柱时,会出现正方形;圆柱的横截面为长方形,当其底面直径和高相等时,就是正方形;对于圆锥,三视图可能出现的有:圆、三角形.所以选B . ;考点:三视图. 8.A【解析】此几何体为组合体,下面是正方体,上面是球的41,且球的半径为1,所以体积314π222π18433V =⨯⨯+⨯⨯=+,故选A.9.A【解析】试题分析:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示,∴该几何体的体积为3203481231223=-=⨯⨯-,故选A .考点:由三视图求面积、体积. 10.C 【解析】 ~试题分析:由三视图作出三棱锥的直观图,如图, ,ABC ADC ∆∆是全等的直角三角形,0==90ABC ADC ∠∠,==543,2ABC AD BC +==,故12332ABC ADC S S ∆∆==⨯⨯=,在Rt BCD ∆中,2BC CD ==,0=90BCD ∠,所以12222BCD S ∆=⨯⨯=,在ABD ∆中, AB AD =,高927AE =-=,所以1227142BAD S ∆=⨯⨯=,故表面积为所以33214814+++=+,选D.考点:由三视图求表面积. 11.C 【解析】试题分析:由图可知,该几何体为三棱锥,直观图故下图所示,由图可知,表面积为111145343454322222ABC ACD BCD ABD S S S S ∆∆∆∆+++=⋅⋅+⋅⋅+⋅⋅+⋅⋅=.考点:三视图. 12.B 【解析】 。
试题分析:当棱锥和棱柱分别为正四棱锥和正四棱柱时,会出现正方形;圆柱的横截面为长方形,当其底面直径和高相等时,就是正方形;对于圆锥,三视图可能出现的有:圆、三角形.所以选A . 考点:三视图. 13.D 【解析】试题分析:根据三视图可知,几何体是一条侧棱垂直于底面的四棱锥,底面是边长为1的正方形,如下图所示,该几何体的四个侧面均为直角三角形,侧面积11=2(1122S ⋅⋅⋅⋅侧=1S 底,所以该几何体的表面积为3S = D.考点:三视图与表面积.【易错点睛】本题考查三视图与表面积,首先应根据三视图还原几何体,需要一定的空间想象能力,另外解本题时,也可以将几何体置于正方体中,这样便于理解、观察和计算.根据三视图求表面积一定要弄清点、线、面的平行和垂直关系,能根据三视图中的数据找出直观图中的数据,从而进行求解,考查学生空间想象能力和计算能力. 14.A 【解析】 ,试题分析:根据三视图可知该几何体是圆锥,其底面半径为3r =,母线长为5,高为4h ==,所以该几何体的表面积为215S rl cm ππ==,体积为231123V r h cm ππ==,故选A.考点:三视图与几何体的表面积与体积. 【方法点晴】本题主要考查了三视图与几何体的表面积与体积,属于中档题.三视图往往需要根据三个视图还原几何体,该几何体为圆锥,这是解题的关键,根据三视图的规则,主俯同长,左俯同宽,主左同高,据此可知圆锥的底面半径为3r =,母线长5l =,根据轴截面可得圆锥的高h ,根据圆锥的表面积和体积公式求解即可. 15.C【解析】试题分析:过点1,,C E A 的平面截去该正方体的上半部分后,剩余部分的直观图如图,则该几何体的左视图为C.所以C 选项是正确的.考点:三视图. 16.C 【解析】 》试题分析:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积2122242212S cm =⨯+⨯⨯⨯=,故选:C .考点:棱柱、棱锥、棱台的体积;由三视图求面积、体积. 17.C 【解析】试题分析:由三视图知,该几何体是一个以俯视图为底面的三棱锥,底面面积1125625S =⨯⨯=,高2212164()55h =-=,所以该几何体的体积13235V Sh ==,故选C .考点:1、三棱锥的三视图书馆2、三棱锥的体积.【方法点睛】解答此类问题的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据. 18.D 【解析】试题分析:由已知中的三视图可得SC ⊥平面ABC , "且底面△ABC 为等腰三角形,在△ABC 中AC=4,AC 边上的高为3 故BC=4,在Rt △SBC 中,由SC=4, 可得SB= 42考点:简单空间图形的三视图 19.D 【解析】试题分析:球的三视图都是圆,如果是同一点出发的三条侧棱两两垂直,并且长度相等的三棱锥的三视图是全等的等腰直角三角形,正方体的三视图可以是正方形,但圆柱的三视图中有两个视图是矩形,有一个是圆,所以圆柱不满足条件,故选D.考点:三视图—20.B【解析】试题分析:由三视图可知,这是一个三棱柱,内切球在正视图的投影是正视图的内切圆,设其半径为r ,根据三角形面积公式有()11681068,222r r ++=⋅⋅=. 考点:几何体的内切球.21.A【解析】试题分析:由斜二测画法的规则可知:根据平行性不变,所以①正确;根据平行性不变,所以②是正确的;正方形的直观图是平行四边形,所以③错误;因为平行与y 轴的线段长度减半,平行于x 轴的线段长度不变,所以④是错误的,故选A .考点:斜二测画法.22.见解析【解析】(1)如图,过D 作DG ⊥BC 于点G ,连接GE ,·因为BC 为对称轴,所以AB ⊥BC ,则有AB ∥DG ,又AB ⊂平面ABF ,所以DG ∥平面ABF ,同理EG ∥平面ABF.又DG∩EG=G ,所以平面DGE ∥平面ABF.又平面AFED∩平面ABF=AF ,平面AFED∩平面DGE=DE ,所以AF ∥DE ,又DE ⊂平面DEC ,所以AF ∥平面DEC.(2)如图,过G 作GH ⊥AD 于点H ,连接HE.由(1)知EG ⊥BC ,又平面ABCD ⊥平面BCEF ,平面ABCD∩平面BCEF=BC ,所以EG ⊥平面ABCD ,所以EG ⊥AD.又EG∩HG=G ,所以AD ⊥平面EHG ,则AD ⊥HE ,则∠EHG 即为二面角E AD B --的平面角.由AD ⊥CD ,AD=AB=1,3CD BC ==G 为BC 的中点,33GH =,32EG =,37EH =. 因为EGH △为直角三角形,所以21cos 7EHG ∠=, 则二面角E AD B --的余弦值为217.23.(1)2243V =;(2)80162S =+【解析】试题分析:(1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体.由此求得几何体的体积为2243V =;(2)正方体部分一共5个面,面积是44580⨯⨯=.四棱锥的侧面三角形的高222222h =+=,所以四棱锥侧面积为144221622⨯⨯⨯= ,所以表面积为80162+.试题解析:(1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体.且正四棱锥的底面边长为4,四棱锥的高为2,所以体积122444244433V =⨯⨯⨯+⨯⨯=. (2)由三视图知,四棱锥的侧面三角形的高222222h =+=. 该几何体表面积为154424422801622S =⨯⨯⨯+⨯⨯⨯=+.考点:三视图,立体几何求表面积和体积.24.26a 【解析】试题分析:如图所示是实际图形和直观图,由图可知,13,O C 24A B AB a OC a ''''====,在图中作C D A B ''''⊥,垂足为D ',则26C D O C 2a ''''==.2C 1166C D 22A B S A B a a a '''∆''''∴=⨯=⨯⨯=.考点:斜二测画法.【方法点晴】本题主要考查斜二测画法,属于中等题型.应注意以下步骤:取O 点为原点,以水平方向的直线为x 轴,竖直方向的直线为y 轴,取任一点'O ,画出相应的'x 轴、'y 轴,使'''45x O y ∠=.(1)在已知图形中,取互相垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的'x 和'y 轴,两轴相交于点'O ,且使'''45x O y ∠=(或0135),它们确定的平面表示水平面;(2)在已知图形中平行于x 轴、y 轴的线段,在直观图中分别画成平行于'x 轴或'y 轴的线段;(3)在已知图形中平行于x 轴的线段,在直观图中保持长度不变;平行于y 轴的线段,长度为原来的一半;(4)如需第三维则在已知图形中平行于z 轴的线段,在直观图中保持长度不变.。