声速时, 产生激波,使出口截面为临界截面。
2021/4/10
21
已知:空气从 T0=30的0贮K 气罐进入一根直径为d=10mm的绝热光滑管入
口处 T1=298.3K,p1 9经8k过P有a(摩ab擦);的流动到达截面2时,
Ma2=0.4
求:(1)入口处 Ma1; (2)截面2处 T2 , p2 , 2 ,V2;(3)入口处到截面2的长度L .
由一维定常绝热流的能量方程
h v2 2
hT
常数
可得: T
c2 2c p
TT
对应于滞止 温度,有一 滞止声速:
cT (RTT )1/ 2
2021/4/10
10
当比热容这定值,并利用定压热容与气体常数、绝热指数之 间的关系,以及定熵过程的过程方程,可得
TT T
cT2 c2
1 1 Ma2
2
2021/4/10
7
由于微弱扰动波的传播过程进行得很迅速,与外界来 不及进行热交换,而且其中的压强、密度和温度变化极为 微小,所以这个传播过程可以近似地认为是一个可逆的绝 热过程,即等熵过程。
假定气体是热力学中的完全气体,则根据等熵过程关系式可
得
dp p RT d
为热力学
c p RT
( p2
/
p1
1)(2 2 / 1
/
1
1) 1/ 2
c1
激波行进速度总是大于当地声速
激波后的熵增加
2021/4/10
18
6.4 等截面摩擦管流
一、范诺线
基本方程:
一维等截面连续性方程 v qm / A 常数
完全气体一维定常绝热方程
T
v2 2c p