线性代数(经管类)考试试卷及答案(一)
- 格式:doc
- 大小:860.50 KB
- 文档页数:7
全国2013年10月高等教育自学考试线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r(A )表示矩阵A 的秩.选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题1分,共5分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式1122a b a b =1,1122a c a c =-2,则111222a b c a b c ++=A .-3B .-1C .1D .32.设矩阵A =1001021003⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则A -1= A .001020300⎛⎫ ⎪ ⎪ ⎪⎝⎭B .100020003⎛⎫⎪ ⎪ ⎪⎝⎭C .300020001⎛⎫ ⎪ ⎪ ⎪⎝⎭D .003020100⎛⎫ ⎪ ⎪ ⎪⎝⎭3.设A 为m ×n 矩阵,A 的秩为r ,则 A .r =m 时,Ax =0必有非零解B .r =n 时,Ax =0必有非零解C .r<m 时,Ax =0必有非零解D .r<n 时,Ax =0必有非零解4.设4阶矩阵A 的元素均为3,则r(A )= A .1 B .2 C .3D .45.设1为3阶实对称矩阵A 的2重特征值,则A 的属于1的线性无关的特征向量个数为 A .0 B .1 C .2D .3非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
高等教育自学考试《线性代数(经管类)》题库一1. 【单选题】(江南博哥)A.B.C.D.正确答案:B参考解析:2. 【单选题】A. a=-1,b=3,c=0,d=3B. a=-1,b=3,c=1,d=3C. a=3,b=-1,c=1,d=3D. a=3,b=-1,c=0,d=3正确答案:D参考解析:3. 【单选题】A.B.C.D.正确答案:B参考解析:合同矩阵A和B 有相同的秩和正惯性指数,只有B符合且都有一个正惯性指数4. 【单选题】设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A. A的行向量组线性相关B. A的行向量组线性无关C. A的列向量组线性相关D. A的列向量组线性无关正确答案:D参考解析:设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A的列向量组线性无关5. 【单选题】设α1,α2,α3,线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不可由α1,α2,α3线性表示,则对任意常数k必有()A. α1,α2,α3,kβ1+β2线性相关B. α1,α2,α3,β1+kβ2线性无关C. α1,α2,α3,β1+kβ2线性相关D. α1,α2,α3,kβ1+β2线性无关正确答案:D参考解析:6. 【填空题】我的回答:正确答案:参考解析:7. 【填空题】设A为三阶方阵,且|A|=-2,则|2A|=_____.我的回答:正确答案:参考解析:由|A|=|A T|,则|2A T|=23|A T|=8×(-2)=-16.8. 【填空题】我的回答:正确答案:参考解析:9. 【填空题】设实二次型f(x1,x2,x3)=.则f的秩为_______. 我的回答:正确答案:参考解析:10. 【填空题】我的回答:正确答案:参考解析:【答案】方程组只有零解,说明系数矩阵满秩.11. 【填空题】我的回答:正确答案:参考解析:【答案】x=k(1,1,1) T12. 【填空题】我的回答:正确答案:参考解析:【答案】313. 【填空题】设A为3阶方阵,其特征值分别为1,2,3,则|A+2E|=_______.我的回答:正确答案:参考解析:【答案】60|A+2E|=(1+2)X(2+2)X(3+2)=3 X 4 X 5=60.14. 【填空题】我的回答:正确答案:参考解析:【答案】15. 【填空题】我的回答:正确答案:参考解析:【答案】16. 【计算题】我的回答:参考解析:17. 【计算题】求向量组=(2,3,1),=(1,-1,3),=(3,2,4)的一个极大无关组,并将其余向量用该极大无关组表示出来.我的回答:参考解析:18. 【计算题】我的回答:参考解析:19. 【计算题】我的回答:参考解析:20. 【计算题】我的回答:参考解析:21. 【计算题】我的回答:参考解析:线性方程组的增广矩阵22. 【计算题】我的回答:参考解析:23. 【证明题】我的回答:参考解析:高等教育自学考试《线性代数(经管类)》模拟卷(二)1. 【单选题】设A为三阶方阵,其特征值分别为1,-2,-1,则|A+E|= ()A. 0B. 2C. -2D. 12正确答案:A参考解析:2. 【单选题】下列矩阵中能相似于对角阵的矩阵是()A.B.C.D.正确答案:C参考解析:3. 【单选题】A、B为n阶矩阵,且A~B,则下述结论中不正确的是()A. λE-A=λE-BB. |A|=|B|C. |λE-A|=|λE-B|D. r(A)=r(B)正确答案:A参考解析:4. 【单选题】A. -EB. EC. DD. A正确答案:B参考解析:5. 【单选题】二次型的秩为A. 1B. 2C. 3D. 4正确答案:D参考解析:6. 【填空题】设向量=(1,1,2,--2),=(1,1,-2,-4),=(1,1,6,0),则向量空间V={β|β=,∈R,i=1,2,3)的维数为_______.我的回答:正确答案:参考解析:6. 【计算题】我的回答:参考解析:7. 【填空题】设二次型)=,则二次型的秩是_______.我的回答:正确答案:参考解析:7. 【计算题】设二次型()=,用正变变换化上述二次型为标准形,并指出二次型的秩及其正定性。
2022年自考专业(国贸)线性代数(经管类)考试真题及答案一、单项选择题 (本大题共10小题,每小题2分,共20分)1、已知2阶行列式,,则( )A.m-nB.n-mC.m+nD.-(m+n)2、设A , B , C均为n阶方阵,AB=BA,AC=CA,则ABC=( )A.ACBB.CABC.CBAD.BCA3、设A为3阶方阵,B为4阶方阵,且|A|=1,|B|=-2,则行列式|B||A|之值为( )A.-8B.-2C.2D.84、,,,,则B=( )A.PAB.APC.QAD.AQ5、已知A是一个3*4矩阵,下列命题中正确的是( )A.若矩阵A中全部3阶子式都为0,则秩(A)=2B.若A中存在2阶子式不为0,则秩(A)=2C.若秩(A)=2,则A中全部3阶子式都为0D.若秩(A)=2,则A中全部2阶子式都不为06、下列命题中错误的是( )A.只含有1个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由1个非零向量组成的向量组线性相关D.2个成比例的向量组成的向量组线性相关7、已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )A.α1必能由α2,α3,β线性表出B.α2必能由α1,α3,β线性表出C.α3必能由α1,α2,β线性表出D.β必能由α1,α2,α3线性表出8、设A为m*n矩阵,m≠n,则方程组Ax=0只有零解的充分必要条件是A的秩( )A.小于mB.等于mC.小于nD.等于n9、设A为可逆矩阵,则与A必有相同特征值的矩阵为( )A.ATB.A2C.A-1D.A*10、二次型的正惯性指数为( )A.0B.1C.2D.3参考答案:【一、单项选择题】1~5BDABC6~10CDDA。
《线性代数(经管类)》综合测验题库一、单项选择题1.下列条件不能保证n阶实对称阵A为正定的是( )A.A-1正定B.A没有负的特征值C.A的正惯性指数等于nD.A合同于单位阵2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说确的是( )A.是正定的B.其矩阵可逆C.其秩为1D.其秩为23.设f=X T AX,g=X T BX是两个n元正定二次型,则( )未必是正定二次型。
A.X T(A+B)XB.X T A-1XC.X T B-1XD.X T ABX4.设A,B为正定阵,则( )A.AB,A+B都正定B.AB正定,A+B非正定C.AB非正定,A+B正定D.AB不一定正定,A+B正定5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为( )A.rB.t-rC.2t-rD.r-t7.设8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是( )9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论( )不成立。
A.A与B相似B.A与B等价C.A与B有相同的特征值D.A与B有相同的特征向量10.下列命题错误的是( )A.属于不同特征值的特征向量必线性无关B.属于同一特征值的特征向量必线性相关C.相似矩阵必有相同的特征值D.特征值相同的矩阵未必相似11.下列矩阵必相似于对角矩阵的是( )12.已知矩阵有一个特征值为0,则( )A.x=2.5B.x=1C.x=-2.5D.x=013.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=( )A.2B.-6C.6D.2414.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为( )A.3,1,1B.2,-1,-2C.3,1,-1D.3,0,115.设A的特征值为1,-1,向量α是属于1的特征向量,β是属于-1的特征向量,则下列论断正确的是( )A.α和β线性无关B.α+β是A的特征向量C.α与β线性相关D.α与β必正交16.设α是矩阵A对应于特征值λ的特征向量,P为可逆矩阵,则下列向量中( )是P-1AP对应于λ的特征向量。
高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.3阶行列式011101110||---=ij a 中元素21a 的代数余子式=21A ( C )A .2-B .1-C .1D .22.设矩阵⎪⎪⎭⎫ ⎝⎛=22211211a aa a A ,⎪⎪⎭⎫ ⎝⎛++=121112221121a a a a a a B ,⎪⎪⎭⎫ ⎝⎛=01101P ,⎪⎪⎭⎫⎝⎛=11012P ,则必有( A ) A .B A P P =21B .B A P P =12C .B P AP =21D .B P AP =123.设n 阶可逆矩阵A 、B 、C 满足E ABC =,则=B ( D )A .11--C AB .11--A CC .ACD .CA4.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=000100A ,则2A 的秩为(B )A .0B .1C .2D .343214321法惟一,则向量组4321,,,αααα的秩为( C ) A .1B .2C .3D .44321A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合7.设321,,ααα是齐次线性方程组0=Ax 的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是( B ) A .2121,,αααα+ B .133221,,αααααα+++ C .2121,,αααα-D .133221,,αααααα---8.若2阶矩阵A 相似于矩阵⎪⎪⎭⎫⎝⎛-=3202B ,E 为2阶单位矩阵,则与矩阵A E -相似的矩阵是( C )A .⎪⎪⎭⎫⎝⎛4101B .⎪⎪⎭⎫⎝⎛--4101C .⎪⎪⎭⎫⎝⎛--4201D .⎪⎪⎭⎫⎝⎛---42019.设实对称矩阵⎪⎪⎪⎭⎝--=120240A ,则3元二次型Ax x x x x f T =),,(321的规范形为( D )A .232221z z z ++B .232221z z z -+C .2221z z +D .2221z z -ij A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.已知3阶行列式696364232333231232221131211=a a a a a a a a a ,则=333231232221131211a a a a a a a a a _______________.3=3D _______________.13.设⎪⎪⎭⎫ ⎝⎛-=01A ,则=+-E A A 22_______________.14.设A 为2阶矩阵,将A 的第2列的(2-)倍加到第1列得到矩阵B .若⎪⎪⎭⎫⎝⎛=4321B ,则=A _______________.15.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=333220A ,则=-1A _______________.16.设向量组)1,1,(1a =α,)1,2,1(2-=α,)2,1,1(3-=α线性相关,则数=a ___________.17.已知x )1,0,1(1-=,x )5,4,3(2=是3元非齐次线性方程组b Ax =的两个解向量,则对应齐次线性方程组0=Ax 有一个非零解向量=ξ_______________. 18.设2阶实对称矩阵A 的特征值为2,1,它们对应的特征向量分别为)1,1(1=α,T k ),1(2=α,则数=k ______________.20.二次型3221321)()(),,(x x x x x x x f -+-=的矩阵=A _______________.21.已知3阶行列式=||ij a 4150231-x x 中元素12a 的代数余子式812=A ,求元素21a 的代数余子式21A 的值. 解:由8445012=-=-=x x A ,得2-=x ,所以5)38(413221=+--=---=A .22.已知矩阵⎪⎪⎭⎫ ⎝⎛--=0111A ,⎪⎪⎭⎫⎝⎛-=2011B ,矩阵X 满足X B AX =+,求X .解:由X B AX =+,得B X A E =-)(,于是⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-=--13/113/1313131201121113120111112)(11B A E X .23.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛-------0700070041202311 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000070041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0000010041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000010040202011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000010020102011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000001002010001, 321,,ααα是一个极大线性无关组,=4α321020ααα⋅++⋅.24.设3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321ax x x x ax x x x ax ,(1)确定当a 为何值时,方程组有非零解;(2)当方程组有非零解时,求出它的基础解系和全部解.解:(1)100010111)2(1111111)2(1212112111111||--+=+=+++==a a a a a a a a a a a a a a A2)1)(2(-+=a a ,2-=a 或1=a 时,方程组有非零解;(2)2-=a 时,⎪⎪⎪⎭⎫ ⎝⎛--→000330211A ⎪⎪⎪⎭⎫ ⎝⎛--→000110211⎪⎪⎪⎭⎫ ⎝⎛--→000110101,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛111,全部解为⎪⎪⎪⎭⎫⎝⎛111k ,k 为任意实数;1=a 时,⎪⎪⎪⎭⎫ ⎝⎛→000000111A ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-011,⎪⎪⎪⎭⎫⎝⎛-101,全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101121k k ,21,k k 为任意实数. 25.设矩阵⎪⎪⎪⎭⎫⎝⎛=504313102B ,(1)判定B 是否可与对角矩阵相似,说明理由;(2)若B 可与对角矩阵相似,求对角矩阵Λ和可逆矩阵P ,使Λ=-BP P 1.解:(1))67)(1(5412)1(504313102||2+--=-----=-------=-λλλλλλλλλλB E)6()1(2--=λλ,特征值121==λλ,63=λ.对于121==λλ,解齐次线性方程组0)(=-x B E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛------=-000000101404303101B E λ,⎪⎩⎪⎨⎧==-=332231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=0101p ,⎪⎪⎪⎭⎫⎝⎛-=1012p ;对于63=λ,解齐次线性方程组0)(=-x B E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----=-0004/3104/101104353104B E λ,⎪⎪⎪⎩⎪⎪⎪⎨⎧===3332314341x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=14/34/13p .3阶矩阵B 有3个线性无关的特征向量,所以B 相似于对角阵;(2)令⎪⎪⎪⎭⎫ ⎝⎛=Λ600010001,⎪⎪⎪⎭⎫ ⎝⎛-=1104/3014/110P ,则P 是可逆矩阵,使得Λ=-BP P 1.26.设3元二次型3221232221321222),,(x x x x x x x x x x f --++=,求正交变换Py x =,将二次型化为标准形.解:二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛----=110121011A .111121011111201110121011||--=--=---=-λλλλλλλλλλλλA E )3)(1(1101)3(101131001--=--=--=λλλλλλλλλ,特征值01=λ,12=λ,33=λ.对于01=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---=-000110101110121011A E λ,⎪⎩⎪⎨⎧===333231x x x x x x ,⎪⎪⎪⎭⎫ ⎝⎛=1111α,单位化为⎪⎪⎪⎪⎭⎫ ⎝⎛=3/13/13/11p ; 对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-=-000010101010111010A E λ,⎪⎩⎪⎨⎧==-=332310x x x x x ,⎪⎪⎪⎭⎫ ⎝⎛-=1012α,单位化为⎪⎪⎪⎪⎭⎫ ⎝⎛-=2/102/12p ; 对于33=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛=-000210101210111012A E λ,⎪⎩⎪⎨⎧=-==3332312x x x x x x ,⎪⎪⎪⎭⎫⎝⎛-=1213α,单位化为⎪⎪⎪⎪⎭⎫⎝⎛-=6/16/26/13p .令⎪⎪⎪⎪⎭⎫⎝⎛--=6/12/13/16/203/16/12/13/1P ,则P 是正交矩阵,使得=AP P T ⎪⎪⎪⎭⎫ ⎝⎛300010000,经正交变换Py x =后,原二次型化为标准形23222130y y y f ++⋅=. 四、证明题(本题6分)27.已知A 是n 阶矩阵,且满足方程022=+A A ,证明A 的特征值只能是0或2-. 证:设λ是A 的特征值,则满足方程022=+λλ,只能是0=λ或2-=λ.。
1【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。
A、B、C、D、您的答案:D参考答案:D纠错查看解析2【单选题】已知n阶可逆矩阵A、B、C满足ABC=E,则C=A、B-1A-1B、A-1B-1C、BAD、AB您的答案:A参考答案:A纠错查看解析3【单选题】多项式的常数项是().A、-14B、-7C、7D、14您的答案:D参考答案:D纠错查看解析4【单选题】设向量组下列向量中可以表为线性组合的是().A、B、C、D、您的答案:A参考答案:A纠错查看解析5【单选题】设是n阶可逆矩阵,下列等式中正确的是()A、B、C、D、您的答案:D参考答案:D纠错查看解析6【单选题】设A为二阶方阵,B为三阶方阵,且行列式|A|=2,|B|=-1,则行列式|A||B|=A、8B、-8C、2D、-2您的答案:B参考答案:B纠错查看解析7【单选题】设向量组可由向量组线性表出,下列结论中正确的是()。
A、若,则线性相关B、若线性无关,则C、若,则线性相关D、若线性无关,则您的答案:A参考答案:A纠错查看解析8【单选题】设行列式,则A 、B 、C 、D 、您的答案:C 参考答案:C纠错 查看解析9【单选题】若四阶实对称矩阵A 是正定矩阵,则A 的正惯性指数为A 、1B 、2C 、3D 、4您的答案:D 参考答案:D纠错 查看解析10【单选题】若向量级α1=(1,t+1,0),α2=(1,2,0),α3=(0,0,t-1)线性无关,则实数tA、t≠0B、t≠1C、t≠2D、t≠3您的答案:B参考答案:B纠错查看解析11【单选题】已知2阶行列式则A、﹣2B、﹣1C、1D、2您的答案:B参考答案:B纠错查看解析12【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:B参考答案:B纠错查看解析13【单选题】设矩阵,则A、B、C、D、您的答案:B参考答案:B纠错查看解析14【单选题】设阶矩阵满足,则()。
20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
线性代数(经管类)试题一. 单项选择题(本大题共10小题,每小题2分,共20分)2. 设/I, B , C 均为〃阶方阵,AB = BA, AC = CA f 贝 ij ABC = ( D ) A. ACBB. CABC. CBAD. BCAABC = (AB)C = (BA)C = B(AC) = B(CA) = BCA .3. 设/为3阶方阵,〃为4阶方阵,且|A|=1, |B|=-2,则行列式\\B\A\之值为(A ) A. -8B. -2C. 2D. 8||B|AH-2A|=(-2)3|A|=-8.%1I a \2°13、<a\\ %]2a\3仃0 0、‘1 0 o'4. A = 。
21 ^22 。
23 ,B =Cl2\% 22 a 23,P 二 0 3 0 ,Q = 3 1 0,则B= ( B )卫31 °32 °33/Z 31彳皎 C/33丿<0 0 b<o o i 丿A. PAB. APC. Q/\D. AQ(a \\%如、<1 0 0、仙1 3如 a \3'AP = a 2\ a 22 a 230 3 0 = a 2\ 3^22 a 23 =B.\a 3\ a n 。
33 >0 bk^31 3畋 。
33丿5. 已知力是一个3x4矩阵,下列命题中正确的是(C )A. 若矩阵力中所有3阶子式都为0,则秩G4)二2B. 若〃中存在2阶子式不为0,则秩(力)二2C. 若秩04)二2,则/I 中所有3阶子式都为0D. 若秩U )=2,则M 中所有2阶子式都不为0 6. 下列命题中错误的是(C )• • A.只含有1个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性相关7・已知向量组a^a 2.a 3线性无关,0线性相关,则(D )1.已知2阶行列式 A. m — nb\ + C]“2 a 2 +c 2a \ a2S b 2 B. n — mb 2b\D. - (m + /?)b\a2b\C ]C. m + nb2a 2 + c 2A. 必能由a2,a3,f3线性表出B. a2必能由a x.a3.0线性表出注:0]心2,%3是4|,02,%3,0的一个极大无关组.8. 设/!为加XH 矩阵,则方程组月尸0只有零解的充分必要条件是力的秩(D ) A.小于刃B.等于刃C.小于刀D.等于刀注:方程组Ax=O 有n 个未知量.9. 设力为可逆矩阵,则与力必有相同特征值的矩阵为(A ) A. "B. A 2C. A _,D. A*| AE-A 7H (AE-A)T \=\AE-A\f 所以力与屮有相同的特征值. 10. 二次型/(x p x 2,x 3) = x^ +X2 +X3 +2x^2的正惯性指数为(C ) A. 0B. 1C. 2D. 3/(x 1,x 2,x 3) = (x l +x 2)2+X3 =yf + 迟,正惯性指数为 2.二、填空题(本大题共10小题,每小题2分,共20分)了 = 30 — 24 = (9,3,—3,12)' -(6-2,0,4) =(3,5-3,8)7 . 14.设力为〃阶可逆矩阵,且\A\=-~,则| | A'1 |= n15.设力为〃阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax=0的解,则11 •行列式的值为 _____________13.设a = (3,—l,0,2)T, 0 = (3,1,-1,4)7',若向量了 满足2a + y = 30,则卩二 2007 2008 2009 201016. _________________________________________________________________ 齐次线性方程组+兀2 +兀3 =°的基础解系所含解向量的个数为 ________________________________________12X| - x 2 + 3兀3 = 0基础解系所含解向量的个数为« - r = 3 - 2 = 1.17. ___________________________________________________________________ 设〃阶可逆矩阵力的一个特征值是-3,则矩阵必有一个特征值为 __________________________________________-2、0的特征值为4,1,-2 ,则数兀二0」20.二次型 /(X ),x 2,x 3) = -4x }x 2 +2兀]£ + 6X 2X 3的矩阵是 _______________-2 r 0 33 0,三、计算题(本大题共6小题,每小题9分,共54分)ab c 21.计算行列式a 2b 2c 2的值. a + a 3h + b 3c + c 3甘町有特征畤"1 -2 18.设矩阵-2 x、一2 0 由第1. 2列正交, 即它们的内积(d + b) = 0 ,-21 b c 解:D =a2b2c2a + cdb + b3c + c31 1 1=abc0 b-a c-a0 b2-a2 c2-a2a b c 1 1 1 a2 b2 c2= abc a b c a3b3 c39 cr b2 c2= abc b-a c-b2-a2c2-•a■a2=abc(b 一 a)(c - a)(c — b) •(2)注意到CB T = (1,2,3) 1 =13,所以34A 2= (B rC)(B rC) = B r(CB T )C = \3B T C = \3A = \3 1 2线性无关组,并用该极人线性无关组表示向量组屮的其余向量•<2>‘2 4 6、 解:(1) A = B rC =1 (1,2,3)= 12 32丿<3 6 9,己知矩阵 B = (2,1,3), C = (123),22. "2 1-1 1、<1 10 r<1 1 0 1 、 1 2 1 1 T1 211T0 1103 0 -3 13 0 -3 10 -3 -3 -210 1J<2 1 -1 1丿k 0 -1 -1 一1丿解:A = (a|,(^2 9 oc^, )—<1 1 0 1、<1 1 0 1、<1 0 -1 n0 1 1 00 1 1 00 1 1 0 0 0 0-20 0 0 10 0 0 10 0 一1丿<0 0 0 0丿<0 00 0>,向量组的秩为 关组,旳=-Q| +a 2 •3, a }.a 2,a 4是一个极大无"12 3、<-14 ] 24.已知矩阵人=0 1 2 ,B = 25<0 ° bU 一3丿(1) 求A"1; (2)解矩阵方程AX = B.=abc(b 一 d)(c — a) 求(1) A = B T C ; (2)23. 设向量组內=(2」,3」几勺=(120」几&3=(—1」厂3,0八勺=(1」丄1卩求向量组的秩及一个极人2 31 0 0、2 0 1 0 -3、 解:(1)(A,E) = 0 1 20 1 00 1 0 0 1 -2<00 10 010 0 1 0 0 1」Z\ /<1 0 0 1 -21、1 -21、0 1 0 0 1 -2 /T0 1-2■ 9<0 0 1 0 01丿0 01 ZX] + 2 兀2 + 3 兀3 = 42X 2 4- ax 3 = 2有惟一解?有无穷多解?并在有解时求出其解(在有2x t + 2X 2 + 3X 3 = 6"2 3 4、"2 0 4、 工3时,r(A,ft) = r(A) = 3,有惟一解,此时(A,b)->0 2 a 20 2 0 2<0 0 10; \<0 0 10; \ /0、a 的三个特征值分别为1,2,5,求正的常数曰的值及可逆矩阵",使 3丿‘1 0 0、P'XAP= 0 2 00 0 5丿2 0 03 a解:由 |A|= 0 3 67 =2=2(9-/)= ix2x5,得宀 4, a = 2.a 30 a 3<1 -2 1、<-1 4>‘-4 - 9)X=A~}B = 0 1 -225 =0 11<0 ° 1 丿<1 一3丿、1 -3,(2)2 3 4、有无穷多解,此时0 2 3 2<o 0 0 o>G = 3 时,r(A,b) = r(A) = 2< /?,‘1 0 0 2>‘1 00 2、0 2 3 20 1 3/2 1 <0 0 0 0丿<0 0 0 0? Z〔2厂0、通解为 1 + k -3/2< 1 >其中R 为任意常数.25•问日为何值时,线性方程组解:<1 2 3 4、234、<1 234(必)= 0 2 a 20 2a 20 2a 2<2 2 3 6丿-2 -3 -2丿\ 0 ci _ 3 0 丿‘1 0 0 2>‘1 0 0 2、0 2 0 20 1 0 1,0 0 1 0丿,0 0 1 0丿‘2 0 26.设矩阵0 3 (0 a无穷多解时,要求用一个特解和导出组的基础解系表示全部解)./° = 1 ;兀3 = °2 0 0、AE-A= 0 2-3 -2 ..0 -2 2-3丿对于人=1,解(/IE —A)兀=0:"-1 0 0、"1 0 0、%! =0 <0、AE-A =0 -2 -2 0 1 1 9 v x2 =-x3 ,取门=-1<0 -2 一2丿<0 0 ° 丿无3 = 兀3对于兄2=2,解(/i£—A)兀=0:r0 0 0、‘0 1 0、x\ =x\TAE-A =0-1-2 T0 0 1 X2 = 0 ,取#2 = 0<0 -2 -1;0 0, 兀3 =0O对于几3=5,解(征一心=0:厂3 00、厂1 0X| =0 ◎九E —A =0 2-2 —> 0 1 -1 兀2 =兀3,P3 = 1,0-2 2 丿<0 0 0 ;\X3 = X3<1>'0 10、"0 0、令P =("|, “2 ' “3)= -1 0 1 ,则P是可逆矩阵,使P~'AP =0 2 0<10 1; <0 0 5丿四、证明题(本题6分)27.设昇,B, A+B均为〃阶正交矩阵,证明(4 + 3)7 =4一】+3".证:J, B, A + B均为/?阶正交阵,则A r=A-!, B T =B~\ (4+B)7 =(A + B)T,所以(A + B)T =(A + B)T = A1^ + B T = A~l + B~l・。
高等教育自学考试全国统一命题考试
线性代数(经管类)优化试卷(一)
说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.
一、单项选择题(本大题共10小题。
每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.
1.设A为3阶方阵,且|A|=2,则| 2A-l | ( )
A.-4
B.-1
C.1
D.4
2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB
B.ABC
C.BAC
D.CBA
3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T
B.A - A T
C.A A T
D.A T A
4.设2阶矩阵A= ,则A*= ( )
5.矩阵的逆矩阵是()
6.设矩阵A=,则A中( )
A.所有2阶子式都不为零
B.所有2阶子式都为零
C.所有3阶子式都不为零
D.存在一个3阶子式不为零
7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关
B.A的列向量组线性无关
C.A的行向量组线性相关
D.A的行向量组线性无关
8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( )
9.矩阵的非零特征值为( )
A.4
B.3
C.2
D.l
10.4元二次型的秩为( )
A.4
B.3
C.2
D.l
二、填空题(本大题共10小题.每小题2分.共20分)
请在每小题的空格中填上正确答案.错填、不填均无分.
11.若i=1,2,3,则行列式=_________________。
12.设矩阵A= ,则行列式|A T A|=_______________。
13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。
14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。
15.向量空间的维数为_______________。
16.设向量,则向量的内积=_______________。
17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。
18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为:
,若方程组无解,则a的取值为___________。
19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。
20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。
三、计算题(本大题共6小题,每小题9分.共54分)
21.计算3阶行列式。
22.设A= ,求A-1
23.设向量组
(1)求向量组的—个极大线性无关组:
(2)将其余向量表为该极大线性无关组的线性组合.
24.求齐次线性方程组的基础解系及通解。
25.设矩阵A= ,求正交矩阵P,使P-1AP为对角矩阵。
26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:
四、证明题(本题6分)
27.证明:若A为3阶可逆的上三角矩阵.则A-1也是上三角矩阵.。