高中数学必修三: 均匀随机数的产生
- 格式:ppt
- 大小:463.00 KB
- 文档页数:17
3.3.2 均匀随机数的产生课题:3.3.2 均匀随机数的产生教学目标:1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯.2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力.教学重点:掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率.教学难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.教学方法:讲授法课时安排1课时教学过程:一、导入新课1、复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?2、在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.二、新课讲授:提出问题(1)请说出古典概型的概念、特点和概率的计算公式?(2)请说出几何概型的概念、特点和概率的计算公式?(3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?(4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数.(5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数.(6)[a,b ]上均匀随机数的产生.活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导.讨论结果:(1)在一个试验中如果a.试验中所有可能出现的基本事件只有有限个;(有限性)b.每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability ),简称古典概型.古典概型计算任何事件的概率计算公式为:P (A )=基本事件的总数数所包含的基本事件的个A . (2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得到所求事件的概率,对于几何概型应当也可.(4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数),方法如下:试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.(5)a.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.b.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数.(6)[a,b]上均匀随机数的产生:利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随机数,试验结果是[a,b]内任何一实数,并且是等可能的.这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率.三、例题讲解:例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利用计算机产生B是0—1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A 是0—1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A>B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算.解法一:1.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.2.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50,B1—B50的数均为[0,1]之间的均匀随机数.用A列的数加7表示父亲离开家的时间,B列的数加6.5表示报纸到达的时间.这样我们相当于做了50次随机试验.3.如果A+7>B+6.5,即A-B>-0.5,则表示父亲在离开家前能得到报纸.4.选定D1格,键入“=A1-B1”;再选定D1,按Ctrl+C,选定D2—D50,按Ctrl+V.5.选定E1格,键入频数函数“=FREQUENCY(D1:D50,-0.5)”,按Enter键,此数是统计D列中,比-0.5小的数的个数,即父亲在离开家前不能得到报纸的频数.6.选定F1格,键入“=1-E1/50”,按Enter键,此数是表示统计50次试验中,父亲在离开家前能得到报纸的频率.解法二:(见教材138页)例2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值.解法1:(见教材139页)解法2:(1)用计算机产生两组[0,1]内均匀随机数a=RAND(),b1=RAND().1(2)经过平移和伸缩变换,a=(a-0.5)*2,b=(b1-0.5)*2.1(3)数出落在圆x 2+y 2=1内的点(a,b )的个数N 1,计算π=NN 14(N 代表落在正方形中的点(a,b )的个数). 点评:可以发现,随着试验次数的增加,得到圆周率的近似值的精确度会越来越高,利用几何概型并通过随机模拟的方法可以近似计算不规则图形的面积.例3 利用随机模拟方法计算下图中阴影部分(y=1和y=x 2所围成的部分)的面积.解:(略)四、课堂练习:教材140页练习:1、2五、课堂小结:均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.六、课后作业:1、课本习题3.3B 组题.2、复习本章板书设计教学反思:备课资料赌棍“考验”数学家对概率的兴趣,是由保险事业的发展而产生的,但刺激数学家思考概率论问题的却来自赌博者的请求.传说,17世纪中叶,法国贵族公子梅累参加赌博,和赌友掷骰子,各押赌注32个金币.双方约定,梅累如果先掷出三次6点,或者赌友先掷出三次4点,就算赢了对方.赌博进行了一段时间,梅累已经两次掷出6点,赌友已经一次掷出4点.这时候梅累接到通知,要他马上陪国王接见外宾,赌博只好中断了.这就碰到一个问题:两个人应该怎样分这64个金币才算合理呢?赌友说,他要再碰上两次4点,或梅累要再碰上一次6点就算赢,所以梅累分64个金币的32,自己分64个金币的31.梅累急辩说,不是,即使下一次赌友掷出了4点,他还可以得21,即32个金币;再加上下一次还有一半希望得16个金币,所以他应该分64个金币的43,赌友只能分得64个金币的41.两人到底谁说得对呢? 梅累为这问题苦恼好久,最后他不得不向法国数学家、物理学家帕斯卡请教,请求他帮助作出公正的裁判,这就成为有趣的“分赌注”问题.帕斯卡是17世纪有名的“神童”数学家.可是,梅累提出的“分赌注”的问题,却把他难住了.他苦苦思考了近三年,到1654年才算有了点眉目,于是写信给他的好友费马,两人讨论结果,并取得了一致的意见:梅累的分法是对的,他应得64个金币的43,赌友应得64个金币的41.这时有位荷兰的数学家惠更斯,在巴黎听到这件新闻,也参加了他们的讨论.惠更斯把讨论的结果写成一本书叫做《论赌博中的计算》(1657年),这就是概率论的最早一部著作.除保险事业之外,各行各业都经常会碰到“某事件发生的可能性大小”的问题.因此,概率论问世后,在各方面得到了广泛的应用.可是,到了19世纪末,法国数学家贝特朗奇发现了一个非常有趣的怪论.他研究了下面一个问题:“设圆内接等边三角形的边长为a,在圆上任作一弦,问其长度超过a 的概率是多少?” 贝特朗奇算出了三种不同的答案,三种解法似乎又都有道理.人们把这种怪论称为概率怪论,或贝特朗奇怪论.贝特朗奇的解法如下:解法一:任取一弦AB,过点A 作圆的内接等边三角形(如右图).因为三角形内角A 所对的弧占整个圆周的31.显然,只有点B 落在这段弧上时,AB 弦的长度才能超过正三角形的边长a,故所求概率是31.解法二:任取一弦AB,作垂直于AB 的直径PQ.过点P 作等边三角形,交直径于N,并取OP 的中点M (如下图).容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直的弦,如果通过MN 线段的,其弦心距均小于ON,则该弦长度就大于等边三角形边长,故所求概率是21.解法三:任取一弦AB.作圆内接等边三角形的内切圆(如右图),这个圆是大圆的同心圆,而且它的半径是大圆的21,它的面积是大圆的41,设M 是弦AB 的中点,显然,只有中点落在小圆内时,AB 弦才能大于正三角形的边长.因此所求的概率是41.细细推敲一下,三种解法的前提条件各不相同:第一种假设了弦的端点在四周上均匀分布;第二种假设弦的中点在直径上均匀分布;第三种假设弦的中点在小圆内均匀分布.由于前提条件不同,就导致三种不同的答案.这是因为在那时候概率论的一些基本概念(如事件、概率及可能性等)还没有明确的定义,作为一个数学分支来说,它还缺乏严格的理论基础,这样,对同一问题可以有不同的看法,以致产生一些奇谈怪论.概率怪论的出现,迫使数学家们注意概率基础理论的研究.1933年,苏联数学家柯尔莫哥洛夫提出了概率论公理化结构,明确了概率的各种基本概念,使概率论成为严谨的数学分支.。
高一数学必修三复习知识点归纳1.高一数学必修三复习知识点归纳篇一均匀随机数均匀随机数的产生:我们常用的是[0,1]上的均匀随机数,如果试验的结果是区间[0,1]内的任何一个数,而且出现任何一个实数是等可能的,因此就可以用计算器来产生0~1之间的均匀随机数进行随机模拟,我们常用随机模拟的方法来计算不规则图形的面积。
均匀随机函数:均匀随机函数且只能产生[0,1]区间上均匀随机数。
产生[a,b]区间上均匀随机数:产生[a,b]区间上均匀随机数,如果x是[0,1]区间上的均匀随机数,则x(b-a) +a就是[a,b]区间上的均匀随机数。
计算机通过产生均匀随机数进行模拟实验的思路:(1)根据影响随机事件结果的量的个数确定需要产生的随机数的个数,如长度、角度型只用一组即可;而面积型需要两组随机数,体积型需要三组随机数;(2)根据总体对应的区域确定产生随机数的范围;(3)根据事件A发生的条件确定随机数所应满足的关系式。
2.高一数学必修三复习知识点归纳篇二直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。
如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
3.高一数学必修三复习知识点归纳篇三直线方程:1.点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。
x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
该方程叫做直线的斜截式方程,简称斜截式。
此斜截式类似于一次函数的表达式。