三角函数对称轴与对称中心
- 格式:docx
- 大小:27.95 KB
- 文档页数:7
第60课求三角函数的对称轴或对称中心基本方法:将问题转化为单一名称的三角函数,再求三角函数的对称轴或对称中心(1)函数sin y x =的对称性对称轴:ππ()2x k k =+∈Z ,对称中心:(π,0)()k k ∈Z (2)函数cos y x =的对称性对称轴:π()x k k =∈Z ,对称中心:π(π,0)()2k k +∈Z (3)函数tan y x =的对称性对称中心:π(,0)()2k k ∈Z 一、典型例题1.将函数πcos(4)6y x =+的图象向右平移π6个单位,再纵坐标不变,横坐标变为原来的2倍,求所得新函数的对称轴方程和对称中心的坐标.答案:对称轴方程为ππ()42k x k =+∈Z ,对称中心坐标为π(,0)()2k k ∈Z 解析:将函数πcos(4)6y x =+的图象向右平移π6个单位,得到ππcos[4(]66y x =-+,即πcos(4)sin 42y x x =-=图像.sin 4y x =的图像纵坐标不变,横坐标变为原来的2倍,得到sin 2y x =的图像.令π2π()2x k k =+∈Z ,解得ππ()42k x k =+∈Z ,所以sin 2y x =的对称轴方程为ππ()42k x k =+∈Z .令2π()x k k =∈Z ,解得π()2k x k =∈Z ,所以对称中心坐标为π(,0)()2k k ∈Z .2.已知函数()()πsin 2(0,)2f x x ωϕωϕ=+><的最小正周期为π,它的一个对称中心为π,06⎛⎫ ⎪⎝⎭,求函数()y f x =图象的对称轴方程.答案:2π512πk x k =+∈Z ,解析:由题得()2=22πππππ6k k Z ωωϕϕ⎧⎪⎪⎪⋅+=∈⎨⎪⎪<⎪⎩,π1,3ωϕ∴==-,所以()sin(2)3f x x π=-.令()232x k k ππ-=π+∈Z ,得()5122k x k =π+π∈Z ,即()y f x =的对称轴方程为()5122k x k =π+π∈Z .二、课堂练习1.已知函数())2sin8cos4sin 4cos8sin4cos46f x x x x x x x x π⎛⎫=+-+ ⎪⎝⎭.求函数()f x 图象的对称轴方程.答案:() 848k x k Z π5π=+∈.解析:())2sin8cos4sin 4cos8sin4cos46f x x x x x x x x π⎛⎫=+-+ ⎪⎝⎭12sin8cos4cos422x x x x ⎫=+-⎪⎪⎝⎭)cos8sin4cos4x xx x +))sin8cos4cos4cos8sin4cos4x x x x x x x x =+-+)()+cos4sin8cos4cos8sin4x x x x x x =-)()cos4sin 84x x x x =+-)cos4sin4x x x =+24sin4cos4x x x =+1cos81sin822x x -=+1sin82x x =-+sin 83x π⎛⎫=-+ ⎪⎝⎭令()8+32x k k ππ-=π∈Z ,得()848k x k Z π5π=+∈.所以函数()f x 图象的对称轴方程为()848k x k Z π5π=+∈.2.函数()()sin 04,4f x x x ωωπ⎛⎫=-<<∈ ⎪⎝⎭R 的一条对称轴为38x π=,求4f π⎛⎫ ⎪⎝⎭.答案:22解析:由题意()sin 4f x x ωπ⎛⎫=- ⎪⎝⎭一条对称轴为38x π=,得()3842k k ωπππ⨯-=π+∈Z ,解得2ω=,()sin 24f x x π⎛⎫=- ⎪⎝⎭,所以2sin 2sin 44442f ππππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭.三、课后作业1.求函数π2tan(26y x =-的对称中心坐标.答案:ππ(,0)()124k k +∈Z 解析:令ππ2()62k x k -=∈Z ,解得ππ()124k x k =+∈Z ,故π2tan(26y x =-的对称中心坐标为ππ(,0)()124k k +∈Z .2.已知函数()2sin sin 63f x x x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,x ∈R .求函数()f x 的最小正周期及其图象的对称中心.答案:最小正周期为π,对称中心为,062k ππ⎛⎫+ ⎪⎝⎭,k ∈Z 解析:()2sin sin 2sin sin 63626f x x x x x πππ⎡ππ⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2sin cos 66x x ππ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭sin 23x π⎛⎫- ⎪⎝⎭,所以函数()f x 的最小正周期为22π=π.令π2π()3x k k -=∈Z ,解得()62k k x ππ+=∈Z ,所以对称中心为,062k ππ⎛⎫+ ⎪⎝⎭,k ∈Z .3.将函数2()cos 2cos ()f x x x x x =+∈R 图像向左平移π6个单位,再向下平移1个单位,得到函数()g x 图像,求()g x 的对称轴方程和对称中心坐标.答案:对称轴为直线π,()2k x k =∈Z ,对称中心为ππ(,0)()42k k +∈Z解析:2()cos 2cos f x x x x =+2cos21x x =++π2sin(216x =++,将函数()f x 图像向左平移π6个单位,再向下平移1个单位,得到函数()g x 的解析式为ππ()2sin[2()]112cos 266g x x x =+++-=.令2π()x k k =∈Z ,解得π()2k x k =∈Z ,所以()g x 的对称轴方程为π()2k x k =∈Z .令π2π()2x k k =+∈Z ,解得ππ()42k x k =+∈Z ,所以对称中心坐标为ππ(,0)()42k k +∈Z .。
tan的对称轴和中心对称
tan的对称轴和中心对称在数学中,tan函数是一个常见的三角函数,它代表了一个角的正切值。
然而,很少有人注意到tan函数具有一些有趣的对称性质。
tan函数具有对称轴对称性。
对于一个给定的角度x,tan(-x)等于-tan(x)。
这意味着,如果我们将一个角度x的正切值绘制在坐标系中,然后将整个图形关于y轴对称,我们将得到角度-x的正切值。
这个性质可以帮助我们在计算中简化问题。
tan函数还具有中心对称性。
对于一个给定的角度x,tan(π-x)等于-tan(x)。
这意味着,如果我们将一个角度x的正切值绘制在坐标系中,然后将整个图形关于x轴翻转,我们将得到角度π-x的正切值。
这个性质也可以帮助我们在计算中简化问题。
这些对称性质对于解决三角函数相关的问题非常有用。
通过利用tan函数的对称轴和中心对称性,我们可以简化计算,减少错误的可能性,并更好地理解三角函数的性质。
tan函数具有对称轴对称性和中心对称性,这些性质在解决三角函数问题时非常有用。
通过充分利用这些对称性质,我们可以更好地理解和应用tan函数。
三角函数对称轴与对称中心y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²αtan(2α)=2tanα/(1-tan²α)cot(2α)=(cot²α-1)/(2cotα)sec(2α)=sec²α/(1-tan²α)csc(2α)=1/2*secα·cscα三倍角公式sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1)n倍角公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A))Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan²(a/2))cos(a)= (1-tan²(a/2))/(1+tan²(a/2))tan(a)= (2tan(a/2))/(1-tan²(a/2))降幂公式sin²α=(1-cos(2α))/2=versin(2α)/2cos²α=(1+cos(2α))/2=covers(2α)/2tan²α=(1-cos(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·t角的三角函数值幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式泰勒展开式又叫幂级数展开法f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……实用幂级数:e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k (|x|<1)sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……. (-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)arctan x = x - x^3/3 + x^5/5 -…… (x≤1)sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
y=sinx 对称轴为x=k∏+ ∏/2 (k 为整数),对称中心为(k∏,0)(k 为整数)。
y=cosx 对称轴为x=k∏(k 为整数),对称中心为(k∏+ ∏/2,0)(k 为整数)。
y=tanx 对称中心为(k∏,0)(k 为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x 即可求出对称轴,令ωx+Φ = k∏ 解出的x 就是对称中心的横坐标,纵坐标为0。
(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )余弦型,正切型函数类似。
以f (x )=sin (2x -π/6)为例令2x-π/6=Kπ 解得x=kπ/2+π/12那么函数的对称中心就是(k π/2+π/12,0)三角函数y=Asin (ωx+φ)中的对称轴正弦函数y=sinx 的对称轴是x=k π+2π(k ∈Z ),它的对称轴总是经过它图象的最高点或者最低点。
由于三角函数y=)sin(ϕω+⋅x A 是由正弦函数y=sinx 复合而成的,所以令ϕω+x =k π+2π,就能得到y=)sin(ϕω+⋅x A 的对称轴方程x=ωϕππ-+2k (k ∈Z )。
通过类比可以得到三角函数y=)cos(ϕω+⋅x A 的对称轴方程x=ωϕππ-+k (k ∈Z )。
下面通过几道典型例题来谈一谈如何应用它们的对称轴解题。
1.解析式问题例1.设函数)(x f = )2sin(ϕ+x (0<<-ϕπ),)(x f 图像的一条对称轴是直线8π=x ,求ϕ的值。
分析:正弦函数y=sinx 的对称轴是x=k π+2π,令2x+ϕ=k π+2π,结合条件0<<-ϕπ求解。
解析:∵8π=x 是函数y=)(x f 的图像的对称轴,∴1)82sin(±=+⨯ϕπ,∴24ππππ+=+k ,k ∈Z ,而0<<-ϕπ,则43πϕ-=。
三角函数对称轴关系三角函数是数学中研究角度与三角量之间关系的函数,其在各个领域都有着广泛的应用。
在三角函数中,对称轴是一个非常重要的概念。
对于一般的三角函数y=sinx,y=cosx,y=tanx,它们都是具有对称轴的。
三角函数的对称轴是其函数图像的垂直平分线。
对于正弦函数y=sinx,其对称轴是直线x=k π+π/2 (k∈Z);对于余弦函数y=cosx,其对称轴是直线x=kπ(k∈Z);对于正切函数y=tanx,其对称轴是直线x=kπ+π/2 (k∈Z)。
这些对称轴是三角函数图像的重要特征,可以帮助我们更好地理解和分析三角函数的性质。
三角函数的对称轴与其周期性有着密切的关系。
正弦函数和余弦函数都是周期函数,它们的图像以对称轴为中心左右对称,表现出非常明显的对称性。
这种对称性在解决一些数学问题时可以发挥重要的作用。
例如,在求解一些关于三角函数的方程时,可以利用对称轴的性质来简化计算过程。
此外,三角函数的对称轴还与其定义域有关。
对于正弦函数和余弦函数,它们的定义域是无限的,因此它们的对称轴也是无限的。
而对于正切函数,其定义域是除去整数倍的π/2的实数集,因此其对称轴是有限的。
这种定义域的限制也使得正切函数的图像呈现出独特的形状。
在实际应用中,三角函数的对称轴可以帮助我们更好地理解和分析三角函数的性质,从而更好地应用于各个领域。
例如,在物理学中,三角函数可以用来描述周期性变化的物理量,如振动、波动等;在工程学中,三角函数可以用来设计各种机械、电子设备等;在金融学中,三角函数可以用来描述金融数据的波动等。
因此,深入理解三角函数的对称轴性质对于各个领域的科学研究和实践应用都具有重要的意义。
三角函数诱导公式和函数的对称性秭归二中 邮编:443600杜海柱三角函数的诱导公式我们比较熟悉,但对一些公式所反映的对称性并不熟悉.下面我们来看看函数的对称轴和对称中心吧.一. 轴对称定理一 如果函数y ()f x =满足()()f x a f x a +=-或()(2)f x f a x =-,函数y ()f x =的图像关于直线x=a 对称。
证明:设函数y ()f x =的图像上的任意一点为P (x,y ),点P 关于直线x=a 的对称点'(2,)p a x y -,显然有y ()f x =。
()(2),f x f a x =-由则y=f(2a-x)说明点'(2,)p a x y -也在函数的图像上。
由点P 的任意性,说明函数y ()f x =图像关于直线 x=a 对称。
例如 三角函数诱导公式()cos 2cos ,,k x x k z π-=∈函数cos y x =的图像对称轴为,x k k z π=∈;sin(2)sin ,k x x k z ππ+-=∈,函数sin y x =的图像对称轴为,2x k k z ππ=+∈。
二 . 中心对称 定理二 如果函数y ()f x =满足()2()()()f a x f x f a x f a x -=--=-+或 函数y ()f x =的图像关于点(a,0)成中心对称。
证明:设函数y ()f x =的图像上的任意一点为P (x,y ),点P 关于点(a,0)的对称点'(2,)p a x y --由(2)(),f a x f x -=-则-y=f(2a-x)说明点'(2,)p a x y --也在函数y ()f x =的图像上。
点P 的任意性,说明函数y ()f x =图像关于点(a,0)成中心对称。
例如:三角函数诱导公式sin(2)sin ,k x x k z π-=-∈,就说明函数sin y x = 的图像关于点(a,0) 成中心对称;由cos(2)cos ,k x x k z ππ+-=-∈,说明函数cos y x = 图像关于点(,0)2k ππ+ 成中心对称。
三角函数对称轴与对称中心
一、三角函数的对称轴
1、正弦函数的对称轴:正弦函数的图像关于y轴对称,所以y轴就是正弦函数的对称轴。
2、余弦函数的对称轴:余弦函数的图像关于x轴对称,所以x轴就是余弦函数的对称轴。
3、正切函数的对称轴:正切函数的图像关于坐标系的45°斜线对称,即2y=x,这条45°斜线就是正切函数的对称轴。
4、反正切函数的对称轴:反正切函数的图像关于坐标系的135°斜线对称,即2y=-x,这条135°斜线就是反正切函数的对称轴。
二、三角函数的对称中心
1、正弦函数的对称中心:正弦函数的图像关于y轴对称,所以所有x 坐标点的y坐标都是一样的,也就是x轴的任意一点都是正弦函数的对称中心。
2、余弦函数的对称中心:余弦函数的图像关于x轴对称,所以所有y 坐标点的x坐标都是一样的,也就是y轴的任意一点都是余弦函数的对称中心。
3、正切函数的对称中心:正切函数的图像关于坐标系的45°斜线对称,即2y=x,所以所有xy都满足这个方程的点都是正切函数的对称中心,也就是x=2、y=2。
4、反正切函数的对称中心:反正切函数的图像关于坐标系的135°斜线
对称,即2y=-x,所以所有xy都满足这个方程的点都是反正切函数的
对称中心,也就是x=-2、y=-2。
三角函数对称轴和对称中心是重要的概念,他们之间存在一定的关系,也就是说每个三角函数的对称轴上的所有点都是该函数的对称中心。
三角函数的对称轴和对称中心是为我们理解和掌握函数,绘制函数图
像提供重要的参考。
三角函数对称中心与对称轴公式英文回答:Symmetrical Center and Axis Equations for Trigonometric Functions.In mathematics, a function is said to be symmetrical if it remains unchanged after applying certain transformations, such as reflection or rotation. Trigonometric functions, including sine, cosine, and tangent, exhibit symmetry with respect to certain points and lines known as thesymmetrical center and symmetrical axis, respectively.Symmetrical Center.The symmetrical center of a function is a point around which the function is symmetrical. For trigonometric functions, the symmetrical center is typically the origin (0, 0). This means that if we reflect a trigonometric function across the origin, the resulting graph will beidentical to the original graph.Symmetrical Axis.The symmetrical axis of a function is a line about which the function is symmetrical. For trigonometric functions, the symmetrical axis depends on the specific function being considered.Sine Function (y = sin x): The sine function is symmetrical about the y-axis (x = 0). This means that if we reflect the sine graph across the y-axis, the resulting graph will be identical to the original graph.Cosine Function (y = cos x): The cosine function is symmetrical about the x-axis (y = 0). This means that if we reflect the cosine graph across the x-axis, the resulting graph will be identical to the original graph.Tangent Function (y = tan x): The tangent function is not symmetrical about any point or line.Equations for Symmetrical Center and Axis.Symmetrical Center: (0, 0)。
三角函数对称轴与对称中心y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²αtan(2α)=2tanα/(1-tan²α)cot(2α)=(cot²α-1)/(2cotα)sec(2α)=sec²α/(1-tan²α)csc(2α)=1/2*secα·cscα三倍角公式sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1)n倍角公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A))Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan²(a/2))cos(a)= (1-tan²(a/2))/(1+tan²(a/2))tan(a)= (2tan(a/2))/(1-tan²(a/2))降幂公式sin²α=(1-cos(2α))/2=versin(2α)/2cos²α=(1+cos(2α))/2=covers(2α)/2tan²α=(1-cos(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·t角的三角函数值幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式泰勒展开式又叫幂级数展开法f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……实用幂级数:e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k (|x|<1)sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……. (-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)arctan x = x - x^3/3 + x^5/5 -…… (x≤1)sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
傅立叶级数傅里叶级数又称三角级数f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)a0=1/π∫(π..-π) (f(x))dxan=1/π∫(π..-π) (f(x)cosnx)dxbn=1/π∫(π..-π) (f(x)sinnx)dx三角函数的数值符号正弦第一,二象限为正,第三,四象限为负余弦第一,四象限为正第二,三象限为负正切第一,三象限为正第二,四象限为负编辑本段相关概念三角形与三角函数1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)5、三角形中的恒等式:对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π-C)所以tan(A+B)=tan(π-C)则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ三角函数图像:定义域和值域sin(x),cos(x)的定义域为R,值域为〔-1,1〕tan(x)的定义域为x不等于π/2+kπ,值域为Rcot(x)的定义域为x不等于kπ,值域为Ry=a·sin(x)+b·cos(x)+c 的值域为[ c-√(a²+b²) , c+√(a²+b²)] 初等三角函数导数三角函数图像y=sinx---y'=cosxy=cosx---y'=-sinxy=tanx---y'=1/cos^2x =sec^2xy=cotx---y'= -1/sin^2x = - csc^2xy=secx---y'=secxtanxy=cscx---y'=-cscxcotxy=arcsinx---y'=1/√(1-x²)y=arccosx---y'= -1/√(1-x²)y=arctanx---y'=1/(1+x²)y=arccotx---y'= -1/(1+x²)倍半角规律如果角a的余弦值为1/2,那么a/2的余弦值为√3/2反三角函数三角函数的反函数,是多值函数。