三角函数对称性问题ppt课件
- 格式:ppt
- 大小:914.50 KB
- 文档页数:18
函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。
三角函数图像的对称轴与对称中心特级教师 王新敞对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和tan()y A x ωφ=+的简图容易画错,一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心.1.正弦函数sin y x =图像的对称轴与对称中心:对称轴为2x k ππ=+、对称中心为(,0) k k Z π∈.对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k πωφπ+=+()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称轴方程.对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1()x k πφω=- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) k k Z πφω-∈.2.余弦函数cos y x =图像的对称轴与对称中心:对称轴为x k π=、对称中心为(,0)2k ππ+k Z ∈.对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω=- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称轴方程.对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z ππφω+-∈.3.正切函数tan y x =图像的渐近线与对称中心:渐近线为2x k ππ=+、对称中心为(,0)2k πk Z ∈,也就是曲线与x 轴的交点和渐近线与x 轴的交点两类点组成.正切曲线无对称轴.对于函数tan()y A x ωφ=+的图象的渐近线只需将x ωφ+取代上面的x 的位置,即2x k πωφπ+=+()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的渐近线方程.对于函数tan()y A x ωφ=+的图象的对称中心只需令2k x πωφ+= ()k Z ∈,由此解出1()2k x πφω=- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z πφω-∈. 例 函数y =sin(2x +3π)的图象:⑴关于点(3π,0)对称;⑵关于直线x =4π对称;⑶关于点(4π,0)对称;⑷关于直线x =12π对称.正确的序号为________.解法一:由2x +3π=k π得x=621ππ-k ,对称点为(621ππ-k ,0)(z k ∈),当k=1时为(3π,0),⑴正确、⑶不正确;由2x +3π2k ππ=+得x=1212k ππ+(z k ∈),当k=0时为12x π=,⑷正确、⑵不正确.综上,正确的序号为⑴⑷.解法二:根据对称中心的横坐标就是函数的零点,对称轴必经过图象最值点的结论,可以采用代入验证法.易求()3f π=sin(2×3π+3π)=0、()4f π=sin(2×4π+3π)=2、()12f π=sin(2×12π+3π)=1,所以⑴正确、⑵不正确、⑶不正确、⑷正确.综上,正确的序号为⑴⑷.-----精心整理,希望对您有所帮助!。
三角函数的对称性
三角函数具有一种独特的对称性,也就是说它们在一定坐标系中具有一定的对称行为或特征。
三角函数的这种对称性由若干基本原则统一起来,这些基本原则主要是指三角函数的弧度值,坐标系中的极限值和间隔,以及它们在无穷远处取得的值。
首先,三角函数弧度值具有对称性,由于每个角度和它的对称点(例如对应180度的角度)对应相同的角度值,所以说三角函数在弧度值上具有“自反”的特性。
其次,三角函数在坐标系中具有“极限”和“间隔”的对称性。
三角函数在无穷小和无穷大状态中取得的值也是相等的,即极限的值也具有对称性的特征。
另外,三角函数的“间隔”也具有特定的对称性,即多次取值之后,会得到完全相同的值,如 pi/2 和3*pi/2 一样,它们分别为90度和270度,这也是一种间隔的对称性。
因此可以看出,三角函数具有特殊的对称性特征,被认为是数学中一种古老而重要的性质。
数学家们因而提出了若干准则,来描述其对称性特征,以实现更加精密地对三角函数的推导和分析。
至此,这一重要的性质得以真正被人们所理解和应用,海瑞拉斯也由此获得了丰厚的回报。