三角函数对称性问题ppt课件
- 格式:ppt
- 大小:914.50 KB
- 文档页数:18
函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。
三角函数图像的对称轴与对称中心特级教师 王新敞对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和tan()y A x ωφ=+的简图容易画错,一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心.1.正弦函数sin y x =图像的对称轴与对称中心:对称轴为2x k ππ=+、对称中心为(,0) k k Z π∈.对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k πωφπ+=+()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称轴方程.对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1()x k πφω=- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) k k Z πφω-∈.2.余弦函数cos y x =图像的对称轴与对称中心:对称轴为x k π=、对称中心为(,0)2k ππ+k Z ∈.对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω=- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称轴方程.对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z ππφω+-∈.3.正切函数tan y x =图像的渐近线与对称中心:渐近线为2x k ππ=+、对称中心为(,0)2k πk Z ∈,也就是曲线与x 轴的交点和渐近线与x 轴的交点两类点组成.正切曲线无对称轴.对于函数tan()y A x ωφ=+的图象的渐近线只需将x ωφ+取代上面的x 的位置,即2x k πωφπ+=+()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的渐近线方程.对于函数tan()y A x ωφ=+的图象的对称中心只需令2k x πωφ+= ()k Z ∈,由此解出1()2k x πφω=- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z πφω-∈. 例 函数y =sin(2x +3π)的图象:⑴关于点(3π,0)对称;⑵关于直线x =4π对称;⑶关于点(4π,0)对称;⑷关于直线x =12π对称.正确的序号为________.解法一:由2x +3π=k π得x=621ππ-k ,对称点为(621ππ-k ,0)(z k ∈),当k=1时为(3π,0),⑴正确、⑶不正确;由2x +3π2k ππ=+得x=1212k ππ+(z k ∈),当k=0时为12x π=,⑷正确、⑵不正确.综上,正确的序号为⑴⑷.解法二:根据对称中心的横坐标就是函数的零点,对称轴必经过图象最值点的结论,可以采用代入验证法.易求()3f π=sin(2×3π+3π)=0、()4f π=sin(2×4π+3π)=2、()12f π=sin(2×12π+3π)=1,所以⑴正确、⑵不正确、⑶不正确、⑷正确.综上,正确的序号为⑴⑷.-----精心整理,希望对您有所帮助!。
三角函数的对称性
三角函数具有一种独特的对称性,也就是说它们在一定坐标系中具有一定的对称行为或特征。
三角函数的这种对称性由若干基本原则统一起来,这些基本原则主要是指三角函数的弧度值,坐标系中的极限值和间隔,以及它们在无穷远处取得的值。
首先,三角函数弧度值具有对称性,由于每个角度和它的对称点(例如对应180度的角度)对应相同的角度值,所以说三角函数在弧度值上具有“自反”的特性。
其次,三角函数在坐标系中具有“极限”和“间隔”的对称性。
三角函数在无穷小和无穷大状态中取得的值也是相等的,即极限的值也具有对称性的特征。
另外,三角函数的“间隔”也具有特定的对称性,即多次取值之后,会得到完全相同的值,如 pi/2 和3*pi/2 一样,它们分别为90度和270度,这也是一种间隔的对称性。
因此可以看出,三角函数具有特殊的对称性特征,被认为是数学中一种古老而重要的性质。
数学家们因而提出了若干准则,来描述其对称性特征,以实现更加精密地对三角函数的推导和分析。
至此,这一重要的性质得以真正被人们所理解和应用,海瑞拉斯也由此获得了丰厚的回报。
三角函数的对称性一、对称性规律: 1、 对称轴: 若x a =是()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ的对称轴,则()f a A =±2、 对称中心: 若(,0)a 是()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ或()tan()f x A x ω=+Φ的对称中心,则()0f a =解题思路:解选择题的思路即代入法。
二、基础检测(会考说明)1、)(62sin 3π+=x y 的一条对称轴可以是:( ) A .Y 轴; B .6π=x .; C .12π-=x . D ..3π=x .。
(会考说明)2、)(43sin 3π-=x y 的一个对称中心可以是:( ) A .),(012π-; B .),(0127π-.; C .. ),(0127π; D .),(01211π. 3、已知函数(文)函数y = cos (2x -4π)的一对称方程是 ( )A .x = 2π- B .x = 4π- C .x = 8π- D .x =π4、函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象( ) A.关于点π03⎛⎫⎪⎝⎭,对称 B.关于直线π4x =对称C.关于点π04⎛⎫ ⎪⎝⎭,对称 D.关于直线π3x =对称5、22.(山东卷)已知函数)12cos()12sin(π-π-=x x y ,则下列判断正确的是( )(A )此函数的最小正周期为π2,其图象的一个对称中心是)0,12(π(B )此函数的最小正周期为π,其图象的一个对称中心是)0,12(π(C )此函数的最小正周期为π2,其图象的一个对称中心是)0,6(π(D )此函数的最小正周期为π,其图象的一个对称中心是)0,6(π6、(4) 给定性质:①最小正周期为π,②图象关于直线3x π=对称,则下列函数中同时具有性质①、②的是( )(A) sin()26x y π=+ (B) sin(2)6y x π=-(C) sin y x = (D) sin(2)6y x π=+。
三角函数的对称性问题一、知识要点:正弦函数、余弦函数、正切函数的对称性问题如下图:(1)由基本三角函数的图象可以看出,正弦曲线、余弦曲线既是轴对称曲线又是中心对称曲线;正切曲线只是中心对称曲线.(2)正弦曲线、余弦曲线的对称轴恰经过相应曲线的最高点或最低点,相邻两对称轴之间函数的单调性相同并且相邻两对称轴之间的距离恰等于函数的半个周期;正弦曲线、余弦曲线的对称中心分别是正弦函数和余弦函数的零点(与x 轴的交点),相邻两对称中心之间的距离也恰好是函数的半个周期,并且对称轴、对称中心间隔排列着. 正切曲线的对称中心除去零点外还有使正切函数值不存在的点,用平行于x 轴的直线去截正切曲线,相邻两交点之间的距离都相等并且都等于正切函数的周期.(3) 函数sin()y A x ωϕ=+和函数cos()y A x ωϕ=+的单调区间以及对称轴,对称中心可利用整体代换法由正弦函数、余弦函数的单调区间、对称轴、对称中心求解.二、典型例题:例1:若函数()y f x =同时具有下列三个性质:(1)最小正周期为π;(2)图象关于直线3x π=对称;(3)在区间,63ππ⎡⎤-⎢⎥⎣⎦上是增函数.则()y f x =的解析式可以是A .sin()26x y π=+B .cos(2)3y x π=+C .sin(2)6y x π=-D .cos(2)6y x π=-2222π22解析:由最小正周期为π,可排除A, 由图象关于直线3x π=对称,可排除B, 由在区间,63ππ⎡⎤-⎢⎥⎣⎦上是增函数可得答案应为C.评述:本题考查了三角函数的性质及其解析式的探求.三角的复习应充分利用数形结合的思想方法,即借助于图象(或三角函数线)的直观性来获取三角函数的性质,同时利用三角函数的性质来描绘函数的图象,揭示图形的代数本质.例2:已知函数()f x 是定义在)3,3(-上的奇函数,当30<<x 时,)(x f 的图象如图所示,则不等式0cos )(<x x f 的解集是 ( )A .(3,(0,1)(,3)22ππ--⋃⋃ B .(,1)(0,1)(,3)22ππ--⋃⋃C .(3,1)(0,1)(1,3)--⋃⋃D .(3,(0,1)(1,3)2π--⋃⋃解析: ∵y = cosx 是R 上的偶函数,∴()cos y f x x =是定义在)3,3(-上的奇函数,故只须考察()cos y f x x =在区间(0,3)上的函数值的取正取负的情况,根据函数(),cos y f x y x ==在区间(0,3)上的零点,列表如下:函数()cos y f x x =的图象如上所示,不等式0cos )(<x x f 的解集是三个分离的开区间的并集,即(,1)(0,1)(,3)22ππ--⋃⋃.故应选B.评述:考纲要求“理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ϕ)的简图”.命题时将函数图象的叠加作为命题点,这也是近年来高考的一个热点.三、举一反三:1. 函数1cos y x =+的图象 ( )A. 关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x =2π对称答案: B解析:由于函数cos 1y x =+为偶函数,故其图象关于y 轴对称.故应选B.2.将函数y =sin x -3cos x 的图象沿x 轴向右平移a 个单位(a >0),所得图象关于y 轴对称,则a 的最小值为( )A .76π B .2π C .6π D .3π答案:C解析:由)3sincos 3cos(sin 2cos 3sin ππ⋅-⋅=-=x x x x y 2sin(),3x π=-2sin(),3y x π=-即 函数图象的周期,2π=T 且图象上一个对称中心)0,3(π,结合图象分析知,图象再向右平移6π 后,图象关于y 轴对称,所以a 的最小值为,6π故选C.3. 若函数f (x )=sin2x +a cos2x 的图象关于直线x =-π8对称,则a = .答案: a =-1解析:∵x 1=0,x 2=-π4 是定义域中关于x =-π8对称的两点∴f (0)=f (-π4 ),即0+a =sin(-π2 )+a cos(-π2), ∴a =-1.4.已知函数22()sin 2sin cos 3cos f x x x x x =++,R x ∈.(Ⅰ)求函数()f x 图象的对称中心坐标;(Ⅱ)若11()25x f =,且π<<x 0,求x x sin cos -的值.解析:)2cos 1(232sin 22cos 1)(x x x x f +++-=22cos 2sin ++=x x 2)42sin(2++=πx .令ππk x =+42 知 82ππ-=k x , Z k ∈.故函数)(x f 的图象的对称中心的坐标为)2,82(ππ-k(Z k ∈).(II )由11()25xf =, 得1sin cos 5x +=, 平方得 242sin cos 25x x =- .又).,0(π∈x 故 0s i n>x , 0cos <x∴7cos sin 5x x -===-即7cos sin 5x x -=-.。