02热力学第二定律
- 格式:pdf
- 大小:352.77 KB
- 文档页数:7
热力学第二定律一、自发反应—不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2。
热温商:热量与温度的商3。
熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律热力学第二定律是热力学中的重要定律之一,它描述了热量在自然界中的传递方向。
热力学第二定律对于理解能量转化和宇宙演化具有重要意义。
在本文中,我们将探讨热力学第二定律的基本原理和应用。
1. 热力学第二定律的基本原理热力学第二定律可以从不同角度进行表述,但最为常见的是开尔文-普朗克表述和卡诺定理。
1.1 开尔文-普朗克表述开尔文-普朗克表述中,热力学第二定律可以简要地概括为“热量不会自发地从低温物体传递到高温物体。
”这意味着热量的传递是不可逆的,自然趋向于热量从高温物体传递到低温物体。
1.2 卡诺定理卡诺定理是另一种常见的表述方式,它描述了理想热机的最高效率。
根据卡诺定理,任何一台工作在两个温度之间的热机的效率都不会超过理论上的最高效率,这个最高效率由热源温度和冷源温度决定。
2. 热力学第二定律的应用热力学第二定律在许多领域都有重要的应用,下面我们将介绍几个常见的应用领域。
2.1 工程领域在工程领域中,热力学第二定律被广泛运用于热能转化系统的设计和优化。
例如,在汽车发动机中,通过合理设计燃烧过程、热能回收和废热利用等手段,可以提高发动机的效率,减少能量的浪费。
2.2 环境科学热力学第二定律的应用也涉及到环境科学领域。
例如,根据热力学第二定律的原理,热力学模型可以用于预测和评估环境中的能量传递和转化过程。
这有助于我们更好地理解和管理环境资源。
2.3 生命科学热力学第二定律在生命科学中也有广泛的应用。
生物体内的能量转化和代谢过程都受到热力学定律的限制。
通过热力学模型的建立和分析,可以深入研究生物体内能量转化的机理与调控。
3. 热力学第二定律的发展与挑战热力学第二定律的发展经历了许多里程碑,但仍然存在一些挑战和未解之谜。
3.1 热力学第二定律与时间箭头热力学第二定律与时间箭头之间的关系是一个待解之谜。
根据热力学第二定律,熵在一个封闭系统中总是增加的,即系统总是趋向于混乱状态。
然而,宇宙的演化似乎表明时间具有一个明确的方向,即宇宙从低熵状态(有序状态)向高熵状态(混乱状态)演化。
热力学第二定律热力学第二定律是热力学中的一条重要定律,它描述了自然界中热能传递的方向和过程的不可逆性。
热力学第二定律即卡诺定理,这一定律的发现不仅推动了热力学的发展,也在工程和科学研究中发挥着巨大的作用。
热力学第二定律的核心思想是热能的自发从高温系统向低温系统传递,而不会相反。
这个思想在日常生活中随处可见。
当我们将一杯热茶放置在桌子上,茶的温度逐渐降低,而不会变得更热。
这个过程是不可逆的,它符合热力学第二定律的要求。
热力学第二定律的原型是卡诺定理,它由法国工程师尼古拉·卡诺在19世纪初提出。
卡诺定理表达了理想热机的效率与工作温度之间的关系。
根据卡诺定理,任何机械热机的效率都不可能高于理论上的最大值,即卡诺热机的效率。
卡诺热机是一个在两个不同温度下工作的理想热机,其效率由工作温度之间的比值决定。
这种限制性的不可逆性是热力学第二定律的核心内容,也是热力学与统计物理学的重要区别之一。
事实上,热力学第二定律的发现引发了科学家们对宇宙中热能传递过程的深入研究。
他们发现,自然界中存在着一种名为熵的物理量,它代表了系统无序程度的度量。
根据熵的增加原理,自然倾向于朝着更高熵的方向演化,这就意味着热能应该自发地从高温系统传递到低温系统,而不会相反。
熵增加原理使热力学第二定律更加深入人心,在科学研究和工程设计中得到了广泛应用。
比如,通过了解热力学第二定律,我们可以最大限度地提高能源利用效率,减少能量的浪费。
这对于提升工业生产的效益和降低环境污染具有重要意义。
在工程中,通过设计有效的热回收系统,可以将废热转化为有用的能量,实现能量的再利用。
除了工程应用外,热力学第二定律在生物学中也有深远的影响。
生命系统本质上是开放的非平衡系统,需要从外部吸收能量来维持其复杂的结构和功能。
热力学第二定律为生物学家提供了理论基础,从微观角度解释了生命现象的发生。
通过深入理解热力学第二定律,科学家能够更好地探索生物体内能量转换的机制,从而拓宽我们对生命起源和演化的认识。
热力学第二定律的理解与实际应用热力学是研究能量转化和能量流动规律的科学,而热力学第二定律则是热力学中最基本的规律之一。
它描述了热量自然流动的方向性,对于我们理解自然界的运行机制以及实际应用具有重要意义。
本文将从理论和应用两个方面来深入探讨热力学第二定律。
一、热力学第二定律的理论解释热力学第二定律,也被称为熵增原理,简单来说,它指出热量自然地从高温物体传递到低温物体,而不会相反地从低温物体传递到高温物体。
这个定律可以通过熵的概念来解释。
熵是描述系统混乱程度的物理量,系统的熵越高,其混乱程度越高。
根据热力学第二定律,一个孤立系统的熵在一个孤立系统内应该增加或保持不变,而不会减少。
这意味着自然倾向于让系统朝着更高熵的方向演化。
这种趋势是不可逆转的,也就是说,系统的混乱程度一旦增加,就无法回到原来的状态。
二、热力学第二定律的实际应用1. 火力发电火力发电是一种常见的能源转换方式,其原理是燃料的燃烧释放出的热能转化为电能。
在火力发电厂中,热力学第二定律的原理被广泛应用。
燃烧过程中产生的热能被用来加热水蒸汽,使其膨胀,从而推动涡轮旋转,最终将机械能转化为电能。
这个过程中,热量从高温的燃烧室传递到低温的冷却水中,符合热力学第二定律的规定。
2. 制冷技术制冷技术是热力学第二定律的重要应用领域之一。
根据热力学第二定律,热量自然地从热区流向冷区,而不会相反。
制冷设备利用这个原理,将热量从一个物体或者区域传递到另一个物体或者区域,以实现降温的目的。
例如,冰箱通过压缩制冷循环,将热量从冷藏室中移出,使冷藏室内温度降低,达到保持食物新鲜的效果。
3. 热力学工程热力学在工程领域的应用非常广泛,例如燃气轮机、汽车发动机、蒸汽机等都是基于热力学原理设计和工作的。
这些设备利用燃料的燃烧产生的热能,通过热力学循环将热能转化为机械能,从而实现动力输出。
热力学第二定律的应用在这些设备中起到了至关重要的作用,保证了能量转换的高效率和可靠性。
热力学第二定律①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。
②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。
(1)说明①热力学第二定律是热力学的基本定律之一。
它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。
上述(1)中①的讲法是克劳修斯(Clausius)在1850年提出的。
②的讲法是开尔文于1851年提出的。
这些表述都是等效的。
在①的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。
要使热传递方向倒转过来,只有靠消耗功来实现。
在②的讲法中指出,自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。
热机能连续不断地将热变为机械功,一定伴随有热量的损失。
第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。
.②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。
它并不违反热力学第一定律,但却违反热力学第二定律。
有人曾计算过,地球表面有10亿立方千米的海水,以海水作单一热源,若把海水的温度哪怕只降低O.25度,放出热量,将能变成一千万亿度的电能足够全世界使用一千年。
但只用海洋做为单一热源的热机是违反上述第二种讲法的,因此要想制造出热效率为百分之百的热机是绝对不可能的。
③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。
显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。
热力学第二定律知识点总结热力学是研究能量转化和能量传递规律的学科,其中热力学第二定律是热力学的核心和基础。
热力学第二定律描述了自然界中热量如何传递的方向和限制。
本文将对热力学第二定律的几个重要知识点进行总结。
一、热力学第二定律的表述热力学第二定律有多种表述形式,其中最为常见的是克劳修斯表述和开尔文表述。
克劳修斯表述指出,不能将能量从低温物体传递到高温物体而不引起其他变化。
换句话说,热量只能从高温物体传递到低温物体,不可能自发地从低温物体移动到高温物体中。
开尔文表述则强调了热力学第二定律的实际应用,它指出热量不可能从自发流动的热源中完全转化为功,一定会有一部分热量转化为无用的热量,最终导致热能的不可逆损失。
二、熵的概念熵是描述热力学系统混乱程度或无序程度的物理量。
熵的增加表示系统的混乱度增加,而熵的减少则表示系统的混乱度减少。
根据热力学第二定律,孤立系统的熵总是会增加,不可能自发减少。
根据熵的定义,我们可以得出一个结论:任何自发过程都会伴随着熵的增加。
这也是为什么自发发生的过程是不可逆的原因之一。
熵的增加导致能量的不可逆转化,使得系统无法恢复到原来的状态。
三、热机效率和热泵效率热机效率是指热机从热源中吸收的热量与做功所消耗的热量之比。
根据热力学第二定律,热机效率的上限由克劳修斯表述给出,即热机效率不能超过1减去低温热源与高温热源的温度比之间的比值。
热泵效率是指热泵从低温热源中吸收的热量与提供给高温热源的热量之比。
热泵效率的上限同样由克劳修斯表述限制。
四、热力学不可逆性热力学第二定律揭示了热力学过程的不可逆性。
不可逆性的存在使得热流只能从高温物体传递到低温物体,而不能反向流动。
不可逆性还导致了热机效率和热泵效率的存在上限。
热力学第二定律的不可逆性在自然界广泛存在,如热传导、功的转化等过程都受到了不可逆性的约束。
能量的不可逆流动使得一部分能量转化为无用的热量,增加了能量损失。
五、热力学第二定律的应用热力学第二定律在工程和科学研究中有着广泛的应用。
热力学的第二定律热力学第二定律是关于内能与其他形式能量相互转化的独立于热力学第一定律的另一基本规律。
热力学第二定律是在研究如何提高热机效率的推动下逐步被发现的,并用于解决与热现象有关过程进行的方向问题。
热力学第一定律揭示了在改变一系统状态的过程中,功和热是等效的,并提示功变为热或热变为功时,功和热之间存在着一定的数量关系。
然而,经验证明,连续的将功完全变为热量可以实现的,而连续的将热完全变为功却是不可能的。
热力学第一定律不能说明这一事实以及关于过程进行方向的其他事实。
能够说明过程进行方向的是由经验归纳出来的,独立于第一定律的热力学第二定律。
研究大量的不可逆过程,发现可以从一种过程的不可逆性经过逻辑推理证明另一过程的不可逆。
这种推理的基础是一切不可逆 过程都有内在联系。
我们可以比较方便选择对一种不可逆过程的表述作为热力学第二定律的一种表述。
在热力学第一、二定律建立起来以前,卡诺探讨提高热机效率的途径,总结出后来称为卡诺定理的两个命题。
应用卡诺定理,从可逆卡诺循环建立起热力学温标。
克劳修斯从卡诺定理和卡诺循环导出克劳修斯等式和不等式,找到了系统的一个状态函数—熵,并证明了熵增加原理,克劳修斯将热力学第二定律用数学形式表达出来,避免了使用复杂的逻辑推理方法,方便的判断过程能否自发进行和判断过程进行的方向。
一、热力学的第二定律的开尔文表述:法国人巴本发明了第一部蒸汽机,英国人纽可门制作的大规模把热变为机械能的蒸汽机从1712年起在全英国煤矿普及使用,其后瓦特改进的蒸汽机在十九世纪已在工业上得到广泛使用,提高热机效率问题成为当时生产中的重要课题。
热机效率公式为:121QQ-=η从这个公式看来,若热机工作物质在一循环中,向低温热源放的热量Q 2越少,而机械效率就越高。
若设想η=1=100% 。
Q 2必为Q 2=0 这就要求工作物质在一循环中,把从高温热源处吸收来的热量全部转化为有用的机械功,而工作物质又回到了原来的热力学状态。
热力学第二定律公式
热力学第二定律是一种基本的物理定律,它描述了物质在发生热力学过程时所表现出的一般性规律。
它的公式表达式为ΔS ≥ δQ/T,其中ΔS代表热力学系统的熵增量,δQ代表系统受到的热量,T代表系统的绝对温度。
它的定义如下:当一个物质在发生热力学过程时,物质的熵增量ΔS必须大于系统受到的热量δQ除以系统的绝对温度T,即ΔS ≥ δQ/T。
这一定律表明,当物质发生热力学过程时,物质的熵总是在增加,而不会减少,即熵增量ΔS必须大于等于零,而不能小于零。
当一个物质发生热力学过程时,熵增量ΔS可能会大于δQ/T,这表明物质的熵增量不仅是由外加的热量所决定,还受到系统的温度影响,即熵增量也受到温度的影响,这也是热力学第二定律的一个重要内容。
热力学第二定律是一个重要的物理定律,它描述了物质在发生热力学过程时的一般规律,即物质的熵总是在增加,而不会减少,而且熵增量的大小也受到系统的温度的影响。
鉴于热力学第二定律的重要性,它已经成为热力学研究的基础,它在很多热力学相关问题的研究中都发挥着重要作用。