切线的判定定理(教案)
- 格式:doc
- 大小:37.50 KB
- 文档页数:3
《24.2.2切线的判定定理》教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《24.2.2切线的判定定理》教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《24.2.2切线的判定定理》教案的全部内容。
数学公开课: 24.2。
2 直线与圆的位置关系(2)——《切线的判定定理》教案【教学目标】:知识与技能:使学生理解切线的判定定理,并学会初步运用.过程与方法:通过复习直线与圆的位置关系,以“d=r 直线是圆的切线”为依据,探究切线的判定定理.情感、态度与价值观:经历观察、探究、证明等数学活动过程,培养学生初步的演绎推理能力,掌握图形的基础知识和基本技能,并能解决简单的问题.【教学重点】: 探索圆的切线的判定定理,并能运用【教学难点】: 切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径的外端;二是直线垂直于这条半径.【教学过程】:一、知识回顾:复习提问:直线与圆有哪些位置关系?(学生回答,并填表)二、新知探究1、提出问题:怎样判定一条直线是圆的切线?你有几种判定方法?判定方法1:当直线和圆有唯一公共点时,直线是圆的切线;判定方法2:当圆心到直线的距离等于半径时,直线是圆的切线。
注意:实际证明过程中,通常不采用第一种方法;方法2从“数量”的角度说明圆的切线的判定方法.思考:能否从“位置”的角度,来判定直线是圆的切线呢?2、观察:如图,在⊙O 上任意取一点A,连接OA ,过点A 作直线l⊥OA.由圆心到直线的距离等于半径,可以判定直线l 与圆相切。
提问学生:观察直线l 与半径OA 有什么位置关系?3、发现:(1)直线l 经过半径OA 的外端点A ;(2)直线l 垂直于半径0A .则:直线l 与⊙O 相切.这样我们就得到了从位置上来判定直线是圆的切线的方法-—切线的判定定理.4、切线的判定定理: 经过半径的外端,并且垂直于这条半径的直线是圆的切线.(1)对定理的理解:切线必须同时满足两个条件:①经过半径的外端;②垂直于这条半径.(2)定理的几何语言表达:∵ OA是半径,l⊥OA于A∴ l是⊙O的切线5、巩固:判断(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线( )(3)过半径的端点与半径垂直的直线是圆的切线( )说明:本题目的是加深学生理解好一条直线必须经过半径的外端,并且垂直于这条半径的两大要素缺一不可.6、归纳:判定直线与圆相切有哪些方法?(三种)①直线与圆有唯一公共点;②圆心到直线的距离等于半径;③切线的判定定理.三、新知应用例1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
圆的切线的判定(教案)章节一:圆的切线的定义与性质1.1 教学目标让学生了解圆的切线的定义。
让学生掌握圆的切线的性质。
1.2 教学内容圆的切线的定义。
圆的切线的性质。
1.3 教学步骤1.3.1 引入利用实物或图片展示圆和切线,引导学生思考圆的切线的定义。
1.3.2 讲解讲解圆的切线的定义,强调圆的切线与圆的接触点是切点。
讲解圆的切线的性质,如切线与半径垂直,切线与圆的切点处的切线斜率为0等。
1.3.3 练习提供一些图形,让学生判断哪些是圆的切线,并解释原因。
1.4 教学评价通过学生的练习和提问,评估学生对圆的切线的定义和性质的理解程度。
章节二:圆的切线的判定定理2.1 教学目标让学生了解圆的切线的判定定理。
让学生能够运用判定定理判断一条直线是否为圆的切线。
2.2 教学内容圆的切线的判定定理。
判定定理的应用。
2.3 教学步骤2.3.1 引入回顾上一章节的圆的切线的性质,引导学生思考如何判断一条直线是否为圆的切线。
2.3.2 讲解讲解圆的切线的判定定理,包括定理的表述和证明过程。
讲解判定定理的应用,如何通过已知条件判断一条直线是否为圆的切线。
2.3.3 练习提供一些题目,让学生运用判定定理判断直线是否为圆的切线,并提供解题思路和步骤。
2.4 教学评价通过学生的练习和提问,评估学生对圆的切线的判定定理的理解程度和应用能力。
章节三:圆的切线方程的求法3.1 教学目标让学生了解圆的切线方程的求法。
让学生能够运用求法求出圆的切线方程。
3.2 教学内容圆的切线方程的求法。
切线方程的求法应用。
3.3 教学步骤3.3.1 引入回顾上一章节的内容,引导学生思考如何求出圆的切线方程。
3.3.2 讲解讲解圆的切线方程的求法,包括切线方程的一般形式和求法步骤。
讲解切线方程的求法应用,如何根据已知条件求出圆的切线方程。
3.3.3 练习提供一些题目,让学生运用求法求出圆的切线方程,并提供解题思路和步骤。
3.4 教学评价通过学生的练习和提问,评估学生对圆的切线方程的求法的理解程度和应用能力。
1.使学生掌握切线的判定定理,并能初步使用它解决相关问题;2.通过判定定理的学习,培养学生观察、分析、归纳问题的水平;3.通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点和难点切线的判定定理是重点;定理的使用中,辅助线的添加方法是难点.教学过程设计一、从学生已有的知识结构提出问题1.投影打出直线与圆的三种位置关系.(图7-102)根据图7-102,请学生回答以下问题(1)在图7-102中,图(1)、图(2)、图(3)中的直线l分别和⊙O是什么关系?学生:分别相交、相切、相离.(2)在上边三个图中,哪个图中的直线l是圆的切线?你是怎样判定的?学生:图(2)中直线l是⊙O的切线.根据切线的定义判定.教师指出:根据切线的定义能够判定一条直线是不是圆的切线,但有时使用定义判定很不方便,为此我们还要学习切线的判定定理.(板书课题)二、师生共同探讨、发现定理1.让学生在纸上、教师在黑板上画⊙O,在⊙O上任取一点A,连结OA,过A点作直线l⊥OA,作完后,提问:直线l是否与⊙O相切呢?启发学生得出结论:因为圆心O到直线l的距离等于半径,即d=r,所以直线l 一定与圆相切.请学生回顾作图过程,切线l是如何作出来的?它满足哪些条件?引导学生总结出:①经过半径外端;②垂直于这条半径.从而得到切线的判定定理.(板书定理)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.请学生思考:定理中的两个条件缺少一个行不行?学生回答后,教师指出:定理中的两个条件缺一不可.(投影打出两个反例图7-103)图(1)中直线l经过半径外端,但不与半径垂直;图(2)中直线l与半径垂直,但不经过半径外端.从以上两个反例能够看出,只满足其中一个条件的直线不是圆的切线.最后引导学生分析,定理实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,仅仅为了便于应用把它改写成“经过半径的外端,并且垂直于这条半径的直线是圆的切线”这种形式.所以,定理不必另加证明.三、应用定理,强化训练例1 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.(图7-104)求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.因为AB过圆上点C,若连结OC,则AB过半径OC的外端.所以只需证明OC⊥AB,因OA=OB,CA=CB,易证OC⊥AB.证明:(学生口述,教师板演)例2 如图7-105,已知OA=OB=5厘米,AB=8厘米,⊙O的直径为6厘米.求证:AB与⊙O相切.分析:因为已知条件没给出AB和⊙O有公共点,所以可过圆心O作OC⊥AB,垂足为C.只需证明OC等于⊙O的半径3厘米即可.证明:过O作OC⊥AB,垂足为C.因为OA=OB=5厘米,AB=8厘米,所以AC=BC=4厘米.所以在RtAOC中,OC==3(厘米).又因为⊙O的直径长为6厘米,故OC的长等于⊙O的半径3厘米.所以AB与⊙O相切.完成以上两个例题后,让学生思考:以上两例辅助线的作法是否相同?有什么规律吗?在学生回答的基础上,师生一起归纳出以下规律:(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证直线与半径垂直.(2)当直线与圆并没明确有公共点时,辅助线的作法是“过圆心向直线作垂线”,再证圆心到直线的距离等于半径.练习1 判断以下命题是否准确.(投影打出)(1)经过半径外端的直线是圆的切线.(2)垂直于半径的直线是圆的切线.(3)过直径的外端并且垂直于这条直径的直线是圆的切线.(4)和圆有一个公共点的直线是圆的切线.(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.采取学生抢答的形式实行,并要求说明理由,教师给予即时肯定或纠正.练习2 如图7-106,⊙O的半径为8厘米,圆内弦AB=83厘米,以O为圆心,4厘米为半径作小圆,求证:小圆与直线AB相切.练习3 如图7-107,已知AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°.求证:DC是⊙O的切线.练习2和练习3请两名学生上黑板板演,教师巡视,个别辅导.四、小结提问:这节课主要学习了哪些内容?需要注意什么问题?在学生回答的基础上,教师总结:主要学习了切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.判定一条直线是圆的切线,有三种方法:(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.(3)根据切线的判定定理来判定,即经过半径的外端并且垂直于这条半径的直线是圆的切线.其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.证明一条直线是圆的切线,常常需要作辅助线.如果已知直线过圆上某一点,则作出过这一点的半径,证明直线垂直于半径(如例1);如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到直线的距离等于半径(如例2).五、布置作业。
切线的判定定理教案教案题目:切线的判定定理教学目标:1.理解什么是切线,了解切线与曲线的几何性质;2.掌握直线与曲线相切的条件;3.能够应用切线的判定定理解决相关的几何问题。
教学重点:1.掌握切线的几何性质;2.理解切线的判定定理。
教学难点:1.理解切线与曲线的相切关系;2.掌握切线的判定条件。
教学准备:1.教师准备:黑板、彩色粉笔、直尺、圆规;2.学生准备:课本、练习册。
教学过程:Step 1:引入新知(15分钟)1.教师首先通过黑板上画出一个曲线图形,引导学生观察图形,思考下列问题:-通过直线与曲线的位置关系,你能得出什么结论?-直线和曲线有什么共同点和不同点?2.让学生回答问题并做思考。
3.引导学生认识切线的概念:当一条直线通过曲线上的一个点且同时与曲线相交于该点时,这条直线称为曲线在该点处的切线。
4.引导学生观察切线与曲线在相切点附近的几何性质,帮助学生理解切线的定义和切线的判定定理。
Step 2:切线的判定定理(20分钟)1.引导学生思考并完成以下问题:假设曲线上有一点P,过点P作曲线的切线l。
如果点P的切线l与直线g相交于点Q,那么点Q是否在曲线上?分析为什么?2.学生回答问题并讨论。
3.教师引导学生得出结论:如果直线g与曲线相交于点Q,且点Q在曲线上,则直线g是曲线在点Q处的切线。
4.教师通过示例或者具体的图形让学生理解切线的判定定理。
Step 3:切线与曲线的应用(25分钟)1.教师给出几个具体的实例,让学生应用切线与曲线的判定定理解决相关的几何问题。
如:-已知曲线y=x^2与直线y=2x相切于点P,求曲线在点P处的切线方程。
-求椭圆x^2/4+y^2=1上与直线y=2x+1相切的点。
Step 4:练习与反馈(20分钟)1.学生在课本或练习册上完成相关练习题,加深对切线判定定理的理解。
2.教师批改学生的练习,并对答错的题目进行讲解和解释。
Step 5:课堂总结(15分钟)1.教师对本节课的内容进行小结。
切线的判定定理教案证明圆的切线是近几年中考常见的数学问题之一。
最常用的是利用“经过半径的外端并且垂直于这条半径的直线是圆的切线”证明。
本内容通过动手操作得出切线的判定定理,再利用解决两道例题,总结归纳出两种具体的证法:①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。
归纳总结后,马上给予两道对应练习题巩固理解两种证明方法。
理解切线的判定方法,能选择正确的方法证明一条直线是圆的切线。
掌握判断圆的切线的方法,并灵活解题。
进一步培养使用“分类”与“归纳”等思想方法的能力。
平面内直线和圆存在着三种位置关系,即直线和圆相离、直线和圆相切、直线和圆相交,这三种位置关系中最重要的是直线和圆相切。
那么怎样证明直线和圆相切呢?怎样判定一条直线是圆的切线?⑴和圆只有一个公共点的直线是圆的切线;(定义)⑵到圆心的距离等于半径的直线是圆的切线;(d二r)除了这两种方法,还有没有其他方法判定一条直线是圆的切线呢?活动一:在练习本上画一个圆O,做一个半径OA,做一条直线L, 使L经过点A且垂直于OA。
这样的直线能画几条?这条直线和圆是什么位置关系?为什么?你得到了什么结论?切线判定定理:经过直径的一端,且垂直于这条直径的直线是圆的切线。
活动二:分析定理。
经过直径的一端,且垂直于这条直径的直线是圆的切线。
这个定理有什么用?证明一条直线是圆的切线,那根据这个判定定理,要证明一条直线是圆的切线,需要几个条件?分别是什么?对定理的理解:①经过半径外端.②垂直于这条半径。
定理中的两个条件缺一不可。
例1:如图,直线AB经过。
O上的点^并且0人=08工人二CB,求证:直线AB是。
0的切线。
证明:连结0CV0A=0B, CA=CB,Z.ABXOCo・・,直线AB经过半径0C的外端C,并且垂直于半径0C,・・・AB是。
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线的概念,给出圆的切线的定义。
通过图形和实例解释圆的切线的性质和特点。
1.2 圆的切线性质探讨圆的切线的性质,如切线与半径垂直、切线与圆只有一个交点等。
通过几何证明和实例来加深对圆的切线性质的理解。
第二章:圆的切线判定定理2.1 切线判定定理的引入引入圆的切线判定定理,并解释其意义和作用。
通过图形和实例来展示切线判定定理的应用。
2.2 切线判定定理的证明几何证明切线判定定理,解释定理的证明过程和逻辑推理。
通过证明过程来加深对切线判定定理的理解和应用。
第三章:圆的切线方程3.1 切线方程的引入引入圆的切线方程,并解释其意义和作用。
通过图形和实例来展示切线方程的应用。
3.2 切线方程的求解学习如何求解圆的切线方程,包括斜率存在和不存在的情况。
通过例题和练习来掌握切线方程的求解方法。
第四章:圆的切线与圆的位置关系4.1 切线与圆相切探讨切线与圆相切的情况,包括切线与圆的切点和切线与圆的切线。
通过图形和实例来展示切线与圆相切的特点和性质。
4.2 切线与圆相离和相交探讨切线与圆相离和相交的情况,包括切线与圆的交点和切线与圆的内切。
通过图形和实例来展示切线与圆相离和相交的特点和性质。
第五章:圆的切线在实际问题中的应用5.1 切线在几何问题中的应用探讨圆的切线在几何问题中的应用,如求解角度、距离等问题。
通过例题和练习来展示切线在几何问题中的应用方法。
5.2 切线在实际生活中的应用探讨圆的切线在实际生活中的应用,如自行车轮子、圆形操场等。
通过实例来展示切线在日常生活中的重要性和作用。
第六章:圆的切线判定定理的拓展6.1 切线判定定理的推广探讨将切线判定定理应用到更一般的情况下,如非圆形的曲线。
通过图形和实例来展示切线判定定理的推广应用。
6.2 切线判定定理与其他数学概念的联系探讨切线判定定理与其他数学概念的联系,如代数、几何等。
通过例题和练习来展示切线判定定理与其他数学概念的结合应用。
数学教案-切线的判定和性质一、教案简介本教案旨在帮助学生掌握切线的判定和性质。
通过本教案的学习,学生将了解如何判断一条直线是否为曲线的切线,并掌握切线的性质,如切点、切线方向等。
本教案适用于高中数学教学中切线相关知识的教学。
二、教学目标1.了解判定一条直线为曲线的切线的几何条件;2.掌握切线的性质,如切点、切线方向等;3.运用所学知识解决相关问题。
三、教学重点1.切线的判定几何条件;2.切线的性质。
四、教学内容和方法1. 切线的判定切线是曲线与该曲线上的某一点之间相切的直线。
切线的判定可以通过以下几何条件来进行判断:•条件1:直线过曲线上的一点;•条件2:直线与曲线相交于该点。
2. 切线的性质性质1:切点切线与曲线相交的点称为切点。
性质2:切线的方向切线上的两点在曲线上对应的两点连线的斜率等于切线的斜率。
性质3:切线的斜率切线的斜率等于曲线在切点处的导数。
3. 相关问题的解决将学生分成小组进行练习,解决如下问题:1.已知函数y=x3−2x2−3x+2,求曲线y=x3−2x2−3x+2上切线方程的斜率和截距;2.已知函数$y = \\sqrt{x}$,求曲线$y = \\sqrt{x}$上切线方程的斜率和截距。
五、教学步骤1.导入:通过引入一个实际生活中的例子,如汽车与曲线的切线,引起学生的兴趣,并提出问题:“如何判断一条直线是否为曲线的切线?切线有哪些性质?”;2.讲解:通过讲解切线的判定条件和性质,帮助学生理解切线的概念和相关知识;3.实例演示:通过解析具体的数学问题,讲解切线的判定和性质的应用;4.练习:将学生分成小组,进行相关问题的练习;5.总结:对本节课的主要内容进行总结,并强调切线的重要性和应用价值;6.作业布置:布置相关作业,巩固所学知识。
六、教学评估1.练习题的完成情况;2.学生对切线的判定和性质的理解情况;3.教学过程中的讨论和思考问题的情况。
七、教学延伸1.利用电子白板或数学软件进行切线的绘制和切线方程的计算,帮助学生更加直观地理解切线的概念和性质;2.结合实际问题,让学生应用切线的知识解决实际问题,提高学生对数学知识的应用能力。
切线的判定和性质数学教案设计第一章:导言1.1 课程引入介绍切线的基本概念,让学生了解切线在几何学中的重要性。
通过实际例子,引导学生思考切线与曲线的关系。
1.2 切线的定义给出切线的定义,解释切线与曲线的接触点。
引导学生通过图形加深对切线的理解。
第二章:切线的判定2.1 判定条件一:切点在曲线上引导学生理解切点在曲线上的条件。
通过实际例子,展示切点在曲线上时,切线的性质。
2.2 判定条件二:切线与曲线有唯一交点解释切线与曲线有唯一交点的条件。
通过图形和实际例子,引导学生理解判定条件二。
第三章:切线的性质3.1 性质一:切线与半径垂直引导学生理解切线与半径垂直的性质。
通过图形和实际例子,展示切线与半径垂直的性质。
3.2 性质二:切线与曲线相切时,切线斜率等于曲线导数解释切线斜率等于曲线导数的性质。
通过实际例子,展示切线斜率等于曲线导数的性质。
第四章:切线的应用4.1 应用一:求曲线在某点的切线方程引导学生掌握求曲线在某点的切线方程的方法。
通过实际例子,展示求曲线在某点的切线方程的步骤。
4.2 应用二:求曲线的切线与曲线的交点引导学生掌握求曲线的切线与曲线的交点的方法。
通过实际例子,展示求曲线的切线与曲线的交点的步骤。
引导学生回顾切线的判定和性质,加深对切线的理解。
通过练习题,巩固学生对切线的判定和性质的掌握。
5.2 拓展切线在其他领域的应用引导学生思考切线在其他领域的应用,如物理学、工程学等。
激发学生对切线应用的兴趣和好奇心。
第六章:切线方程的求法6.1 切线方程的斜率截距式解释切线方程的斜率截距式的概念。
引导学生通过图形和实际例子,理解斜率截距式在求切线方程中的应用。
6.2 切线方程的一般式解释切线方程的一般式的概念。
引导学生通过图形和实际例子,理解一般式在求切线方程中的应用。
第七章:切线与曲线的位置关系7.1 切线与曲线相切解释切线与曲线相切的条件。
引导学生通过图形和实际例子,理解切线与曲线相切时的特点。
切线判定教案一、教案概述切线是数学中的重要概念,在几何和微积分中都有广泛的应用。
切线的判定是学生学习这一概念的基础,本教案旨在帮助学生理解和掌握切线的判定方法。
二、教学目标1. 理解切线的定义和性质;2. 掌握切线的判定方法;3. 能够应用切线的判定方法解决相关问题。
三、教学重点1. 切线的定义和性质;2. 切线判定的方法。
四、教学难点切线的判定方法的灵活运用。
五、教学准备教师:黑板、粉笔、教案、教辅材料;学生:课本、笔、纸。
六、教学过程步骤一:导入(5分钟)教师可利用一些日常生活中的示例引入切线的概念,如车轮上的点速度最快时与车轮接触的点即为切点,切线即为接触点上的切线。
步骤二:切线的定义和性质(10分钟)1. 定义切线:切线是曲线与曲线上某一点相切的直线。
2. 切线的性质:a. 切线与曲线相切于切点;b. 切线与曲线的切点处曲线的切线方向相同;c. 曲线上的点相对于切点都在曲线同一侧。
步骤三:切线判定方法(15分钟)1. 曲线切线的判定:a. 判定图形是否为曲线(非直线);b. 判断所给点是否在曲线上;c. 判断切线是否通过所给点;d. 判断切线方向是否一致。
2. 不同曲线的切线判定方法:a. 对于圆,过圆心与所给点作直线,切线即为该直线;b. 对于抛物线,过所给点作抛物线的切线,判断切点;c. 对于函数曲线,求函数的导数,过所给点作导数的直线,判断切点。
步骤四:应用举例(20分钟)教师可通过一些实例来让学生应用切线的判定方法解决问题,如求曲线上某点的切线方程、求切线与其他线段的交点等。
步骤五:巩固和拓展(15分钟)学生自主思考和解答一些关于切线判定的问题,可以通过小组合作或个人完成。
步骤六:总结(5分钟)教师对本节课的内容进行总结,并回顾切线的定义、判定方法以及应用。
七、课堂作业1. 完成课堂练习题;2. 预习下一节课的内容。
八、教学反思通过本教案,学生可以掌握切线的定义、性质和判定方法,并能够应用切线判定解决简单问题。
切线的判定教案
教案:切线的判定
一、教学目标
1. 知识目标:了解切线的定义和性质,学会判定一条直线是曲线的切线的方法。
2. 技能目标:掌握使用切线的定义和性质进行判定的方法,能够应用所学知识解决相关问题。
3. 情感目标:培养学生对几何知识的兴趣,激发学生思考和发问的能力,培养学生学习几何的态度。
二、教学重点
1. 掌握切线的定义和性质。
2. 学会使用切线的定义和性质进行判定。
三、教学难点
学会应用所学知识解决相关问题。
四、教学过程
1. 导入(5分钟)
引导学生回顾之前学过的直线和曲线的定义,复习直线和曲线的性质。
2. 讲解(10分钟)
(1)引入切线的概念,给出切线的定义和性质。
(2)讲解切线的判定方法,包括两种常见的情况:切线与曲线的切点只有一个、切线与曲线的切点有多个。
3. 案例分析(15分钟)
使用切线的定义和性质,结合几个实际问题进行讲解和分析,帮助学生理解和掌握切线的应用。
4. 练习(20分钟)
根据所学知识进行练习,巩固切线的判定方法。
提供不同难度的题目,让学生逐渐提高解题能力。
5. 总结(5分钟)
对本节课所学内容进行总结,强调切线的判定方法和应用。
六、作业布置
布置相关的作业题,要求学生独立完成,并及时批改和讲解。
七、教学反思
本节课的教学重点是切线的判定方法和应用,通过案例分析和实际练习,帮助学生理解和掌握切线的相关知识。
教学过程中,需注意引导学生主动思考和发问,激发学生的学习兴趣。
此外,教师要及时给予学生指导和反馈,及时纠正错误,提高学生的学习效果。
初中数学《切线的判定》教案35.4《切线的判定》备课分析一、教材分析1、教材所处的地位和作用切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是学习圆的切线长和切线长定理等知识的基础。
2、教学内容“切线的判定和性质”共两个课时,课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时。
为了突出本节课的重点、突破难点,我没有采用教材安排的顺序,而是依据初三学生认知特点,将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,让教学呈现一个循序渐进、温过知新的过程。
本节课主要有三部分内容:(1)切线的判定定理(2)切线的判定定理的应用(3)切线的两种判定方法。
教学重点是切线的判定定理及其应用。
教学难点是切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。
二、教学对象分析在学习本节内容之前学生已经掌握了圆的切线的定义,直线和圆的三种位置关系和一种直线与圆相切的判定方法(用d=r)。
在学习用d=r来判定直线与圆相切的内容时曾为本节内容打过伏笔,设置过悬念,所以学生对本节内容的学习充满期待的。
三、教案设计思路为了实现教学目标,本节课我主要突出抓好以下五个环节:1.复习提问打好基础,为新课作铺垫。
问题1是例2的基础,问题2则起着复旧孕新、引入新课的作用。
2.发现、证明、理解定理学好基础知识。
根据初三学生有一定创造、自学能力的特点,在教学中,教师通过启发和指导学生阅读教材,教会学生通过自己观察,发现结论,再设法证明结论的学习方法,同时也强化了学生的阅读、自学能力。
九上数学《切线的判定和性质(教学设计)》第7课时《切线的判定和性质》【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题.【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.一、情境导入,初步认识情境1 下雨天,小孩子总喜欢转动雨伞,你发现雨伞的水珠顺着伞面的边缘飞出,水珠是顺着什么方向飞出的?情况二用机器磨削铁件时,铁屑朝哪个方向飞出?情境3用细线系一个球。
当你快速旋转细线时,球会移动形成一个圆。
突然,球掉了下来,沿着圆的边缘飞了起来。
你知道球会朝哪个方向飞吗?【教学说明】通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.二、思考探究,获取新知 1.切线的判定定理思考1 如图,在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?分析:∵直线l⊥OA,而点A是⊙O的半径OA的外端点.∴直线l与⊙O只有一个交点,并且圆心O到直线l的距离是垂线段OA,即是⊙O的半径.∴直线l与⊙O相切.【归纳总结】切线的判定定理:经过半径的外端(点)并且垂直于这条半径的直线是圆的切线.【教学说明】结合切线的定义以及“如果圆心到直线的距离等于半径,那么直线和圆相切”,引导学生得出结论.在切线的判定定理中,“经过外端”和“垂直于半径”两者缺一不可.试一试(1)已知一个圆和圆上的一点,如何过这个点画出圆的切线?(只能作一条直线)(2)下图中的直线是圆的切线吗?(都不是圆的切线)2.切线的性质定理思考2 已知直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由学生代表回答)教师点评:由于l是⊙O的切线,点A为切点,∴圆心O到l 的距离等于半径,所以OA就是圆心O到直线l的距离.∴OA⊥直线l.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是⊙O的切线,切点为A.∴OA⊥直线l.【教学说明】这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,直线l与⊙O就相交了,而这与直线l与⊙O相切矛盾.因此,OA垂直于直线l.三、典例精析,掌握新知例1 教材98页例1.(要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.例2(1)如图(1),AB是⊙O的弦,PA是⊙O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图(2),AB 是⊙O的直径,DC切⊙O于点C,连接CA、CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵△OAB为等腰三角形,∴∠OAB=∠OBA.又∵PA是⊙O的切线,∴由切线的性质可知:PA⊥OA,∴∠OAP=90°,∴∠OAB=∠OAP-∠BAP=90°-30°=60°,∴∠AOB=180°-2∠OAB=180°-2×60°=60°.(2)连接OC,∵CD是⊙O的切线,∴OC⊥CD,而∠ACD=30°,.∴∠OCA=60°,∴△OAC是等边三角形,AC=OA=r=1/2×AB=1/2×12=6.【教学说明】例1是对切线的判定定理的应用,要使学生掌握用这个定理来证明切线的关键(紧扣两点).例2是利用切线的性质解题.在解决与圆有关的切线的问题时,常见辅助线有:(1)已知直线是圆的切线时,通常连接过切点的半径,则这条半径垂直于切线.(2)要证明一条直线是圆的切线:①若直线过圆上某一点,则连接这点和圆心得到辅助半径,再证这条半径与直线垂直.即:已知公共点,连半径证垂直.②若直线与圆的公共点不确定,则过圆心作直线的垂线段,证明这条垂线段长等于圆的半径长.即:未知公共点,作垂线证半径.这种题型后面会给出练习.四、运用新知,深化理解 1.完成教材第98页练习1、2.2.如图,已知PA是∠BA C的平分线,AB是⊙O的切线,切点为E,求证:AC是⊙O的切线.【教学说明】教材上的练习1、2由学生自主完成,加深对切线的判定及性质的理解掌握;第2题是对切线的性质与判定的综合应用,教师可先让学生独立思考,再加以提示.最后,师生共同完成解题.【答案】1.(1)∵AT=AB,∴∠B=∠T=45°,∴∠A=180°-∠B-∠T=90°.又∵AB是⊙O的直径,∴AT是⊙O的切线.(2)l1∥l2,理由如下:∵AB是⊙O的直径,且l1、l2是⊙O的切线,∴l1⊥AB,l2⊥AB,∴l1∥l2.2.过O点作OF⊥AC于点F,连接OE.则OE⊥AE.∴∠OEA=∠OFA=90°,又∵PA是∠BAC的平分线,∴∠OAE=∠OAF,∵AO=AO,∴△OAF≌△OAE,∴OF=OE.又∵OE是半径,∴OF也为半径长.∴AC是⊙O的切线.五、师生互动,课堂小结1.让学生回顾本堂课的两个知识点.2.试着让学生自己总结切线的证明方法,然后相互交流.【教学说明】在这一环节,教师要尽可能地让学生自主总结与交流,然后适当地予以点评和补充.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.黄麓镇中心学校2013-2014学第一学期九年级数学教案24.2.2.2切线的判定和性质教学设计备课人:杨智刚时间:2013年11月18日【教学目标】1.知识和技能:1。
切线的判定教案教案标题:切线的判定教学目标:1. 理解什么是切线,掌握切线的定义。
2. 学会使用切线的定义和几何性质来判定给定曲线上某一点的切线。
3. 能够运用所学知识解决与切线相关的问题。
教学准备:1. 教师:黑板、彩色粉笔/白板、马克笔、教学投影仪。
2. 学生:教科书、练习册、几何工具。
教学过程:一、导入(5分钟)1. 教师引入切线的概念,通过提问的方式激发学生对切线的认知:你们知道什么是切线吗?在生活中或其他学科中有没有遇到过切线的概念?2. 学生回答后,教师简要介绍切线的定义和几何性质。
二、理论讲解(15分钟)1. 教师通过示意图和几何性质的解释,详细讲解切线的定义和性质。
2. 教师提供一些实际生活或几何问题,引导学生思考如何运用切线的定义和性质来解决问题。
三、示范演示(15分钟)1. 教师选择一个简单的曲线,如圆或抛物线,选取一个点作为示范点,演示如何判定该点处的切线。
2. 教师详细解释演示过程中所使用的步骤和推理,引导学生理解切线的判定方法。
四、练习与巩固(20分钟)1. 学生个人或小组合作完成练习册上的相关练习题,巩固所学内容。
2. 教师巡回指导学生解题过程,解答学生提出的问题。
五、拓展应用(10分钟)1. 教师提供一些拓展应用题,要求学生结合实际情境或其他学科知识,运用切线的判定方法解决问题。
2. 学生个人或小组展示解题过程和结果,进行讨论和交流。
六、总结与评价(5分钟)1. 教师对本节课的内容进行总结,并强调切线的重要性和应用价值。
2. 学生对本节课的学习进行自我评价,教师进行点评和提出建议。
教学反思:在教案撰写过程中,教师需要充分考虑学生的学习需求和实际水平,选择合适的教学方法和教学资源。
同时,教师应注重培养学生的动手能力和解决问题的能力,通过练习和拓展应用的环节,激发学生的学习兴趣和探究欲望。
24.2.2直线与圆的位置关系(第2课时)
切线的判定定理(教案)
西河中学** 一.教学目标。
知识与技能目标:使学生掌握如何判定某条直线是圆的切线的方法,通过定理提高学生如何判定直线和圆的位置关系。
能力目标:学生经过探究观察分析最后得出判定定理,加深对定理中两个条件的理解,培养学生分析探究问题的能力和对学习的积极性。
情感与态度目标:通过掌握判定某条直线是圆的切线的方法,掌握解决问题要用理论依据说话的道理,培养学生解决问题的能力和勇于发现的探究的创新精神。
二.教学重点和难点:1.重点:理解运用判定定理判定某条直线是圆的切线必须同时满足两条件。
2.难点:借助辅助线判定某条直线是圆的切线。
三.教学过程
活动1 复习引入:直线与圆的三中位置关系中(幻灯片1,2),最重要的是直线与圆相切,本节课重点研究这一种位置关系。
若直线与圆只有一个交点时,直线必然是圆的切线。
那么经过圆上一点(如一条半径的外端)的直线是否一定是否是圆的切线呢?
探讨:过圆上一点的直线,在什么情况下一定是圆的切线?
二、探索新知:
活动2.探究新知:
1). 如图,OA为⊙O半径,直线l经过点A,直线l与OA夹角为∠A,当直线l沿A旋转时,(1)∠A的变化范围是多大?随着∠A度数的增大,点O到直线l的距离大小如何变化?直线l与⊙O的位置关系如何变化?(2)当∠A为多少度时,点O到直线l的距离刚好等于半径r?此时直线l与⊙O的位置关系如何?说明依据。
(3)在(2)中,直线l满足什么条件?
(幻灯片3)结论:直线l满足条件①:经过半径
OA的外端点A条件②:垂直于半径
A
疑问:是否必须同时满足这两条件,直线l 才是圆O 的切线?
2) 判断下图直线l 满足哪个条件?是否是⊙O 的切线?(幻灯片4)
结论:直线l 必须同时满足这两个条件①②,才能确定直线是圆的切线。
综合以上,可总结为:一条直线若同时满足条件①:经过半径OA 的外端点A 条件②:垂直于半径OA 时,直线是该圆的切线。
(幻灯片5)给出切线的判定定理. 强调定理中的两个条件缺一不可
判定定理几何符号表示
活动3新知应用 判断下列命题的真假(幻灯片6)。
下面我们来用刚探究出的判定定理,解决一些切线的证明问题。
例1(P95例1)直线AB 经过⊙O 上的点C,并且OA=OB,CA=CB,
求证:直线AB 是⊙O 的切线.(幻灯片7)略
(学生思考):根据上面的判定定理,如果你要证明一条直线是⊙O 的切线,你应该如何证明?
(老师点评):应分为两步:(1)说明这个点是圆上的点(即半径的外端),(2)•过这点的半径垂直于直线.证明过程及格式(幻灯片8)
快速检测:1.已知:如图,A 是⊙O 外一点,AO 的延长线交⊙O 于
点C,点B 在圆上,且AB=BC, ∠A=30.求证:直线AB 是⊙O 的切线. (幻灯片9)
小结:辅助线,有点构造①,即证②
例2.如图,点O 是∠AOB 的平分线OC 上任意一点,过0作OD ⊥
OB 于D ,以OD 为半径作⊙O ,判断⊙O 与OA 。
(幻灯片10)
小结:辅助线:无点构造②,即证①
方法总结:比较例1,2中证明切线时不同之处及辅助线的做法。
小结:有点连半径,证垂直
无点做垂线,证半径(相等)
活动4.课堂练习:(幻灯片12)
两学生学生演板,其他学生独立完成。
教师点评,纠错。
活动5课堂小结:1、切线的判定定理;2、证明切线时常作的辅助线3、判定切线的三种
A
方法总结。
布置作业:课后思考题。