圆的切线的判定定理
- 格式:ppt
- 大小:1.75 MB
- 文档页数:21
切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。
圆切线判定定理的证明引言:圆是几何学中常见的基本图形之一,研究圆的性质和定理对于解决几何问题非常重要。
本文将探讨圆切线判定定理的证明过程。
一、圆切线的定义在几何学中,圆切线是指与圆相切且只与圆相交于切点的直线。
圆切线与圆的切点只有一个,这是圆切线与其他直线的区别之一。
二、圆切线判定定理的描述圆切线判定定理可以描述为:如果一条直线与圆相交于圆上的一点,并且直线通过该点的切线,那么这条直线就是圆的切线。
三、证明过程为了证明圆切线判定定理,我们需要使用一些基本的几何定理和性质。
1. 定理一:半径垂直于切线根据圆的性质,半径与圆上任意一点的连线垂直于圆的切线。
这一定理是我们证明圆切线判定定理的关键。
2. 定理二:圆心角的性质圆心角的度数是圆上两条弧所对的角的度数。
根据圆心角的性质,圆心角的度数是其所对的弧所占整个圆的度数的一半。
3. 定理三:切线与半径的夹角由于切线与半径垂直,所以切线与半径的夹角为90度。
基于以上几个定理,我们可以开始证明圆切线判定定理。
证明:设圆C的圆心为O,半径为r。
直线l与圆C相交于点A,并且直线l通过点A的切线。
1. 连接OA,得到AO为半径r。
2. 由定理一可知,直线l与半径OA垂直。
3. 由定理三可知,直线l与半径OA的夹角为90度。
4. 假设直线l不是圆C的切线,即直线l与圆C有第二个交点B。
5. 连接OB,并作OB的垂直平分线,交圆C于点M。
6. 由于OM为半径,所以OM=r。
7. 由定理二可知,∠OMB是圆心角,所以∠OMB的度数是弧AB 的度数的一半。
8. 由于直线l与圆C相交于点A和B,所以弧AB的度数小于360度。
9. 由于∠OMB的度数是弧AB的度数的一半,所以∠OMB的度数也小于180度。
10. 由于直线l与圆C的交点B在弧AB的内部,所以∠OMB是一个锐角。
11. 由于直线l与圆C的交点B在弧AB的内部,所以直线l与圆C 的交点B的连线OB不是半径。
12. 由于OB不是半径,所以直线l不是圆C的切线。
切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l⊥O A,点 A 在⊙O 上∴直线l 是⊙O 的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA 是⊙O 的半径,直线l 切⊙O 于点 A∴l⊥O A(切线性质定理)推论 1 经过圆心且垂直于切线的直径必经过切点推论 2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA 、PB 分别切⊙O 于A、B 两点∴PA=PB ,∠APO= ∠BPO (切线长定理)证明:连结OA 、OB∵直线PA 、PB 分别切⊙ O 于A、B 两点∴OA ⊥AP 、OB ⊥PB∴∠OAP= ∠OBP=90 °弦切角(即图中 ∠ ACD) 等于它所夹的弧 弧的读数的一半等于完整,图中没有连结 1/2 所夹的弧的圆心角 OC] ( 弧 AC) 对的圆周角等于所夹的 [注,由于网上找得的图不是很几何语言: ∵∠ ACD 所夹的是弧 AC∴∠ ACD= ∠ABC=1/2 ∠ COA=1/2 弧 AC 的度数 ( 弦切角定理)推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言: ∵∠ 1 所夹的是弧 MN , ∠ 2 所夹的是 PQ ,弧 MN = 弧 PQ∴∠ 1= ∠ 2证明:作 AD ⊥EC∵∠ ADC=90 °∴∠ ACD+ ∠ CAD=90 °在△OPA 和△OPB 中:∠OAP= ∠OBPOP=OPOA=OB=r∴△OPA ≌△OPB ( HL )∴PA=PB ,∠APO= ∠BPO弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1))顶点在圆上,即角的顶点是圆的一条切线的切点; (2))角的一边和圆相交,即角的一边是过切点的一条弦所在的射线; (3) )角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。
圆的切线的判定定理圆的切线的判定定理(Tangent Line Determination Theorem)是几何学中的一个重要定理,也叫做接触恒等式。
它说明了,任意一条射线和圆的接触点之间必然存在一个恒等式,当且仅当此恒等式成立时,这条射线才能作为圆的切线。
圆的切线的判定定理的具体表述为:设O为圆心,r 为半径,P(x, y)为任意一点,若有:$$\begin{aligned} (x-x_0)^2+(y-y_0)^2=r^2\end{aligned}$$则点P处的射线与圆O相切,否则不相切。
圆的切线的判定定理最初是由17世纪的德国数学家,牛顿的导师哈耳曼(Gottfried Wilhelm Leibniz)提出的。
这个定理在几何学中有着重要的应用价值,它把圆的切线的判断问题解决了,给人们提供了一个方便快捷的判断方法,使得几何学可以更加自然地在计算机上实现。
圆的切线的判定定理也可以通过极坐标系来理解,即可以将圆的极坐标系表示为:$$\begin{aligned} \left\{\begin{array}{l} r=R \\ \theta=\alpha \end{array}\right. \end{aligned}$$其中R是圆的半径,α是圆的切线的角度。
由此可知,如果满足式子:$$\begin{aligned} r=R\cos(\alpha)+R\sin(\alpha) \end{aligned}$$则表明射线r与圆O相切,否则不相切。
从数学角度看,圆的切线的判定定理是一个约束关系,表明某个点处的射线和圆心之间的距离是一个定值,所以可以用来判断某一条射线是否能作为圆的切线。
圆的切线的判定定理在几何学中有着重要的应用价值,在几何分析、三角函数中都有广泛的应用。
例如,圆的切线的判定定理可以用来解决三角函数的解析解问题,例如:求解一个函数的导数,求解函数的尖峰点等。
此外,还可以用圆的切线的判定定理来解决几何分析中的曲线积分和圆的定积分等问题。
圆的切线
圆切线具有如下性质:
(1)切线与圆只有一个公共点;
(2)切线与圆心的距离等于圆的半径;
(3)切线垂直于过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心.
从上述5条性质知道:性质(1)是切线的定义;性质(2)是切线判定方法的逆定理;性质(3)、(4)、(5)是切线性质定理及其推论,其中性质(2)、(3)应用较多.
在应用切线性质定理时,如果只有切线,没有半径,要添加辅助线——就是连接过切点的半径,则此半径必垂直于切线.
应用切线的性质能解决几何计算与证明中的有关问题.
(1)利用切线性质计算线段的长度
例1:如图,已知:AB是⊙O的直径,P为延长线上的一点,PC切⊙O于C,CD⊥AB于D,又PC=4,⊙O的半径为3.求:OD的长.
例2:如图,已知:AB是⊙O的直径,CD切⊙O于C,AE⊥CD于E,BC的延长线与AE 的延长线交于F,且AF=BF.求:∠A的度数.
例4:如图,已知:AB是⊙O直径,CO⊥AB,CD切⊙O于D,AD交CO于E.求证:CD=CE.
例5:如图,已知:△ABC中,AB=AC,以AB为直径作⊙O,交BC于D,DE切⊙O于D,交AC于E.求证:DE⊥AC.。
圆的切线的判定定理的证明
1.圆的切线的判定定理的证明
【知识点的知识】
1、直线和圆的位置关系:
相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.
相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点.相离:直线和圆没有公共点时,叫做直线和圆相离.
2、切线的性质定理:圆的切线垂直于过切点的直径(或半径).
3、由直线与圆的位置关系和切线的性质定理推理总结出切线的判定定理:
切线的判定定理:经过半径(或直径)的外端并且垂直于这条半径(直径)的直线是圆的切线.
注意:“经过半径(或直径)的外端”和“垂直于这条半径(或直径)”这两个条件缺一不可.
4、切线的判定方法:
①直线到圆心的距离等于该圆的半径(直线与圆的位置关系);
②线与圆有唯一公共点(切线定义);
③切线的判定定理.
1/ 1。
三圆的切线的性质及判定定理[对应学生用书P25]1.切线的性质(1)性质定理:圆的切线垂直于经过切点的半径. 如图,已知AB 切⊙O 于A 点,则OA ⊥AB .(2)推论1:经过圆心且垂直于切线的直线必经过切点. (3)推论2:经过切点且垂直于切线的直线必经过圆心. 2.圆的切线的判定方法(1)定义:和圆只有一个公共点的直线是圆的切线. (2)数量关系:到圆心距离等于半径的直线是圆的切线. (3)定理:过半径外端点且与这条半径垂直的直线是圆的切线.其中(2)和(3)是由(1)推出的,(2)是用数量关系来判定,而(3)是用位置关系加以判定的.[说明] 在切线的判定定理中要分清定理的题设和结论,“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则该直线就不是圆的切线.[对应学生用书P25]圆的切线的性质[例1] 如图,已知∠C =90°,点O 在AC 上,CD 为⊙O 的直径,⊙O 切AB于E ,若BC =5,AC =12.求⊙O 的半径.[思路点拨] ⊙O 切AB 于点E ,由圆的切线的性质,易联想到连接OE 构造Rt △OAE ,再利用相似三角形的性质,求出⊙O 的半径.[解] 连接OE ,∵AB 与⊙O 切于点E , ∴OE ⊥AB ,即∠OEA =90°. ∵∠C =90°,∠A =∠A , ∴Rt △ACB ∽Rt △AEO , ∴OE BC =AOAB. ∵BC =5,AC =12,∴AB =13, ∴OE 5=12-OE 13,∴OE =103.即⊙O 的半径为103.利用圆的切线的性质来证明或进行有关的计算有时需添加辅助线,其中连接圆心和切点的半径是常用辅助线,从而可以构造直角三角形,利用直角三角形边角关系求解,或利用勾股定理求解,或利用三角形相似求解等.1.如图,AB 切⊙O 于点B ,延长AO 交⊙O 于点C ,连接BC .若∠A =40°,则∠C =( )A .20°B .25°C .40°D .50°解析:连接OB ,因为AB 切⊙O 于点B ,所以OB ⊥AB ,即∠ABO =90°,所以∠AOB=50°.又因为点C 在AO 的延长线上,且在⊙O 上, 所以∠C =12∠AOB =25°.答案:B2.如图,已知P AB 是⊙O 的割线,AB 为⊙O 的直径.PC 为⊙O 的切线,C 为切点,BD ⊥PC 于点D ,交⊙O 于点E ,P A =AO =OB =1.(1)求∠P 的度数; (2)求DE 的长. 解:(1)连接OC .∵C 为切点,∴OC ⊥PC ,△POC 为直角三角形. ∵OC =OA =1,PO =P A +AO =2, ∴sin ∠P =OC PO =12.∴∠P =30°.(2)∵BD ⊥PD ,∴在Rt △PBD 中, 由∠P =30°,PB =P A +AO +OB =3, 得BD =32.连接AE .则∠AEB =90°,∴AE ∥PD . ∴∠EAB =∠P =30°,∴BE =AB sin 30°=1,∴DE =BD -BE =12.[例2] 已知D 是△ABC ADB =60°,求证:AB 是△BCD 的外接圆的切线.[思路点拨]连接OB ,OC ,OD →∠BOD =90°→ ∠OBC =∠OCB =30°→∠ABO =90°→结论. [证明] 如图,连接OB ,OC ,OD ,OD 交BC 于E . ∵∠DCB 是BD 所对的圆周角, ∠BOD 是BD 所对的圆心角,∠BCD =45°, ∴∠BOD =90°.∵∠ADB 是△BCD 的一个外角, ∴∠DBC =∠ADB -∠ACB =60°-45°=15°, ∴∠DOC =2∠DBC =30°, 从而∠BOC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°. 在△OEC 中,因为∠EOC =∠ECO =30°, ∴OE =EC ,在△BOE 中,因为∠BOE =90°,∠EBO =30°. ∴BE =2OE =2EC , ∴CE BE =CD DA =12, ∴AB ∥OD ,∴∠ABO =90°, 故AB 是△BCD 的外接圆的切线.要证明某直线是圆的切线,主要是运用切线的判定定理,除此以外,还有圆心到直线的距离等于半径等判定方法,但有时需添加辅助线构造判定条件,其中过圆心作直线的垂线是常用辅助线.3.本例中,若将已知改为“∠ABD =∠C ”,怎样证明:AB 是△BCD 的外接圆的切线. 证明:作直径BE ,连接DE , ∵BE 是⊙O 的直径,∴∠BDE =90°, ∴∠E +∠DBE =90°. ∵∠C =∠E ,∠ABD =∠C , ∴∠ABD +∠DBE =90°. 即∠ABE =90°.∴AB 是△BCD 的外接圆的切线.4.如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,sin B =12,∠D =30°.(1)求证:AD 是⊙O 的切线. (2)若AC =6,求AD 的长. 解:(1)证明:如图,连接OA , ∵sin B =12,∴∠B =30°,∵∠AOC =2∠B ,∴∠AOC =60°, ∵∠D =30°,∴∠OAD =180°-∠D -∠AOC =90°, ∴AD 是⊙O 的切线. (2)∵OA =OC ,∠AOC =60°,∴△AOC 是等边三角形,∴OA =AC =6, ∵∠OAD =90°,∠D =30°, ∴AD =3AO =6 3.圆的切线的性质和判定的综合考查[例3] 如图,AB 为⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线BF 交AD 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若DE =3,⊙O 的半径为5,求BF 的长. [思路点拨] (1)连接OD ,证明OD ⊥DE ; (2)作DG ⊥AB . [证明] (1)连接OD ,∵D 是BC 中点, ∴∠1=∠2. ∵OA =OD ,∴∠2=∠3. ∴∠1=∠3. ∴OD ∥AE .∵DE ⊥AE ,∴DE ⊥OD ,即DE 是⊙O 的切线. (2)过D 作DG ⊥AB , ∵∠1=∠2,∴DG =DE =3. 在Rt △ODG 中,OG =52-32=4, ∴AG =4+5=9.∵DG ⊥AB ,FB ⊥AB ,∴DG ∥FB . ∴△ADG ∽△AFB . ∴DG BF =AG AB. ∴3BF =910.∴BF =103.对圆的切线的性质与判定的综合考查往往是热点,其解答思路常常是先证明某直线是圆的切线,再利用切线的性质来求解相关结果.5.如图,已知两个同心圆O ,大圆的直径AB 交小圆于C 、D ,大圆的弦EF 切小圆于C ,ED 交小圆于G ,若小圆的半径为2,EF =43,试求EG 的长.解:连接GC ,则GC ⊥ED . ∵EF 和小圆切于C , ∴EF ⊥CD ,EC =12EF =2 3.又CD =4,∴在Rt △ECD 中, 有ED =EC 2+CD 2 =(23)2+42=27.由射影定理可知EC 2=EG ·ED , ∴EG =EC 2ED =(23)227=677.6.如图,以Rt △ABC 直角边AC 上一点O 为圆心,OC 为半径的⊙O 与AC 的另一个交点为E ,D 为斜边AB 上一点且在⊙O 上,AD 2=AE ·AC .(1)证明:AB 是⊙O 的切线; (2)若DE ·OB =8,求⊙O 的半径. 解:(1)证明:连接OD ,CD ,∵AD 2=AE ·AC , ∴AD AE =ACAD.又∵∠DAE =∠DAC , ∴△DAE ∽△CAD ,∴∠ADE =∠ACD . ∵OD =OC ,∴∠ACD =∠ODC , 又∵CE 是⊙O 的直径,∴∠ODE +∠CDO =90°,∴∠ODA =90°, ∴AB 是⊙O 的切线. (2)∵AB ,BC 是⊙O 的切线,∴OB ⊥DC ,∴DE ∥OB ,∴∠CED =∠COB , ∵∠EDC =∠OCB ,∴△CDE ∽△BCO , ∴DE CO =CEBO,DE ·OB =2R 2=8, ∴⊙O 的半径为2.[对应学生用书P27]一、选择题1.下列说法:①与圆有公共点的直线是圆的切线;②垂直于圆的半径的直线是圆的切线;③与圆心的距离等于半径的直线是圆的切线;④过直径的端点,垂直于此直径的直线是圆的切线.其中正确的有( )A .①②B .②③C .③④D .①④答案:C2.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 交⊙O 于D .AB =6,BC =8,则BD 等于( )A .4B .4.8C .5.2D .6解析:∵AB 是⊙O 的直径,∴BD ⊥AC . ∵BC 是⊙O 的切线,∴AB ⊥BC . ∵AB =6,BC =8,∴AC =10. ∴BD =AB ·BCAC =4.8.答案:B3.如图,CD 切⊙O 于B ,CO 的延长线交⊙O 于A ,若∠C =36°,则∠ABD 的度数是( )A .72°B .63°C .54°D .36°解析:连接OB .∵CD 为⊙O 的切线,∴∠OBC =90°. ∵∠C =36°,∴∠BOC =54°. 又∵∠BOC =2∠A ,∴∠A =27°, ∴∠ABD =∠A +∠C =27°+36°=63°. 答案:B4.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD 的延长线交于C ,若AD =DC ,则sin ∠ACO 等于( )A.1010 B.210 C.55D.24 解析:连接BD ,则BD ⊥AC .∵AD =DC ,∴BA =BC , ∴∠BCA =45°.∵BC 是⊙O 的切线,切点为B , ∴∠OBC =90°.∴sin ∠BCO =OB OC =OB 5OB =55,cos ∠BCO =BC OC =2OB 5OB =255.∴sin ∠ACO =sin(45°-∠BCO ) =sin 45°cos ∠BCO -cos 45°sin ∠BCO =22×255-22×55=1010. 答案:A 二、填空题5.如图,已知∠AOB =30°,M 为OB 边上一点,以M 为圆心、2为半径作⊙M .若点M 在OB 边上运动,则当OM =________时,⊙M 与OA 相切.解析:若⊙M与OA相切,则圆心M到直线OA的距离等于圆的半径2.过M作MN⊥OA于点N,则MN=2.在Rt△MON中,∵∠MON=30°,∴OM=2MN=2×2=4.答案:46.已知P A是圆O的切线,切点为A,P A=2,AC是圆O的直径,PC与圆O交于B点,PB=1.则圆O 的半径R=________.解析:AB=AP2-PB2= 3.由AB2=PB·BC,∴BC=3,Rt△ABC中,AC=AB2+BC2=2 3.∴R= 3.答案: 37.圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E,则∠DAC=________,DC=________.解析:连接OC,∵OC=OB,∴∠OCB=∠OBC.又∠DCA+∠ACO=90°,∠ACO+∠OCB=90°,∴∠DCA=∠OCB,∵OC=3,BC=3,∴△OCB是正三角形.∴∠OBC=60°,即∠DCA=60°.∴∠DAC=30°.在Rt△ACB中,AC=AB2-BC2=33,DC=AC sin 30°=32 3.答案:30°33 2三、解答题8.如图所示,D是⊙O的直径AB的延长线上一点,PD是⊙O的切线,P是切点,∠D=30 °.求证:P A=PD.证明:如图,连接OP,∵PD是⊙O的切线,P为切点.∴PO⊥PD.∵∠D=30°,∴∠POD=60°.又∵OA=OP,∴∠A=∠APO=30°.∴∠A=∠D.∴P A=PD.9.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,过D点作⊙O的切线交AC于E.求证:(1)DE⊥AC;(2)BD2=CE·CA.证明:(1)连接OD,AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC.∴DE⊥AC.(2)∵AD⊥BC,DE⊥AC,∴△CDE∽△CAD.∴CDCA=CECD.∴CD2=CE·CA.∴BD=DC.∴BD2=CE·CA.10.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1 cm,求BD的长.解:(1)证明:连接OA.∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD.∴∠OAD=∠EDA.∴OA∥CE.∵AE⊥DE,∴∠AED=90°,∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线.(2)∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∴∠BDC=60°.∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1 cm,∴BD的长是4 cm.。
一、切线的性质及判定1.切线的性质2.切线的判定3. 切线长和切线长定理切线的性质及判定()定理:圆的切线垂直于过切点的半径.推论:经过圆心且垂直于切线的直线必经过切点.推论:经过切点且垂直于切线的直线必经过圆心.()注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心过圆心,过切点垂直于切线.过圆心,过切点,则.②过圆心,垂直于切线过切点.过圆心,,则过切点.③过切点,垂直于切线过圆心.,过切点,则过圆心.()定义法:和圆只有一个公共点的直线是圆的切线;()距离法:和圆心距离等于半径的直线是圆的切线;()定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.()切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.()切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.()证明圆切线辅助线的方法:①若给出直线与圆有公共点:连半径、证垂直;②若没给直线与圆的交点:做垂直、证半径;()圆中证明角相等的方法:①同角(或等角)余角相等;爱智康2018/06/121122⇒AB AB M AB ⊥l ⇒AB AB ⊥l AB M ⇒AB ⊥l AB M AB 1231212②圆周角定理;③半径相等出等腰三角形;④平行线出同位角或内错角相等;⑤全等或相似三角形中的对应角相等;⑥在同圆或等圆中,等弧或等弦所对的圆周角相等(常见于弧的等分点)。
()给出圆的切线,作辅助线,连接过切点的半径,则半径垂直于切线.爱智康 2018/06/123。