切线的判定定理 (2)
- 格式:doc
- 大小:50.00 KB
- 文档页数:6
切线的三个性质
一、切线的性质与切线的判定
1.切线性质:
①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
2.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
二、切线的判定定理与切线的性质定理的区别
切线的判定定理是在未知相切而要证明相切的情况下使用;切线的性质定理是在已知相切而要推得一些其他结论时使用,两者在使用时不要混淆。
三、常用辅助线
①判定切线时“连圆心和直线与圆的公点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”。
切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l l ⊥⊥OA OA,,点A 在⊙O 上∴直线l 是⊙O 的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA 是⊙O 的半径,直线l 切⊙切⊙O O 于点A∴l l ⊥⊥OA OA(切线性质定理)(切线性质定理)推论1 1 经过圆心且垂直于切经过圆心且垂直于切线的直径必经过切点推论2 2 经过切点且垂经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴PA=PB PA=PB,∠,∠,∠APO=APO=APO=∠∠BPO BPO(切线长定理)(切线长定理)证明:连结OA OA、、OB∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴OA OA⊥⊥AP AP、、OB OB⊥⊥PB∴∠OAP=OAP=∠∠OBP=90OBP=90°°在△OPA和△OPB中:中:OAP=∠∠OBP∠OAP=OP=OPOA=OB=rHL))(HL∴△OPAOPB(OPA≌△≌△OPB∠BPOAPO=∠∴PA=PBPA=PB,∠,∠APO=弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;所在的射线;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。
它们是判断一个角是否为弦切角的标准,三者缺一不可准,三者缺一不可 (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理对的圆周角等于所夹的AC)对的圆周角等于所夹弦切角(即图中∠ACD)等于它所夹的弧(弧AC)所夹的弧的圆心角 [注,由于网上找得的图不是弧的读数的一半等于1/2所夹的弧的圆心角很完整,图中没有连结OC]几何语言:∵∠ACD所夹的是弧AC弦切角定理) ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等,弧MN =MN =弧弧PQPQ ,弧,∠2所夹的是PQ几何语言:∵∠1所夹的是弧MNMN ,∠2∴∠1=∠2AD⊥EC证明:作AD⊥ECADC=90°∵∠ADC=90°ACD+∠CAD=90°∴∠ACD+∠CAD=90°∵ED与⊙O切于点CED∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD OCA=∠CAD∵OC=OA=r OC=OA=r∴∠OCA=∠OAC OCA=∠OAC∴∠COA=180°COA=180°--∠OCA OCA--∠OAC=180°OAC=180°--2∠CAD 2∠CAD又∵∠ACD=90°ACD=90°--∠CAD ∠CAD∴∠ACDC=1/2∠COA ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA COA=1/2=1/2弧AC 的度数的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切线的判定和性质各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢(一)教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.教学过程设计(一)复习、发现问题1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?2、观察、提出问题、分析发现(教师引导)图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线l到圆心O的距离OA 等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练’例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB 过半径OC的外端,只需证明OC⊥OB。
切线的判定定理切线判定有两种方法,分属于几个类型。
切线的判定方法1:明确切点时,连接圆心和切点,再证垂直.题型一:已知角平分线,证切线的方法。
例:如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=√3cm,AC=2√13cm,求DC的长(结果保留根号).方法指导:∵AC平分∠BAD ∴∠BAC=∠DAC ∵OA=OC ∴∠BAC=∠OCA ∴∠DAC=∠OCA ∴OC∥AD∵AD⊥DC ∴OC⊥CD ∴DC是⊙O的切线题型二:利用圆的半径相等和互余定理,证切线。
例:如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且∠CBD=∠A;(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=6:5,BC=2,求BD的长.方法指导:连接OD。
∵OA=OD ∴∠A=∠ADO ∵∠CBD=∠A ∴∠ADO=∠CBD ∵∠C=90°∴∠CBD+∠CDB=90°∴∠ADO+∠CBD=90°∴BD与⊙O相切。
1.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O 的切线;(2)若OC/AC=2/3,且OC=4,求PA的长和tanD的值.2.如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=1/2,AD=3,求直径AB的长.题型三:已知垂径定理,证切线的方法。
例:已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.方法指导:∵AB是⊙O的直径,CD是⊙O的弦,CE=DE∴AB⊥CD∵BF∥CD ∴AB⊥BF ∴BF是⊙O的切线.题型四:已知直角三角形斜边的中线,证切线的方法。
35.4 圆的切线的判定
一、教材分析:
切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是今后学习解析几何等知识..学习圆的切线长和切线长定理等知识的基础。
由于本章所研究的问题往往是直线形与曲线形交织在一起,解决问题常需要综合运用代数、几何、三角等多方面知识。
二、教学目标:
(1)掌握切线的判定定理.使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;
(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法,应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;
(3)培养学生动手操作能力.观察、探索、分析、总结、推理论证等能力. (4)通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.
三、教学重点、难点
1.重点:切线的判定定理.内心的性质
2.难点:圆的切线证明问题中,辅助线的添加方法
四、教学方法:动手操作观察归纳.
教具:圆模型圆规三角板多媒体
五、教学过程设计
五、教学过程:
(一)课前复习(5分钟)
回答下列问题:(投影显示)
1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?
2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?
(要求学生举手回答,教师用教具演示)
设计目的|:为探究圆的切线的判定方法做铺垫
二)引如课题(1分钟):我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.
三)提出问题、分析发现归纳结论(教师引导)(8分钟)
1.切线判定定理的导出
师:上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上书步骤作图(一同学到黑板上作):先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.
请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?
(引导学生总结出):①经过关径外端,②垂直于这条半径.
(设计意图:培养学生动手操作和观察归纳能力、及组织语言能力)
师;如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)
、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
2、对定理的理解:
(引导学生理解):①经过半径外端;②垂直于这条半径.
请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.
图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.
从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.
提问:判定一条直线是圆的切线,我们有多少种方法呢?
(学生讨论后,师生小结以下三种方法)(师板书):
①与圆有唯一公共点的直线是圆的切线.
②与圆心的距离等于半径的直线是圆的切线.
③经过半径外端并且垂直于这条半径的直线是圆的切线.
(三)应用定理,强化训练'(6分钟)
例1:已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
已知:直线AB是⊙O的切线.
分析:已知直线AB和⊙O有一个公共点C,
要证AB是⊙O的切线,只需连结这个公共点
C和圆心O,得到半径OC,再证这条半径和直
线AB垂直即可.
例2:已知:⊙O的直径长6cm,OA=OB=5cm,AB=8cm.
求证:AB与⊙O相切.
分析:题目中不明确直线和圆有公共点,故证
明相切,宣用方法2,因此只要证点O到直线AB
的距离等于半径即可,从而想到作辅助线OC⊥
AB于C.
(说明:以上两题有师生共同分析,学生独立写出解题过程,两生板演,师
生共同订正强化解题过程)
师问:根据以上例题总结一下,证明直线与圆相切时,怎样做辅助线呢?
(经学生讨论后得出:)
①已明确直线和圆有公共点,辅助线的作法是连结圆心和公共点,即得“半径”,再证“直线与半径垂直”.
②不明确直线和圆有公共点,辅助线的作法是过圆心作直线的垂线,再证“圆心到直线的距离等于半径”.
注意:当题目中不明确直线和圆有公共点时,不能将圆上任意一点当作公共点而连结出半径.
(目的:发现总结规律,提高解题技巧方法)
四、课堂练习:(10分钟).
1判断下列命题是否正确.
(1)经过半径外端的直线是圆的切线.
(2)垂直于半径的直线是圆的切线.
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.
(4)和圆有一个公共点的直线是圆的切线.
(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.
(采取学生抢答的形式进行,并要求说明理由),
2、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,
OC平行于弦AD.求证:DC是⊙O的切线.
3、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与
小圆相切于点E,求证:CD与小圆相切.
学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②
作垂直证半径.);
(2)“连结”过切点的半径,产生垂直的位置关系.
4、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,
E为切点
求证:CE=CF
(以上例题让学生自主分析、论证,教师指导书写规范,
观察学生推理的严密性和学生共同存在的问题,及时解
决.)
(目的:使学生初步会应用切线的判定定理,对定理加深理解)
五、做一做:(7分钟)
提出问题:你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?
2、分析、研究问题:提出以下几个问题进行讨论:
①作圆的关键是什么?
②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?
③这样的点I应在什么位置?
④圆心I确定后半径如何找.
A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.(让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义).
3、总结三角形内切圆的概念和内心性质
六、当堂检测4分钟
七、布置作业(8分钟)
八、板书设计。