切线的判定定理 (2)
- 格式:doc
- 大小:50.00 KB
- 文档页数:6
切线的三个性质
一、切线的性质与切线的判定
1.切线性质:
①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
2.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
二、切线的判定定理与切线的性质定理的区别
切线的判定定理是在未知相切而要证明相切的情况下使用;切线的性质定理是在已知相切而要推得一些其他结论时使用,两者在使用时不要混淆。
三、常用辅助线
①判定切线时“连圆心和直线与圆的公点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”。
切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l l ⊥⊥OA OA,,点A 在⊙O 上∴直线l 是⊙O 的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA 是⊙O 的半径,直线l 切⊙切⊙O O 于点A∴l l ⊥⊥OA OA(切线性质定理)(切线性质定理)推论1 1 经过圆心且垂直于切经过圆心且垂直于切线的直径必经过切点推论2 2 经过切点且垂经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴PA=PB PA=PB,∠,∠,∠APO=APO=APO=∠∠BPO BPO(切线长定理)(切线长定理)证明:连结OA OA、、OB∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴OA OA⊥⊥AP AP、、OB OB⊥⊥PB∴∠OAP=OAP=∠∠OBP=90OBP=90°°在△OPA和△OPB中:中:OAP=∠∠OBP∠OAP=OP=OPOA=OB=rHL))(HL∴△OPAOPB(OPA≌△≌△OPB∠BPOAPO=∠∴PA=PBPA=PB,∠,∠APO=弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;所在的射线;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。
它们是判断一个角是否为弦切角的标准,三者缺一不可准,三者缺一不可 (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理对的圆周角等于所夹的AC)对的圆周角等于所夹弦切角(即图中∠ACD)等于它所夹的弧(弧AC)所夹的弧的圆心角 [注,由于网上找得的图不是弧的读数的一半等于1/2所夹的弧的圆心角很完整,图中没有连结OC]几何语言:∵∠ACD所夹的是弧AC弦切角定理) ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等,弧MN =MN =弧弧PQPQ ,弧,∠2所夹的是PQ几何语言:∵∠1所夹的是弧MNMN ,∠2∴∠1=∠2AD⊥EC证明:作AD⊥ECADC=90°∵∠ADC=90°ACD+∠CAD=90°∴∠ACD+∠CAD=90°∵ED与⊙O切于点CED∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD OCA=∠CAD∵OC=OA=r OC=OA=r∴∠OCA=∠OAC OCA=∠OAC∴∠COA=180°COA=180°--∠OCA OCA--∠OAC=180°OAC=180°--2∠CAD 2∠CAD又∵∠ACD=90°ACD=90°--∠CAD ∠CAD∴∠ACDC=1/2∠COA ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA COA=1/2=1/2弧AC 的度数的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切线的判定和性质各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢(一)教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.教学过程设计(一)复习、发现问题1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?2、观察、提出问题、分析发现(教师引导)图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线l到圆心O的距离OA 等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练’例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB 过半径OC的外端,只需证明OC⊥OB。
切线的判定定理切线判定有两种方法,分属于几个类型。
切线的判定方法1:明确切点时,连接圆心和切点,再证垂直.题型一:已知角平分线,证切线的方法。
例:如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=√3cm,AC=2√13cm,求DC的长(结果保留根号).方法指导:∵AC平分∠BAD ∴∠BAC=∠DAC ∵OA=OC ∴∠BAC=∠OCA ∴∠DAC=∠OCA ∴OC∥AD∵AD⊥DC ∴OC⊥CD ∴DC是⊙O的切线题型二:利用圆的半径相等和互余定理,证切线。
例:如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且∠CBD=∠A;(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=6:5,BC=2,求BD的长.方法指导:连接OD。
∵OA=OD ∴∠A=∠ADO ∵∠CBD=∠A ∴∠ADO=∠CBD ∵∠C=90°∴∠CBD+∠CDB=90°∴∠ADO+∠CBD=90°∴BD与⊙O相切。
1.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O 的切线;(2)若OC/AC=2/3,且OC=4,求PA的长和tanD的值.2.如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=1/2,AD=3,求直径AB的长.题型三:已知垂径定理,证切线的方法。
例:已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.方法指导:∵AB是⊙O的直径,CD是⊙O的弦,CE=DE∴AB⊥CD∵BF∥CD ∴AB⊥BF ∴BF是⊙O的切线.题型四:已知直角三角形斜边的中线,证切线的方法。
专题08 切线的判定与性质概念规律重在理解1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.OA为⊙O的半径,BC ⊥OA于A。
则BC为⊙O的切线。
注意:在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线。
2.判断一条直线是一个圆的切线有三个方法:(1)定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;(2)数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.证切线时辅助线的添加方法(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.4.有切线时常用辅助线添加方法见切点,连半径,得垂直.5.切线的其他重要结论(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.6.切线的性质定理:圆的切线垂直于经过切点的半径.直线l是⊙O 的切线,A是切点,直线l ⊥OA.说明:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.典例解析掌握方法【例题1】(2021吉林长春)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为()A.35°B.45°C.55°D.65°【答案】C【解析】先根据切线的性质得到∠ABC=90°,然后利用互余计算出∠ACB的度数.∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°﹣∠BAC=90°﹣35°=55°.【例题2】(2021广西玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【答案】见解析。
九上数学《切线的判定和性质(教学设计)》第7课时《切线的判定和性质》【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题.【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.一、情境导入,初步认识情境1 下雨天,小孩子总喜欢转动雨伞,你发现雨伞的水珠顺着伞面的边缘飞出,水珠是顺着什么方向飞出的?情况二用机器磨削铁件时,铁屑朝哪个方向飞出?情境3用细线系一个球。
当你快速旋转细线时,球会移动形成一个圆。
突然,球掉了下来,沿着圆的边缘飞了起来。
你知道球会朝哪个方向飞吗?【教学说明】通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.二、思考探究,获取新知 1.切线的判定定理思考1 如图,在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?分析:∵直线l⊥OA,而点A是⊙O的半径OA的外端点.∴直线l与⊙O只有一个交点,并且圆心O到直线l的距离是垂线段OA,即是⊙O的半径.∴直线l与⊙O相切.【归纳总结】切线的判定定理:经过半径的外端(点)并且垂直于这条半径的直线是圆的切线.【教学说明】结合切线的定义以及“如果圆心到直线的距离等于半径,那么直线和圆相切”,引导学生得出结论.在切线的判定定理中,“经过外端”和“垂直于半径”两者缺一不可.试一试(1)已知一个圆和圆上的一点,如何过这个点画出圆的切线?(只能作一条直线)(2)下图中的直线是圆的切线吗?(都不是圆的切线)2.切线的性质定理思考2 已知直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由学生代表回答)教师点评:由于l是⊙O的切线,点A为切点,∴圆心O到l 的距离等于半径,所以OA就是圆心O到直线l的距离.∴OA⊥直线l.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是⊙O的切线,切点为A.∴OA⊥直线l.【教学说明】这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,直线l与⊙O就相交了,而这与直线l与⊙O相切矛盾.因此,OA垂直于直线l.三、典例精析,掌握新知例1 教材98页例1.(要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.例2(1)如图(1),AB是⊙O的弦,PA是⊙O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图(2),AB 是⊙O的直径,DC切⊙O于点C,连接CA、CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵△OAB为等腰三角形,∴∠OAB=∠OBA.又∵PA是⊙O的切线,∴由切线的性质可知:PA⊥OA,∴∠OAP=90°,∴∠OAB=∠OAP-∠BAP=90°-30°=60°,∴∠AOB=180°-2∠OAB=180°-2×60°=60°.(2)连接OC,∵CD是⊙O的切线,∴OC⊥CD,而∠ACD=30°,.∴∠OCA=60°,∴△OAC是等边三角形,AC=OA=r=1/2×AB=1/2×12=6.【教学说明】例1是对切线的判定定理的应用,要使学生掌握用这个定理来证明切线的关键(紧扣两点).例2是利用切线的性质解题.在解决与圆有关的切线的问题时,常见辅助线有:(1)已知直线是圆的切线时,通常连接过切点的半径,则这条半径垂直于切线.(2)要证明一条直线是圆的切线:①若直线过圆上某一点,则连接这点和圆心得到辅助半径,再证这条半径与直线垂直.即:已知公共点,连半径证垂直.②若直线与圆的公共点不确定,则过圆心作直线的垂线段,证明这条垂线段长等于圆的半径长.即:未知公共点,作垂线证半径.这种题型后面会给出练习.四、运用新知,深化理解 1.完成教材第98页练习1、2.2.如图,已知PA是∠BA C的平分线,AB是⊙O的切线,切点为E,求证:AC是⊙O的切线.【教学说明】教材上的练习1、2由学生自主完成,加深对切线的判定及性质的理解掌握;第2题是对切线的性质与判定的综合应用,教师可先让学生独立思考,再加以提示.最后,师生共同完成解题.【答案】1.(1)∵AT=AB,∴∠B=∠T=45°,∴∠A=180°-∠B-∠T=90°.又∵AB是⊙O的直径,∴AT是⊙O的切线.(2)l1∥l2,理由如下:∵AB是⊙O的直径,且l1、l2是⊙O的切线,∴l1⊥AB,l2⊥AB,∴l1∥l2.2.过O点作OF⊥AC于点F,连接OE.则OE⊥AE.∴∠OEA=∠OFA=90°,又∵PA是∠BAC的平分线,∴∠OAE=∠OAF,∵AO=AO,∴△OAF≌△OAE,∴OF=OE.又∵OE是半径,∴OF也为半径长.∴AC是⊙O的切线.五、师生互动,课堂小结1.让学生回顾本堂课的两个知识点.2.试着让学生自己总结切线的证明方法,然后相互交流.【教学说明】在这一环节,教师要尽可能地让学生自主总结与交流,然后适当地予以点评和补充.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.黄麓镇中心学校2013-2014学第一学期九年级数学教案24.2.2.2切线的判定和性质教学设计备课人:杨智刚时间:2013年11月18日【教学目标】1.知识和技能:1。
切线的判定定理
切线的判定方法有三种:
(1)和圆只有一个公共点的直线是圆的切线。
(2)和圆心的距离等于圆的半径的直线是圆的切线。
(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线。
切线的主要性质:
(1)切线和圆只有一个公共点。
(2)切线和圆心的距离等于圆的半径。
(3)切线垂直于经过切点的半径。
(4)经过圆心垂直于切线的直线必过切点。
(5)经过切点垂直于切线的直线必过圆心。
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切线定理切线的判定和性质切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的性质定理:圆的切线垂直于过切点的半径(1)证明一条直线是圆的切线时:直线与圆有交点时,连接交点与圆心,证垂直;直线与圆“无”交点时,过圆心作直线的垂线,证明垂线段的长等于半径。
(2)已知直线和圆相切时:常连接切点与圆心的辅助线。
三角形的内切圆1.三角形内切圆的作法如图是一张三角形的铁皮,如何在它上面截一块圆形的用料,并且使圆的面积尽可能大呢?2.三角形内切圆的相关概念与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
切线长定理从圆外一点可以引圆的两条切线,他们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
例1 △ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由。
例2 △ABC内接于⊙O,AB是⊙O的弦,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由。
例3 直线BC与半径为r的相交,且点O到直线BC的距离为5,求r的取值范围。
例4 一枚直径为d的硬币沿直线滚动一圈。
圆心经过的距离是多少?例5 PA、PB是⊙O的切线,切点分别为A、B,C是⊙O上一点,若∠APB=400,求∠ACB的读数。
例6 点O是∠DPC的角平分线上的一点,⊙O与PD相切于A,求证:PC与⊙O相切。
例7 如图,⊙O是△ABC的内切圆,已知∠A=700,求∠BOC的度数。
例8 如图PA、PB分别切圆O于A、B,并与过切点E切线分别相交于C、D,已知PA=7cm,△PCD的周长是。
1下面说法正确的是()A.与三角形两边相切的圆一定是三角形的内切圆B.经过三角形的三个顶点的圆一定是三角形的内切圆C.任意一个三角形都有且只有一个内切圆D.任意一个三角形都有无数个内切圆2.如图,△ABC的内切圆的半径为2cm,三边的切点分别为D、E、F,△ABC的周长为10cm,那么S△ABC= cm2。
圆的三大切线定理
圆的三大切线定理:
第一个定理,就是切线的性质定理,这个定理是很简单的,而且理解不困难,只要记住:”过圆心“,”过切点“和”互相垂直“这三条谁知二推一就够了。
第二个定理,是切线的判定定理,切线的判定是中考中常经常考的内容,切线判定主要有三种方式:定义法、距离法及定理法。
其中最常用的是定理法,其次是距离法,定义法就很少用到了。
这里面,在进行切线判定时,其实只需要记住:"有交点,连半径,证垂直;无交点,作垂直,正半径"就可以了。
也就是说,切线的判定主要就这两种题型,即题目中告诉直线与圆有交点和直线与圆无交点。
第三个定理,是切线长定理。
在这个定理中,同一交点所形成的两条切线长时相等的,并且此交点与圆心的连线是两条切线长的夹角的角平分线,所以说是有一对相等的角的。
在做相应的练习时,同学们要条件反射式的看到切线长,就要知道有两组相等,即线相等及角相等。
切线的判定和性质以下是关于切线的判定和性质,希望内容对您有帮助,感谢您得阅读。
切线的判定和性质(一)教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.教学过程设计(一)复习、发现问题1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么·关系?2、观察、提出问题、分析发现(教师引导)图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.·图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练'例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。
35.4 圆的切线的判定
一、教材分析:
切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是今后学习解析几何等知识..学习圆的切线长和切线长定理等知识的基础。
由于本章所研究的问题往往是直线形与曲线形交织在一起,解决问题常需要综合运用代数、几何、三角等多方面知识。
二、教学目标:
(1)掌握切线的判定定理.使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;
(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法,应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;
(3)培养学生动手操作能力.观察、探索、分析、总结、推理论证等能力. (4)通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.
三、教学重点、难点
1.重点:切线的判定定理.内心的性质
2.难点:圆的切线证明问题中,辅助线的添加方法
四、教学方法:动手操作观察归纳.
教具:圆模型圆规三角板多媒体
五、教学过程设计
五、教学过程:
(一)课前复习(5分钟)
回答下列问题:(投影显示)
1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?
2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?
(要求学生举手回答,教师用教具演示)
设计目的|:为探究圆的切线的判定方法做铺垫
二)引如课题(1分钟):我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.
三)提出问题、分析发现归纳结论(教师引导)(8分钟)
1.切线判定定理的导出
师:上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上书步骤作图(一同学到黑板上作):先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.
请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?
(引导学生总结出):①经过关径外端,②垂直于这条半径.
(设计意图:培养学生动手操作和观察归纳能力、及组织语言能力)
师;如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)
、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
2、对定理的理解:
(引导学生理解):①经过半径外端;②垂直于这条半径.
请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.
图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.
从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.
提问:判定一条直线是圆的切线,我们有多少种方法呢?
(学生讨论后,师生小结以下三种方法)(师板书):
①与圆有唯一公共点的直线是圆的切线.
②与圆心的距离等于半径的直线是圆的切线.
③经过半径外端并且垂直于这条半径的直线是圆的切线.
(三)应用定理,强化训练'(6分钟)
例1:已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
已知:直线AB是⊙O的切线.
分析:已知直线AB和⊙O有一个公共点C,
要证AB是⊙O的切线,只需连结这个公共点
C和圆心O,得到半径OC,再证这条半径和直
线AB垂直即可.
例2:已知:⊙O的直径长6cm,OA=OB=5cm,AB=8cm.
求证:AB与⊙O相切.
分析:题目中不明确直线和圆有公共点,故证
明相切,宣用方法2,因此只要证点O到直线AB
的距离等于半径即可,从而想到作辅助线OC⊥
AB于C.
(说明:以上两题有师生共同分析,学生独立写出解题过程,两生板演,师
生共同订正强化解题过程)
师问:根据以上例题总结一下,证明直线与圆相切时,怎样做辅助线呢?
(经学生讨论后得出:)
①已明确直线和圆有公共点,辅助线的作法是连结圆心和公共点,即得“半径”,再证“直线与半径垂直”.
②不明确直线和圆有公共点,辅助线的作法是过圆心作直线的垂线,再证“圆心到直线的距离等于半径”.
注意:当题目中不明确直线和圆有公共点时,不能将圆上任意一点当作公共点而连结出半径.
(目的:发现总结规律,提高解题技巧方法)
四、课堂练习:(10分钟).
1判断下列命题是否正确.
(1)经过半径外端的直线是圆的切线.
(2)垂直于半径的直线是圆的切线.
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.
(4)和圆有一个公共点的直线是圆的切线.
(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.
(采取学生抢答的形式进行,并要求说明理由),
2、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,
OC平行于弦AD.求证:DC是⊙O的切线.
3、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与
小圆相切于点E,求证:CD与小圆相切.
学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②
作垂直证半径.);
(2)“连结”过切点的半径,产生垂直的位置关系.
4、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,
E为切点
求证:CE=CF
(以上例题让学生自主分析、论证,教师指导书写规范,
观察学生推理的严密性和学生共同存在的问题,及时解
决.)
(目的:使学生初步会应用切线的判定定理,对定理加深理解)
五、做一做:(7分钟)
提出问题:你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?
2、分析、研究问题:提出以下几个问题进行讨论:
①作圆的关键是什么?
②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?
③这样的点I应在什么位置?
④圆心I确定后半径如何找.
A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.(让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义).
3、总结三角形内切圆的概念和内心性质
六、当堂检测4分钟
七、布置作业(8分钟)
八、板书设计。