离散傅里叶变换(DFT)
- 格式:ppt
- 大小:2.27 MB
- 文档页数:3
离散傅里叶变换(DFT)(图)上一回说到,在离散傅里叶级数(DFS)中,离散时间周期序列在时域是离散的n ,其频谱是离散频率周期序列,在频域也是离散的k,理论上解决了时域离散和频域离散的对应关系问题。
但由于其在时域和频域都是周期序列,所以都是无限长序列。
无限长序列在计算机运算上仍然是无法实现的。
为此我们必须取有限长序列来建立其时域离散和频域离散的对应关系。
一、DFS的主值序列上一回讨论我们知道,离散时间周期序列是一个无限长序列,其傅立叶级数展开式为(1)可以看出时间点序号n 是以N为周期的,如果只取其一个周期,称之为的主值序列:(2)主值序列x(n)就是一个长度为N的有限长离散时间序列。
同理,的DFS也是一个无限长序列,即傅立叶系数:(3)也可以看出频率点序号k 也是以N为周期的,如果只取其一个周期,称之为的主值序列:(4)主值序列X(k)是一个长度为N的有限长离散频率序列。
可见,离散时间周期序列在时域和频域的主值序列,均为有限长离散序列。
且主值序列的长度均为N(即n,k=0,1,2,…,N-1)。
二、离散傅里叶变换(DFT)的定义在离散傅立叶级数(DFS)中,取其时域和频域的主值序列,变换仍然成立。
这就是离散傅里叶变换(DFT),即:(5)和其逆变换(IDFT):(6)可见离散傅里叶变换(DFT)只不过是特殊的离散傅立叶级数(DFS),如果其时域和频域都仅取主值序列。
离散傅立叶级数(DFS)中的无限长序列和都是以N为周期的周期序列,所以在计算离散时间周期序列及其频谱时,可以利用DFS的周期性,只需要在时域和频域各取一个主值序列,用计算机各计算一个周期中的N个样值,最后将所得的主值序列x(n)和X(k)进行周期延拓,即可得到原来的无限长序列和。
三、DFT的推广应用由DFT的导入过程可以发现,DFT不仅可以解决无限长周期序列的计算机运算问题,而且更可以解决有限长序列的计算机运算问题。
事实上,对于有限长离散序列,总可以把时域和频域的变换区间(序列长度)均取为N(包括适当数量的补0点),通常把N称之为等间隔采样点数,我们可以把这个N点的变换区间视为某个周期序列的一个主值序列,直接利用DFT的定义计算其N点变换。
dft与离散傅里叶变换DFT与离散傅里叶变换引言:数字信号处理中,频域分析是一项重要的技术。
DFT(离散傅里叶变换)和离散傅里叶变换(DFT)是两种常用的频域分析方法。
本文将介绍DFT和离散傅里叶变换的基本原理、应用领域以及它们之间的区别。
一、DFT的基本原理离散傅里叶变换(DFT)是一种将时域信号转换为频域信号的方法。
它的基本原理是将信号分解为不同频率的正弦和余弦波的叠加。
DFT 可以将信号从时域转换到频域,帮助我们分析信号的频谱特征。
DFT的计算公式是通过对信号的采样点进行离散计算得到的。
它将信号分解为一系列复数,表示不同频率的正弦和余弦波的振幅和相位信息。
通常情况下,DFT的输入信号是离散时间的有限长度序列,输出信号也是离散时间的有限长度序列。
二、DFT的应用领域DFT在信号处理领域有着广泛的应用。
以下是几个典型的应用领域:1. 音频信号处理:DFT可以用于音频信号的频谱分析,帮助我们了解音频信号的频率组成以及频谱特征。
它在音频编码、音频效果处理等方面有着重要作用。
2. 图像处理:DFT可以用于图像的频域分析,帮助我们了解图像的频率特征,如边缘、纹理等。
它在图像压缩、图像增强等方面有着广泛的应用。
3. 通信系统:DFT可以用于通信信号的频谱分析,帮助我们了解信号在频域上的特征,如信号的带宽、频率偏移等。
它在调制解调、信道估计等方面有着重要作用。
三、离散傅里叶变换(DFT)与傅里叶变换(FT)的区别离散傅里叶变换(DFT)是傅里叶变换(FT)在离散时间上的应用。
它们之间的区别主要体现在以下几个方面:1. 定义域:傅里叶变换是定义在连续时间上的,而离散傅里叶变换是定义在离散时间上的。
2. 输入信号类型:傅里叶变换可以处理连续时间的信号,而离散傅里叶变换可以处理离散时间的信号。
3. 计算方法:傅里叶变换通过积分计算得到频域信号,而离散傅里叶变换通过对输入信号的采样点进行离散计算得到频域信号。
4. 结果表示:傅里叶变换的结果是连续的频域信号,而离散傅里叶变换的结果是离散的频域信号。
离散傅⾥叶变换(DFT) 对于第⼀幅图来说,它侧重展⽰傅⾥叶变换的本质之⼀:叠加性,每个圆代表⼀个谐波分量。
第⼆幅图直观的表⽰了⼀个周期信号在时域与频域的分解。
周期信号的三⾓函数表⽰ 周期信号是每隔⼀定时间间隔,按相同规律⽆始⽆终重复变化的信号。
任何周期函数在满⾜狄利克雷条件下(连续或只有有限个间断点,且都是第⼀类间断点;只有有限个极值点),都可以展开成⼀组正交函数的⽆穷级数之和。
使⽤三⾓函数集的周期函数展开就是傅⾥叶级数。
对于周期为T 的信号f(t),可以⽤三⾓函数集的线性组合来表⽰,即f(t)=a_0+\sum_{n=1}^{\infty }(a_n\cos n\omega t+b_n\sin n \omega t) 式中\omega=\frac{2\pi}{T}是周期信号的⾓频率,也成基波频率,n\omega称为n次谐波频率;a_0为信号的直流分量,a_n和b_n分别是余弦分量和正弦分量幅度。
根据级数理论,傅⾥叶系数a_0、a_n、b_n的计算公式为:\left\{\begin{matrix}a_0=\frac{1}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt \\ a_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\cos{n\omegat}dt,n=1,2,3,... \\ b_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\sin{n\omega t}dt,n=1,2,3,... \end{matrix}\right. 若将式⼦中同频率的正弦项和余弦项合并,得到另⼀种形式的周期信号的傅⾥叶级数,即f(t)=A_0+\sum_{n=1}^{\infty}A_n\cos(n\omega t+\varphi_n) 其中,A_0为信号的直流分量;A_1\cos(\omega t+\varphi_1)为信号的基频分量,简称基波;A_n\cos(n\omega t+\varphi_n)为信号的n次谐波,n ⽐较⼤的谐波,称为⾼次谐波。
离散傅里叶变换的公式离散傅里叶变换(DFT)是一种数字信号处理的方法,它将时域上的信号转换为频域上的信号。
在图像处理、音频处理、通信等领域中广泛使用。
DFT的公式和理论基础十分重要,本文将详细介绍DFT的公式及其相关知识。
一、基本概念在介绍DFT的公式前,有一些基本概念需要了解:1.离散时间傅里叶变换(DTFT):DTFT是一种将离散时间序列(离散信号)变换到连续角频率谱的变换。
它表示为X(e ^ jω)=∑x(n)e ^ -jωn ,其中X(e ^ jω) 是离散时间序列 x(n) 的 DTFT,e ^ jωn 是离散复指数信号。
2.离散傅里叶变换(DFT):DFT是一种计算离散时间序列的离散频率谱的算法。
用DFT可以将一个N个离散点的信号转换为N个离散频率点的频谱,其中每个点代表一个离散频率。
由于DFT的本质是使用频域上的样本估计DTFT,因此它通常比DTFT更具实际意义。
3.复数:在DFT中,我们需要使用复数表示信号和频率。
复数可表示为 a+bi ,其中a,b均为实数,i为虚数单位,i^2=-1。
其中a称为实部,b称为虚部。
4.正变换和逆变换:正变换是将时域信号转换为频域信号的过程,逆变换是将频域信号转换为时域信号的过程。
对于DFT来说,正变换即将离散时间序列转换为离散频率点的频谱,逆变换即将离散频谱转换为离散时间序列。
二、DFT的公式DFT的公式如下:X(k)=∑x(n)e ^ -j2πkn/N ,k=0,1,2,...,N-1其中,X(k)是离散时间序列x(n)的DFT系数,k是频率索引,N是样本数。
公式中的 e ^ -j2πkn/N 是离散复指数信号,也称为旋转因子,代表了信号的周期性。
由于信号周期性的特点,e ^ -j2πkn/N 的 n 取值范围在 0~N-1 之间,因此k 取值在 0~N-1 之间时,X(k) 能够准确地表达样本信号的离散频率成分。
需要注意的是,X(k) 及其离散频率点均为复数,且X(n) 中既包含了信号的幅度,也包含了频率相位信息。