林寿数学史第五讲文艺复兴时期的数学
- 格式:ppt
- 大小:8.34 MB
- 文档页数:40
林寿数学史教案-第十讲:19世纪的分析第一篇:林寿数学史教案-第十讲:19世纪的分析第十讲:19世纪的分析1、分析的严格化经过近一个世纪的尝试与酝酿,数学家们在严格化基础上重建微积分的努力到19世纪初开始获得成效。
1.1 分析的算术化所谓分析是指关于函数的无穷小分析,主要贡献归功于柯西(法,1789-1857年)和魏尔斯特拉斯(德,1815-1897),前者著有《分析教程》(1821)、《无穷小分析教程概论》(1823)和《微分学教程》(1829),后者创造了ε-δ语言,是“现代分析之父”。
1837年狄里克雷(德,1805-1859年)的函数定义。
魏尔斯特拉斯简介。
1.2 实数理论19世纪60年代魏尔斯特拉斯提出“单调有界原理”,康托、戴德金各自独立地给出了无理数定义,建立了严格的实数论。
实数的定义及其完备性的确立,标志着由魏尔斯特拉斯倡导的分析算术化运动大致宣告完成。
1.3 集合论康托(德,1845-1918年),1874年发表了“关于一切代数实数的一个性质”,引入了无穷的概念。
康托简介。
2、分析的拓展 2.1 复变函数论在18世纪后半叶到19世纪初,开始了复函数的偏导数与积分性质的探索。
复分析真正作为现代分析的一个研究领域是在19世纪建立起来的,主要奠基人:柯西(法,1789-1857年)、黎曼(德,1826-1866年)和魏尔斯特拉斯(德,1815-1897年)。
柯西建立了复变函数的微分和积分理论。
1814年、1825年的论文《关于积分限为虚数的定积分的报告》建立了柯西积分定理,1826年提出留数概念,1831年获得柯西积分公式,1846年发现积分与路径无关定理。
柯西简介。
背景:波旁王朝、捷克简史、哈布斯堡王朝、拿破仑三世、欧洲1848年革命。
黎曼的几何观点,引入“黎曼面”的概念。
1851年博士论文《单复变函数一般理论基础》,建立了柯西-黎曼条件、黎曼映射定理。
魏尔斯特拉斯于19世纪40年代,以追求绝对的严格性为特征,建立了幂级数基础上的解析函数理论,解析开拓。
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。
5、欧洲⽂艺复兴时的数学欧洲⽂艺复兴时期的数学●从15世纪中期到16世纪末,这段时期在欧洲称为⽂艺复兴时期。
●在这⼀时期,欧洲,特别是西欧,出现了思想⼤解放、⽣产⼤发展、社会⼤进步的喜⼈景象,科学⽂化技术,其中包括数学,也随之开始复苏并逐步繁荣起来。
●从此欧洲的数学开始⾛到世界的前列,并长期成为世界数学发展的中⼼。
⼀、欧洲中世纪的回顾1、5世纪,罗马⼈占领了希腊本⼟后,他们依靠强权与军队来维持⾃⼰对异族的统治,热衷于创⽴所谓“实业家的⽂化”,为其统治者豪华奢侈的⽣活服务。
他们对抽象思维毫不关⼼,数学研究仅限于简单的⼏何和测量。
2、另⼀⽅⾯,这⼀时期⼜是基督教绝对统治的时期,为了达到在精神上⿇痹奴⾪的⽬的,基督教竭⼒宣扬“今⽣忍辱负重,来⽣进⼊天堂”的谬论,⽤死后的幸福⽣活来欺骗被统治者,要他们安于被奴役的痛苦命运。
3、圣经是这⼀时期⼈们唯⼀能够学习、研究的“百科全书”。
4、7世纪,在英格兰的北部出现了⼀位博学多才的神学家,这就是被称为“英格兰⽂化之⽗”的⽐德。
在数学⽅⾯,⽐德曾写过⼀些算术著作,研究过历法及指头计算⽅法。
当时,对耶酥复活期的推算是教会讨论最热烈的课题之⼀,据说,这位⽐德⼤师就是最先求得复活节的⼈。
5、⾃然现象进⾏理性的探讨,英国的哲学家培根可以说是这种理性探讨的先驱。
●培根是英格兰的⼀个贵族,曾在⽜津⼤学和巴黎⼤学任教,会多种语⾔,对当时⼏乎所有的知识都感兴趣,号称“万能博⼠”。
●他提倡科学,重视现实,反抗权威。
他认为,数学的思想⽅法是与⽣俱来的,并且是与⾃然规律相⼀致的。
●在他看来,数学是⼀切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来的,即⽤数学数量和尺度刻画的。
6、意⼤利数学家列昂纳多·斐波那契(约1170—1250),(1)曾在埃及、叙利亚、希腊以及西西⾥岛等地游历,在这些地⽅,他获得了许多数学知识,对印度—阿拉伯计算⽅法的实⽤性尤为欣赏。
欧洲文艺复兴时期的数学●从15世纪中期到16世纪末,这段时期在欧洲称为文艺复兴时期。
●在这一时期,欧洲,特别是西欧,出现了思想大解放、生产大发展、社会大进步的喜人景象,科学文化技术,其中包括数学,也随之开始复苏并逐步繁荣起来。
●从此欧洲的数学开始走到世界的前列,并长期成为世界数学发展的中心。
一、欧洲中世纪的回顾1、5世纪,罗马人占领了希腊本土后,他们依靠强权与军队来维持自己对异族的统治,热衷于创立所谓“实业家的文化”,为其统治者豪华奢侈的生活服务。
他们对抽象思维毫不关心,数学研究仅限于简单的几何和测量。
2、另一方面,这一时期又是基督教绝对统治的时期,为了达到在精神上麻痹奴隶的目的,基督教竭力宣扬“今生忍辱负重,来生进入天堂”的谬论,用死后的幸福生活来欺骗被统治者,要他们安于被奴役的痛苦命运。
3、圣经是这一时期人们唯一能够学习、研究的“百科全书”。
4、7世纪,在英格兰的北部出现了一位博学多才的神学家,这就是被称为“英格兰文化之父”的比德。
在数学方面,比德曾写过一些算术著作,研究过历法及指头计算方法。
当时,对耶酥复活期的推算是教会讨论最热烈的课题之一,据说,这位比德大师就是最先求得复活节的人。
5、自然现象进行理性的探讨,英国的哲学家培根可以说是这种理性探讨的先驱。
●培根是英格兰的一个贵族,曾在牛津大学和巴黎大学任教,会多种语言,对当时几乎所有的知识都感兴趣,号称“万能博士”。
●他提倡科学,重视现实,反抗权威。
他认为,数学的思想方法是与生俱来的,并且是与自然规律相一致的。
●在他看来,数学是一切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来的,即用数学数量和尺度刻画的。
6、意大利数学家列昂纳多·斐波那契(约1170—1250),(1)曾在埃及、叙利亚、希腊以及西西里岛等地游历,在这些地方,他获得了许多数学知识,对印度—阿拉伯计算方法的实用性尤为欣赏。
(2)1202年,斐波那契综合阿拉伯和希腊资料著成一部重要著作《算经》(Liber Abaci,亦译作《算盘书》),这部著作共15章,主要介绍算术与代数,内容十分丰富,包括:印度—阿拉伯数码的读法与写法;整数与分数的计算;平方根与立方根的求法;线性方程组和二次方程的解法等,给出了数学在实物交易、合股、比例法和测量几何中的应用。
林寿数学史教案-第十三讲:20世纪数学概观III(大全5篇)第一篇:林寿数学史教案-第十三讲:20世纪数学概观III第十三讲:20世纪数学概观 III1、牛顿以来250年间的英德法数学家1642-1891年间出生于英德法的主要数学家。
2、世界数学中心的转移世界科学活动中心曾相继停留在几个不同的国家,转移的格局大体是:意大利→英国→法国→德国→美国。
从中心区停留的时间跨度看:意大利1540-1610年,英国1660-1730年,法国1770-1830年,德国1830-1930年,美国1920年起。
科学活动中心的转移,实际上就是科学人才中心的转移。
3、20世纪的一些数学团体 3.1 哥廷根学派高斯(1777-1855年)1807-1855年任哥廷根大学数学教授,后狄里克雷(1805-1859年)1855-1859年、黎曼(1826-1866年)1846-1866年在哥廷根工作,1886年克莱因(1849-1925年)到哥廷根,开创了40年哥廷根学派的伟大基业。
20世纪初世界数学中心:哥廷根数学研究所。
在哥廷根工作的一些数学家、在哥廷根学习或访问过的数学家。
3.2 波兰数学学派1917年波兰数学会在克拉科夫成立,1918年亚尼谢夫斯基(1888-1920年)发表《波兰数学的需求》,形成了华沙学派、利沃夫学派。
华沙学派:研究点集拓扑、集论、数学基础和数理逻辑。
1920年《数学基础》创刊标志华沙学派的形成。
带头人:谢尔宾斯基(1882-1969年),马祖凯维奇(1888-1945年)。
利沃夫学派:研究泛函分析。
1929年创刊《数学研究》。
带头人:巴拿赫(1892-1945年),施坦豪斯(1887-1972年)。
第二次世界大战使波兰失去了一代人。
3.3 苏联数学学派19世纪下半叶,出现了切比雪夫(1821-1894年)为首的彼比堡学派。
叶戈罗夫(1868-1931年)造就了20世纪繁荣的莫斯科数学学派。
优势学科:函数论、拓扑学、解析数论、概率与随机过程、泛函分析、微分方程、线性规划。